Package ‘APCtools’

January 14, 2023

Title Routines for Descriptive and Model-Based APC Analysis
Version 1.0.4
Maintainer Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>
Description Age-Period-Cohort (APC) analyses are used to differentiate relevant drivers for long-term developments. The ‘APCtools’ package offers visualization techniques and general routines to simplify the workflow of an APC analysis. Sophisticated functions are available both for descriptive and regression model-based analyses. For the former, we use density (or ridgeline) matrices and (hexagonally binned) heatmaps as innovative visualization techniques building on the concept of Lexis diagrams. Model-based analyses build on the separation of the temporal dimensions based on generalized additive models, where a tensor product interaction surface (usually between age and period) is utilized to represent the third dimension (usually cohort) on its diagonal. Such tensor product surfaces can also be estimated while accounting for further covariates in the regression model. See Weigert et al. (2021) <doi:10.1177/1354816620987198> for methodological details.
License MIT + file LICENSE
URL https://bauer-alex.github.io/APCtools/
BugReports https://github.com/bauer-alex/APCtools/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Imports ggpubr, checkmate, knitr, ggplot2, colorspace, dplyr, mgcv, scales, tidyr, stringr
Suggests testthat (>= 3.0.0), rmarkdown, covr
VignetteBuilder knitr
Depends R (>= 3.5)
Config/testthat/edition 3
NeedsCompilation no
calc_density

Author Alexander Bauer [aut, cre] (<https://orcid.org/0000-0003-3495-5131>),
Maximilian Weigert [aut] (<https://orcid.org/0000-0003-4400-134X>),
Hawre Jalal [aut] (<https://orcid.org/0000-0002-8224-6834>)

Repository CRAN

Date/Publication 2023-01-13 23:30:02 UTC

R topics documented:

- calc_density .. 2
- capitalize_firstLetter ... 3
- compute_xCoordinate .. 4
- compute_yCoordinate .. 4
- create_APCsummary ... 4
- create_groupVariable .. 6
- create_highlightDiagonalData 6
- create_modelSummary ... 7
- create_oneAPCsummaryTable 8
- drug_deaths ... 9
- ensure_segmentsInPlotRange 10
- extract_summary_linearEffects 10
- get_plotGAMobject .. 11
- gg_addReferenceLines ... 11
- gg_highlightDiagonals ... 12
- plot_1Dsmooth .. 12
- plot_APCheatmap ... 14
- plot_APChexamap ... 16
- plot_density ... 19
- plot_densityMatrix .. 20
- plot_density_categorical 23
- plot_density_metric ... 24
- plot_jointMarginalAPCeffects 25
- plot_linearEffects .. 27
- plot_marginalAPCeffects 28
- plot_partialAPCeffects 29
- plot_variable .. 31
- travel .. 32

Index 34

calc_density
Internal helper to calculate the (group-specific) density of a variable
Description

Internal helper function that is called in `plot_density` to calculate the density of a metric variable. If `plot_density` is called from within `plot_densityMatrix` (i.e., when some of the columns `c("age_group","period_group","cohort_group")` are part of the dataset, the density is computed individually for all respective APC groups.

Usage

`calc_density(dat, y_var, weights_var = NULL, ...)`

Arguments

dat Dataset with columns period and age and the main variable specified through argument `y_var`.
y_var Character name of the main variable to be plotted.
weights_var Optional character name of a weights variable used to project the results in the sample to some population.
...
Additional arguments passed to `density`.

Value

Dataset with the calculated densities.

capitalize_firstLetter

Internal function to capitalize the first letter of a character

Description

Internal helper function to capitalize the first letter of a character value. The use case is to create a plot label like 'Age' from a variable name like 'age'.

Usage

`capitalize_firstLetter(char)`

Arguments

char Character value whose first letter should be capitalized
compute_xCoordinate \hspace{1em} \textit{Internal helper to tilt the x-axis for the hexamap plot}

Description

Internal helper function to be called in `plot_APChexamap`, to tilt the x-axis for the hexamap plot.

Usage

\begin{verbatim}
compute_xCoordinate(period_vec)
\end{verbatim}

Arguments

- `period_vec` \hspace{1em} Numeric vector of period values.

compute_yCoordinate \hspace{1em} \textit{Internal helper to tilt the x-axis for the hexamap plot}

Description

Internal helper function to be called in `plot_APChexamap`, to tilt the x-axis for the hexamap plot.

Usage

\begin{verbatim}
compute_yCoordinate(period_vec, age_vec)
\end{verbatim}

Arguments

- `period_vec` \hspace{1em} Numeric vector of period values.
- `age_vec` \hspace{1em} Numeric vector of age values.

create_APCsummary \hspace{1em} \textit{Create a summary table for multiple estimated GAM models}

Description

Create a table to summarize the overall effect strengths of the age, period and cohort effects for models fitted with `gam` or `bam`. The output format can be adjusted by passing arguments to `kable` via the `...` argument.

Usage

\begin{verbatim}
create_APCsummary(model_list, dat, digits = 2, apc_range = NULL, ...)
\end{verbatim}
create_APCsummary

Arguments

model_list A list of regression models estimated with `gam` or `bam`. If the list is named, the names are used as labels. Can also be a single model object instead of a list.

dat Dataset with columns `period` and `age`. If `y_var` is specified, the dataset must contain the respective column. If `model` is specified, the dataset must have been used for model estimation with `gam` or `bam`.

digits Number of digits for numeric columns. Defaults to 2.

apc_range Optional list with one or multiple elements with names “age”, “period”, “cohort” to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted before producing the table.

... Optional additional arguments passed to `kable`.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

Table created with `kable`.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

```r
library(APCtools)
library(mgcv)
data(travel)

# create the summary table for one model
model_pure <- `gam(mainTrip_distance ~ te(age, period), data = travel)`
create_APCsummary(model_pure, dat = travel)

# create the summary table for multiple models
model_cov <- `gam(mainTrip_distance ~ te(age, period) + s(household_income), data = travel)`
model_list <- list("pure model" = model_pure,
                   "covariate model" = model_cov)
create_APCsummary(model_list, dat = travel)
```
create_groupVariable

Internal helper to create a group variable as base for a density matrix

Description

Internal helper function to create a group variable based on the categorization of either age, period or cohort. To be called from within `plot_densityMatrix`.

Usage

```r
create_groupVariable(dat, APC_var, groups_list)
```

Arguments

- **dat**: Dataset with a column "age", "period" or "cohort", dependent on the specified `APC_var`.
- **APC_var**: One of c("age","period","cohort").
- **groups_list**: A list with each element specifying the borders of one row or column in the density matrix. E.g., if the period should be visualized in decade columns from 1980 to 2009, specify `groups_list = list(c(1980,1989), c(1990,1999), c(2000,2009))`. The list can be named to specify labels for the categories.

Value

Vector for the grouping that can be added as additional column to the data.

create_highlightDiagonalData

Internal helper to create a dataset for ggplot2 to highlight diagonals

Description

Internal helper function to create a dataset for ggplot2 that can be used to highlight specific diagonals in a density matrix.

Usage

```r
create_highlightDiagonalData(dat, highlight_diagonals)
```

Arguments

- **dat**: Dataset with columns period and age and the main variable specified through argument `y_var`.
- **highlight_diagonals**: Optional internal parameter which is only specified when `plot_density` is called from within `plot_densityMatrix`. See `plot_densityMatrix` for details.
create_modelSummary

Create model summary tables for multiple estimated GAM models

Description

Create publication-ready summary tables of all linear and nonlinear effects for models fitted with `gam` or `bam`. The output format of the tables can be adjusted by passing arguments to `kable` via the `...` argument.

Usage

```r
create_modelSummary(
  model_list,
  digits = 2,
  method_expTransform = "simple",
  ...
)
```

Arguments

- `model_list` list of APC models
- `digits` number of displayed digits
- `method_expTransform` One of c("simple","delta"), stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.
- `...` additional arguments to `kable`

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effects.

The table for linear coefficients includes the estimated coefficient (coef), the corresponding standard error (se), lower and upper limits of 95% confidence intervals (CI_lower, CI_upper) and the p-values for all coefficients apart from the intercept.

The table for nonlinear coefficients include the estimated degrees of freedom (edf) and the p-value for each estimate.

Value

List of tables created with `kable`.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>
Examples

```r
library(APCtools)
library(mgcv)

data(travel)
model <- gam(mainTrip_distance ~ te(age, period) + residence_region +
  household_size + s(household_income), data = travel)

create_modelSummary(list(model), dat = travel)
```

create_oneAPCsummaryTable

Internal helper to create a summary table for one estimated GAM model

Description

Internal helper function to be called in `create_APCsummary`. This function creates the summary table for one model estimated with `gam` or `bam`.

Usage

```r
create_oneAPCsummaryTable(model, dat, apc_range = NULL)
```

Arguments

- **model**: Optional regression model estimated with `gam` or `bam` to estimate a smoothed APC surface. Only used if `y_var` is not specified.
- **dat**: Dataset with columns `period` and `age`. If `y_var` is specified, the dataset must contain the respective column. If `model` is specified, the dataset must have been used for model estimation with `gam` or `bam`.
- **apc_range**: Optional list with one or multiple elements with names “age”, “period”, “cohort” to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.

Value

data.frame containing aggregated information on the individual effects.
drug_deaths

Drug deaths of white men in the United States

Description

Dataset on the number of unintentional drug overdose deaths in the United States for each age group between 1999 and 2019, retrieved from the CDC WONDER Online Database. The data only cover white men.

Usage

data(drug_deaths)

Format

A dataframe containing

- **period** Calendar year
- **age** Age group.
- **deaths** Number of observed unintentional drug overdose deaths in the respective age group and calendar year.
- **population** Number of white men in the respective age group and calendar year in the U.S. population.
- **mortality_rate** Drug overdose mortality rate for the respective age group and calendar year, reported as the number of deaths per 100,000 people. Calculated as \(100000 \times \text{deaths} / \text{population}\).

Details

The data were exported from the CDC WONDER Online Database (see link in references down below), based on the following settings:

- Group by **Year** and by **Single-Year Ages**
- Demographics: Gender **Male**, Ethnicity **White**
- Cause of death: Drug / Alcohol Induced Causes. Then select the more specific category Drug poisonings (overdose) Unintentional (X40-X44).

References

ensure_segmentsInPlotRange

Internal helper for gg_addReferenceLines to keep diagonal lines in the plot range

Description

Internal helper function to be called from within gg_addReferenceLines. This function takes the dataset prepared for adding diagonal reference lines in the plot, checks if some diagonals exceed the plot limits, cuts them accordingly, if necessary, and again returns the corrected dataset.

Usage

ensure_segmentsInPlotRange(dat_segments, plot_dat)

Arguments

dat_segments Dataset containing information on the diagonal reference lines.
plot_dat Dataset used for creating the heatmap.

extract_summary_linearEffects

Internal helper to extract summary of linear effects in a gam model

Description

Internal helper function to create a data.frame containing the linear effects summary of a model fitted with gam or bam.

Usage

extract_summary_linearEffects(model, method_expTransform = "simple")

Arguments

model Model fitted with gam or bam.
method_expTransform
 One of c("simple","delta"), stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect, see argument method_expTransform.
get_plotGAMobject

Extract returned values of `plot.gam()` while suppressing creation of the plot.

Description

Internal helper function to extract the values returned of `plot.gam` while suppressing creation of the plot.

Usage

```r
get_plotGAMobject(model)
```

Arguments

- `model` GAM model fitted with `gam` or `bam`.

gg_addReferenceLines

Internal helper to add reference lines in an APC heatmap

Description

Internal helper function to add reference lines in an APC heatmap (vertically, horizontally or diagonally). The function takes an existing list of `ggplot` objects, adds the specified reference lines in each plot and returns the edited `ggplot` list again. To be called from within `plot_APCheatmap`.

Usage

```r
gg_addReferenceLines(
  gg_list,
  dimensions,
  plot_dat,
  markLines_list,
  markLines_displayLabels
)
```

Arguments

- `gg_list` Existing list of `ggplot` objects where the reference lines should be marked in each individual `ggplot`.
- `dimensions` Character vector specifying the two APC dimensions that should be visualized along the x-axis and y-axis. Defaults to `c("period", "age")`.
- `plot_dat` Dataset used for creating the heatmap.
markLines_list Optional list that can be used to highlight the borders of specific age groups, time intervals or cohorts. Each element must be a numeric vector of values where horizontal, vertical or diagonal lines should be drawn (depends on which APC dimension is displayed on which axis). The list can maximally have three elements and must have names out of c("age","period","cohort").

markLines_displayLabels Optional character vector defining for which dimensions the lines defined through markLines_list should be marked by a respective label. The vector should be a subset of c("age","period","cohort"), or NULL to suppress all labels. Defaults to c("age","period","cohort").

gg_highlightDiagonals *Internal helper to add the diagonal highlighting to a ggplot*

Description

Internal helper function to highlight diagonals in a density matrix. The function takes an existing ggplot object, adds the diagonal highlighting and returns the edited ggplot object again.

Usage

`gg_highlightDiagonals(gg, dat, dat_highlightDiagonals)`

Arguments

- `gg` Existing ggplot object to which the diagonal highlighting should be added.
- `dat` Dataset with columns `period` and `age` and the main variable specified through argument `y_var`.
- `dat_highlightDiagonals` Dataset created by `create_highlightDiagonalData` to highlight specific diagonals in a density matrix.

plot_1Dsmooth *Plot 1D smooth effects for gam models*

Description

Plots 1D smooth effects for a GAM model fitted with `gam` or `bam`.
plot_1Dsmooth

Usage

plot_1Dsmooth(
 model,
 plot_ci = TRUE,
 select,
 alpha = 0.05,
 ylim = NULL,
 method_expTransform = "simple",
 return_plotData = FALSE
)

Arguments

 model GAM model fitted with gam or bam.
 plot_ci If TRUE CIs are plotted. Only used if plot_type = 1.
 select Index of smooth term to be plotted.
 alpha (1-alpha) CIs are calculated. The default 0.05 leads to 95% CIs.
 ylim Optional limits of the y-axis.
 method_expTransform
 One of c("simple","delta"), stating if standard errors and confidence interval limits should be transformed by a simple exp transformation or using the delta method. The delta method can be unstable in situations and lead to negative confidence interval limits. Only used when the model was estimated with a log or logit link.
 return_plotData
 If TRUE, the dataset prepared for plotting is returned. Defaults to FALSE.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect, see argument method_expTransform.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

library(APCtools)
library(mgcv)

data(travel)
model <- gam(mainTrip_distance ~ te(age, period) + residence_region + household_size + s(household_income), data = travel)
plot_APCheatmap

Heatmap of an APC surface

Description
Plot the heatmap of an APC structure. The function can be used in two ways: Either to plot the observed mean structure of a metric variable, by specifying dat and the variable y_var, or by specifying dat and the model object, to plot some mean structure represented by an estimated two-dimensional tensor product surface. The model must be estimated with gam or bam.

Usage
plot_APCheatmap(
dat,
y_var = NULL,
model = NULL,
dimensions = c("period", "age"),
apc_range = NULL,
bin_heatmap = TRUE,
bin_heatmapGrid_list = NULL,
markLines_list = NULL,
markLines_displayLabels = c("age", "period", "cohort"),
y_var_logScale = FALSE,
plot_CI = TRUE,
legend_limits = NULL
)

Arguments
dat
Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.
y_var
Optional character name of a metric variable to be plotted.
model
Optional regression model estimated with gam or bam to estimate a smoothed APC surface. Only used if y_var is not specified.
dimensions
Character vector specifying the two APC dimensions that should be visualized along the x-axis and y-axis. Defaults to c("period","age").
apc_range
Optional list with one or multiple elements with names "age","period","cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.
bin_heatmap, bin_heatmapGrid_list

bin_heatmap indicates if the heatmap surface should be binned. Defaults to TRUE. If TRUE, the binning grid borders are defined by bin_heatmapGrid_list. This is a list with each element a numeric vector and a name out of c("age", "period", "cohort"). Can maximally have three elements. Defaults to NULL, where the heatmap is binned in 5 year steps along the x-axis and the y-axis.

markLines_list Optional list that can be used to highlight the borders of specific age groups, time intervals or cohorts. Each element must be a numeric vector of values where horizontal, vertical or diagonal lines should be drawn (depends on which APC dimension is displayed on which axis). The list can maximally have three elements and must have names out of c("age", "period", "cohort").

markLines_displayLabels Optional character vector defining for which dimensions the lines defined through markLines_list should be marked by a respective label. The vector should be a subset of c("age", "period", "cohort"), or NULL to suppress all labels. Defaults to c("age", "period", "cohort").

y_var_logScale Indicator if y_var should be log10 transformed. Only used if y_var is specified. Defaults to FALSE.

plot_CI Indicator if the confidence intervals should be plotted. Only used if y_var is not specified. Defaults to TRUE.

legend_limits Optional numeric vector passed as argument limits to scale_fill_gradient2.

Details

See also plot_APChexamap to plot a hexagonal heatmap with adapted axes.

If the plot is created based on the model object and the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

Plot grid created with ggarrange (if plot_CI is TRUE) or a ggplot2 object (if plot_CI is FALSE).

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>

References

See Also

plot_APChexamap
Examples

library(APCtools)
library(mgcv)

data(travel)

variant A: plot observed mean structures
observed heatmap
plot_APCheatmap(dat = travel, y_var = "mainTrip_distance",
 bin_heatmap = FALSE, y_var_logScale = TRUE)

with binning
plot_APCheatmap(dat = travel, y_var = "mainTrip_distance",
 bin_heatmap = TRUE, y_var_logScale = TRUE)

variant B: plot some smoothed, estimated mean structure
model <- gam(mainTrip_distance ~ te(age, period) + residence_region +
 household_size + s(household_income), data = travel)

plot the smooth tensor product surface
plot_APCheatmap(dat = travel, model = model, bin_heatmap = FALSE, plot_CI = FALSE)

... same plot including the confidence intervals
plot_APCheatmap(dat = travel, model = model, bin_heatmap = FALSE)

the APC dimensions can be flexibly assigned to the x-axis and y-axis
plot_APCheatmap(dat = travel, model = model, dimensions = c("age", "cohort"),
 bin_heatmap = FALSE, plot_CI = FALSE)

add some reference lines
plot_APCheatmap(dat = travel, model = model, bin_heatmap = FALSE, plot_CI = FALSE,
 markLines_list = list(cohort = c(1910,1939,1955,1980)))

default binning of the tensor product surface in 5-year-blocks
plot_APCheatmap(dat = travel, model = model, plot_CI = FALSE)

manual binning
manual_binning <- list(period = seq(min(travel$period, na.rm = TRUE) - 1,
 max(travel$period, na.rm = TRUE), by = 5),
 cohort = seq(min(travel$period - travel$age, na.rm = TRUE) - 1,
 max(travel$period - travel$age, na.rm = TRUE), by = 10))
plot_APCheatmap(dat = travel, model = model, plot_CI = FALSE,
 bin_heatmapGrid_list = manual_binning)

plot_APChexamap Hexamap of an APC surface
Description

Plot the heatmap of an APC structure using a hexagon-based plot with adapted axes. In this way, the one temporal dimension that is represented by the diagonal structure is visually not underrepresented compared to the other two dimensions on the x-axis and y-axis.

The function can be used in two ways: Either to plot the observed mean structure of a metric variable, by specifying dat and the variable y_var, or by specifying dat and the model object, to plot some mean structure represented by an estimated two-dimensional tensor product surface. The model must be estimated with gam or bam.

Usage

```
plot_APChexamap(
  dat,
  y_var = NULL,  # Optional character name of a metric variable to be plotted.
  model = NULL,  # Optional regression model estimated with gam or bam to estimate a smoothed
                  # APC surface. Only used if y_var is not specified.
  apc_range = NULL,  # Optional list with one or multiple elements with names "age","period","cohort"
                      # to filter the data. Each element should contain a numeric vector of values for
                      # the respective variable that should be kept in the data. All other values are deleted.
  y_var_logScale = FALSE,  # Indicator if y_var should be log10 transformed. Only used if y_var is specified.
                           # Defaults to FALSE.
  obs_interval = 1,  # Numeric specifying the interval width based on which the data is spaced. Only
                     # used if y_var is specified. Defaults to 1, i.e. observations each year.
  iso_interval = 5,  # Numeric specifying the interval width between the isolines along each axis. De-
                    #faults to 5.
  color_vec = NULL,  # Optional character vector of color names, specifying the color continuum.
  color_range = NULL,
  line_width = 0.5,
  line_color = gray(0.5),
  label_size = 0.5,
  label_color = "black",
  legend_title = NULL
)
```

Arguments

- **dat**: Dataset with columns period and age. If y_var is specified, the dataset must contain the respective column. If model is specified, the dataset must have been used for model estimation with gam or bam.

- **y_var**: Optional character name of a metric variable to be plotted.

- **model**: Optional regression model estimated with gam or bam to estimate a smoothed
 APC surface. Only used if y_var is not specified.

- **apc_range**: Optional list with one or multiple elements with names "age","period","cohort"
 to filter the data. Each element should contain a numeric vector of values for
 the respective variable that should be kept in the data. All other values are deleted.

- **y_var_logScale**: Indicator if y_var should be log10 transformed. Only used if y_var is specified.
 Defaults to FALSE.

- **obs_interval**: Numeric specifying the interval width based on which the data is spaced. Only
 used if y_var is specified. Defaults to 1, i.e. observations each year.

- **iso_interval**: Numeric specifying the interval width between the isolines along each axis. De-
 faults to 5.

- **color_vec**: Optional character vector of color names, specifying the color continuum.
plot_APChexamap

- **color_range**: Optional numeric vector with two elements, specifying the ends of the color scale in the legend.
- **line_width**: Line width of the isolines. Defaults to 0.5.
- **line_color**: Character color name for the isolines. Defaults to gray.
- **label_size**: Size of the labels along the axes. Defaults to 0.5.
- **label_color**: Character color name for the labels along the axes.
- **legend_title**: Optional character title for the legend.

Details

See also `plot_APChexamap` to plot a regular heatmap.

If the plot is created based on the `model` object and the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

Creates a plot with base R functions (not `ggplot2`).

Author(s)

Hawre Jalal <hjalal@pitt.edu>, Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

References

See Also

- `plot_APChexamap`

Examples

```r
library(APCtools)
library(mgcv)
library(dplyr)

data(drug_deaths)

# restrict to data where the mortality rate is available
drug_deaths <- drug_deaths %>% filter(!is.na(mortality_rate))

# hexamap of an observed structure
plot_APChexamap(dat = drug_deaths, y_var = "mortality_rate", color_range = c(0, 40))

# hexamap of a smoothed structure
model <- gam(mortality_rate ~ te(age, period, bs = "ps", k = c(8, 8)),
plot_density

```r
data = drug_deaths
plot_APChexamap(dat = drug_deaths, model = model)
```

---

**plot_density**

*Plot the density of one metric or categorical variable*

**Description**

Create a density plot or a boxplot of one metric variable or a barplot of one categorical variable, based on a specific subset of the data.

**Usage**

```r
plot_density(
 dat, # Dataset with columns period and age and the main variable specified through argument y_var.
 y_var, # Character name of the main variable to be plotted.
 plot_type = "density", # One of c("density","boxplot"). Only used if the y_var column is metric.
 apc_range = NULL, # Optional list with one or multiple elements with names "age","period","cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.
 highlight_diagonals = NULL, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 y_var_cat_breaks = NULL, # Optional numeric vector of breaks to categorize y_var based on calling function cut. Only used to highlight the categories based on different colors. And only used if the y_var column is numeric.
 y_var_cat_labels = NULL, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 weights_var = NULL, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 log_scale = FALSE, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 xlab = NULL, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 ylab = NULL, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 legend_title = NULL, # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
 ... # Optional internal parameter which is only specified when plot_density is called from within plot_densityMatrix. See plot_densityMatrix for details.
)
```

**Arguments**

- `dat`  
  - Dataset with columns period and age and the main variable specified through argument `y_var`.
- `y_var`  
  - Character name of the main variable to be plotted.
- `plot_type`  
  - One of c("density","boxplot"). Only used if the `y_var` column is metric.
- `apc_range`  
  - Optional list with one or multiple elements with names "age","period","cohort" to filter the data. Each element should contain a numeric vector of values for the respective variable that should be kept in the data. All other values are deleted.
- `highlight_diagonals`  
  - Optional internal parameter which is only specified when `plot_density` is called from within `plot_densityMatrix`. See `plot_densityMatrix` for details.
- `y_var_cat_breaks`  
  - Optional numeric vector of breaks to categorize `y_var` based on calling function `cut`. Only used to highlight the categories based on different colors. And only used if the `y_var` column is numeric.
plot_densityMatrix

`y_var_cat_labels`
Optional character vector for the names of the categories that were defined based on `y_var_cat_breaks`. The length of this vector must be one shorter than `length(y_var_cat_breaks)`. Only used if the `y_var` column is numeric.

`weights_var`
Optional character name of a weights variable used to project the results in the sample to some population.

`log_scale`
Indicator if the main variable should be log10 transformed. Only used if the `y_var` column is numeric. Defaults to FALSE.

`xlab, ylab, legend_title`
Optional plot annotations.

`...`
Additional arguments passed to `density`.

**Details**
If `plot_density` is called internally from within `plot_densityMatrix` (i.e., if the dataset contains some of the columns `c("age_group","period_group","cohort_group")`), this function will calculate the metric densities individually for these groups.

**Value**
ggplot object

**Author(s)**
Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>

**Examples**
```r
library(APCtools)
data(travel)
plot_density(dat = travel, y_var = "mainTrip_distance")
plot_density(dat = travel, y_var = "mainTrip_distance")
```

---

**plot_densityMatrix**  
Create a matrix of density plots

**Description**
This function creates a matrix of individual density plots (i.e., a ridgeline matrix) or boxplots (for metric variables) or of individual barplots (for categorical variables). The age, period or cohort information can each either be plotted on the x-axis or the y-axis.
Usage

```r
plot_densityMatrix(
 dat,
 y_var,
 dimensions = c("period", "age"),
 age_groups = NULL,
 period_groups = NULL,
 cohort_groups = NULL,
 plot_type = "density",
 highlight_diagonals = NULL,
 y_var_cat_breaks = NULL,
 y_var_cat_labels = NULL,
 weights_var = NULL,
 log_scale = FALSE,
 legend_title = NULL,
 ...
)
```

Arguments

dat Dataset with columns period and age and the main variable specified through argument y_var.

y_var Character name of the main variable to be plotted.

dimensions Character vector specifying the two APC dimensions that should be visualized along the x-axis and y-axis. Defaults to c("period","age").

age_groups, period_groups, cohort_groups Each a list. Either containing purely scalar values or with each element specifying the two borders of one row or column in the density matrix. E.g., if the period should be visualized in decade columns from 1980 to 2009, specify period_groups = list(c(1980,1989), c(1990,1999), c(2000,2009)). The list can be named to specify labels for the categories. Only the two arguments must be passed that were specified by the dimensions argument.

plot_type One of c("density","boxplot"). Only used if the y_var column is metric.

highlight_diagonals Optional list to define diagonals in the density that should be highlighted with different colors. Each list element should be a numeric vector stating the index of the diagonals (counted from the top left) that should be highlighted in the same color. If the list is named, the names are used as legend labels.

y_var_cat_breaks Optional numeric vector of breaks to categorize y_var based on calling function `cut`. Only used to highlight the categories based on different colors. And only used if the y_var column is numeric.

y_var_cat_labels Optional character vector for the names of the categories that were defined based on y_var_cat_breaks. The length of this vector must be one shorter than length(y_var_cat_breaks). Only used if the y_var column is numeric.
weights_var  Optional character name of a weights variable used to project the results in the sample to some population.

log_scale  Indicator if the main variable should be log10 transformed. Only used if the y_var column is numeric. Defaults to FALSE.

legend_title  Optional plot annotation.

...  Additional arguments passed to plot_density.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>

References


Examples

library(APCtools)

# define categorizations for the main trip distance
dist_cat_breaks <- c(1,500,1000,2000,6000,100000)
dist_cat_labels <- c("< 500 km","500 - 1,000 km", "1,000 - 2,000 km", "2,000 - 6,000 km", "> 6,000 km")
age_groups <- list(c(80,89),c(70,79),c(60,69),c(50,59),c(40,49),c(30,39),c(20,29))
                      c(1930,1939),c(1920,1929))

plot_densityMatrix(dat = travel,
y_var = "mainTrip_distance",
age_groups = age_groups,
period_groups = period_groups,
log_scale = TRUE)

# highlight two cohorts
plot_densityMatrix(dat = travel,
y_var = "mainTrip_distance",
age_groups = age_groups,
period_groups = period_groups,
highlight_diagonals = list(8, 10),
log_scale = TRUE)
# also mark different distance categories
plot_densityMatrix(dat = travel, 
                     y_var = "mainTrip_distance", 
                     age_groups = age_groups, 
                     period_groups = period_groups, 
                     log_scale = TRUE, 
                     y_var_cat_breaks = dist_cat_breaks, 
                     y_var_cat_labels = dist_cat_labels, 
                     highlight_diagonals = list(8, 10), 
                     legend_title = "Distance category")

# flexibly assign the APC dimensions to the x-axis and y-axis
plot_densityMatrix(dat = travel, 
                     y_var = "mainTrip_distance", 
                     dimensions = c("period", "cohort"), 
                     period_groups = period_groups, 
                     cohort_groups = cohort_groups, 
                     log_scale = TRUE, 
                     y_var_cat_breaks = dist_cat_breaks, 
                     y_var_cat_labels = dist_cat_labels, 
                     legend_title = "Distance category")

# use boxplots instead of densities
plot_densityMatrix(dat = travel, 
                     y_var = "mainTrip_distance", 
                     plot_type = "boxplot", 
                     age_groups = age_groups, 
                     period_groups = period_groups, 
                     log_scale = TRUE, 
                     highlight_diagonals = list(8, 10))

# plot categorical variables instead of metric ones
plot_densityMatrix(dat = travel, 
                     y_var = "household_size", 
                     age_groups = age_groups, 
                     period_groups = period_groups, 
                     highlight_diagonals = list(8, 10))

---

plot_density_categorical

Internal helper to plot a categorical density

Description

Internal helper function to plot one categorical density, to be called from within plot_density.
Usage

```r
plot_density_categorical(
 dat,
 y_var,
 dat_highlightDiagonals = NULL,
 weights_var = NULL,
 xlab = NULL,
 ylab = NULL
)
```

Arguments

- `dat`: Dataset with columns `period` and `age` and the main variable specified through argument `y_var`.
- `y_var`: Character name of the main variable to be plotted.
- `dat_highlightDiagonals`: Optional dataset created by `create_highlightDiagonalData` to highlight specific diagonals in a density matrix.
- `weights_var`: Optional character name of a weights variable used to project the results in the sample to some population.
- `xlab, ylab`: Optional plot annotations.

---

**plot_density_metric**

*Internal helper to plot a metric density*

Description

Internal helper function to plot one metric density, to be called from within `plot_density`.

Usage

```r
plot_density_metric(
 dat,
 y_var,
 plot_type = "density",
 dat_highlightDiagonals = NULL,
 y_var_cat_breaks = NULL,
 y_var_cat_labels = NULL,
 weights_var = NULL,
 log_scale = FALSE,
 xlab = NULL,
 ylab = NULL,
 legend_title = NULL,
 ...
)
```
**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>Dataset with columns period and age and the main variable specified through argument y_var.</td>
</tr>
<tr>
<td>y_var</td>
<td>Character name of the main variable to be plotted.</td>
</tr>
<tr>
<td>plot_type</td>
<td>One of c(&quot;density&quot;, &quot;boxplot&quot;). Only used if the y_var column is metric.</td>
</tr>
<tr>
<td>dat_highlightDiagonals</td>
<td>Optional dataset created by create_highlightDiagonalData to highlight specific diagonals in a density matrix.</td>
</tr>
<tr>
<td>y_var_cat_breaks</td>
<td>Optional numeric vector of breaks to categorize y_var based on calling function cut. Only used to highlight the categories based on different colors. And only used if the y_var column is numeric.</td>
</tr>
<tr>
<td>y_var_cat_labels</td>
<td>Optional character vector for the names of the categories that were defined based on y_var_cat_breaks. The length of this vector must be one shorter than length(y_var_cat_breaks). Only used if the y_var column is numeric.</td>
</tr>
<tr>
<td>weights_var</td>
<td>Optional character name of a weights variable used to project the results in the sample to some population.</td>
</tr>
<tr>
<td>log_scale</td>
<td>Indicator if the main variable should be log10 transformed. Only used if the y_var column is numeric. Defaults to FALSE.</td>
</tr>
<tr>
<td>xlab, ylab, legend_title</td>
<td>Optional plot annotations.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to density.</td>
</tr>
</tbody>
</table>

**plot_jointMarginalAPCeffects**

*Joint plot to compare the marginal APC effects of multiple models*

**Description**

This function creates a joint plot of the marginal APC effects of multiple estimated models. It creates a plot with one pane per age, period and cohort effect, each containing one lines for each estimated model.

**Usage**

```r
plot_jointMarginalAPCeffects(
 model_list,
 dat,
 vlines_list = NULL,
 ylab = NULL,
 ylim = NULL
)
```
Arguments

model_list A list of regression models estimated with `gam` or `bam`. If the list is named, the names are used as labels. Can also be a single model object instead of a list.
dat Dataset with columns period and age. If `y_var` is specified, the dataset must contain the respective column. If `model` is specified, the dataset must have been used for model estimation with `gam` or `bam`.
vlines_list Optional list that can be used to highlight the borders of specific age groups, time intervals or cohorts. Each element must be a numeric vector of values on the x-axis where vertical lines should be drawn. The list can maximally have three elements and must have names out of c("age","period","cohort").
ylab, ylim Optional ggplot2 styling arguments.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Since the plot output created by the function is no ggplot2 object, but an object created with `ggpubr::ggarrange`, the overall theme of the plot cannot be changed by adding the theme in the form of `plot_jointMarginalAPCeffects(...) + theme_minimal(...)`. Instead, you can call `theme_set(theme_minimal(...))` as an individual call before calling `plot_jointMarginalAPCeffects(...)`. The latter function will then use this global plotting theme.

Value

Plot grid created with `ggarrange`.

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>

Examples

```r
library(APCtools)
library(mgcv)
data(travel)

plot marginal effects of one model
model_pure <- gam(mainTrip_distance ~ te(age, period), data = travel)
plot_jointMarginalAPCeffects(model_pure, dat = travel)

plot marginal effects of multiple models
model_cov <- gam(mainTrip_distance ~ te(age, period) + s(household_income),
 data = travel)
model_list <- list("pure model" = model_pure,
 "covariate model" = model_cov)
plot_jointMarginalAPCeffects(model_list, dat = travel)

mark specific cohorts
```
Description

Create an effect plot of linear effects of a model fitted with gam or bam.

Usage

```r
plot_linearEffects(
 model,
 variables = NULL,
 return_plotData = FALSE,
 refCat = FALSE,
 ...
)
```

Arguments

- `model`: Model fitted with gam or bam.
- `variables`: Optional character vector of variable names specifying which effects should be plotted. The order of the vector corresponds to the order in the effect plot. If the argument is not specified, all linear effects are plotted according to the order of their appearance in the model output.
- `return_plotData`: If TRUE, the dataset prepared for plotting is returned. Defaults to FALSE.
- `refCat`: If TRUE, reference categories are added to the output for categorical covariates. Defaults to FALSE.
- `...`: Additional arguments passed to `extract_summary_linearEffects`.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>
Examples

```r
library(APCtools)
library(mgcv)

data(travel)
model <- gam(mainTrip_distance ~ te(age, period) + residence_region +
 household_size + s(household_income), data = travel)

plot_linearEffects(model)
```

---

**plot_marginalAPCeffects**

*Plot of marginal APC effects based on an estimated GAM model*

---

**Description**

Plot the marginal effect of age, period or cohort, based on an APC model estimated as a semiparametric additive regression model with `gam` or `bam`. This function is a simple wrapper to `plot_partialAPCeffects`, called with argument `hide_partialEffects = TRUE`.

**Usage**

```r
plot_marginalAPCeffects(
 model,
 dat,
 variable = "age",
 vlines_vec = NULL,
 return_plotData = FALSE
)
```

**Arguments**

- `model`: Optional regression model estimated with `gam` or `bam` to estimate a smoothed APC surface. Only used if `y_var` is not specified.
- `dat`: Dataset with columns `period` and `age`. If `y_var` is specified, the dataset must contain the respective column. If `model` is specified, the dataset must have been used for model estimation with `gam` or `bam`.
- `variable`: One of c("age","period","cohort"). specifying the temporal dimension for which the partial effect plots should be created.
- `vlines_vec`: Optional numeric vector of values on the x-axis where vertical lines should be drawn. Can be used to highlight the borders of specific age groups, time intervals or cohorts.
- `return_plotData`: If TRUE, a list of the datasets prepared for plotting is returned instead of the ggplot object. The list contains one dataset each for the overall effect (= evaluations of the APC surface to plot the partial effects) and for each marginal APC
**plot_partialAPCeffects**

Partial APC plots based on an estimated GAM model

**Description**

Create the partial APC plots based on an APC model estimated as a semiparametric additive regression model with *gam* or *bam*.

**Usage**

```r
plot_partialAPCeffects(
 model,
 dat,
 variable = "age",
 hide_partialEffects = FALSE,
```

**Value**

ggplot object

**Author(s)**

Alexander Bauer &lt;alexander.bauer@stat.uni-muenchen.de&gt;, Maximilian Weigert &lt;maximilian.weigert@stat.uni-muenchen.de&gt;

**References**


**Examples**

```r
library(APCtools)
library(mgcv)

data(travel)
model <- gam(mainTrip_distance ~ te(age, period), data = travel)
plot_marginalAPCeffects(model, dat = travel, variable = "age")

mark specific cohorts
plot_marginalAPCeffects(model, dat = travel, variable = "cohort",
```

effect (no matter the specified value of the argument variable). Defaults to FALSE.
Arguments

model  
Optional regression model estimated with `gam` or `bam` to estimate a smoothed APC surface. Only used if `y_var` is not specified.

dat  
Dataset with columns `period` and `age`. If `y_var` is specified, the dataset must contain the respective column. If `model` is specified, the dataset must have been used for model estimation with `gam` or `bam`.

variable  
One of `c("age","period","cohort")`, specifying the temporal dimension for which the partial effect plots should be created.

hide_partialEffects  
If TRUE, only the marginal effect will be plotted. Defaults to FALSE.

vlines_vec  
Optional numeric vector of values on the x-axis where vertical lines should be drawn. Can be used to highlight the borders of specific age groups, time intervals or cohorts.

return_plotData  
If TRUE, a list of the datasets prepared for plotting is returned instead of the `ggplot` object. The list contains one dataset each for the overall effect (= evaluations of the APC surface to plot the partial effects) and for each marginal APC effect (no matter the specified value of the argument `variable`). Defaults to FALSE.

Details

If the model was estimated with a log or logit link, the function automatically performs an exponential transformation of the effect.

Value

`ggplot` object (if `hide_partialEffects` is TRUE) or a plot grid created with `ggarrange` (if FALSE).

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>, Maximilian Weigert <maximilian.weigert@stat.uni-muenchen.de>

References

plot_variable

Examples

```r
library(APCtools)
library(mgcv)

data(travel)
model <- gam(mainTrip_distance ~ te(age, period), data = travel)

plot_partialAPCeffects(model, dat = travel, variable = "age")

mark specific cohorts
plot_partialAPCeffects(model, dat = travel, variable = "cohort",
```

---

**plot_variable**  
*Distribution plot of one variable against one APC dimension*

**Description**

Plot the distribution of one variable in the data against age, period or cohort. Creates a bar plot for categorical variables (see argument geomBar_position) and boxplots or a line plot of median values for metric variables (see plot_type).

**Usage**

```r
plot_variable(
 dat,
 y_var,
 apc_dimension = "period",
 log_scale = FALSE,
 plot_type = "boxplot",
 geomBar_position = "fill",
 legend_title = NULL,
 ylab = NULL,
 ylim = NULL
)
```

**Arguments**

- **dat**  
  Dataset containing columns age and period.

- **y_var**  
  Character name of the variable to plot.

- **apc_dimension**  
  One of c("age","period","cohort"). Defaults to "period".

- **log_scale**  
  Indicator if the visualized variable should be log10 transformed. Only used if the variable is numeric. Defaults to FALSE.

- **plot_type**  
  One of c("boxplot","line","line-points"), specifying if boxplots or a line plot of median values should be drawn for metric variables. "line-points" adds points to the line plot where observations are available.
geomBar_position

Value passed to geom_bar as position argument. Only used if the visualized variable is categorical. Defaults to "fill".

legend_title

Optional character title for the legend which is drawn for categorical variables.

ylab, ylim

Optional arguments for styling the ggplot.

Value

ggplot object

Author(s)

Alexander Bauer <alexander.bauer@stat.uni-muenchen.de>

Examples

library(APCtools)
data(travel)

# plot a metric variable
plot_variable(dat = travel, y_var = "mainTrip_distance", apc_dimension = "period", log_scale = TRUE)
plot_variable(dat = travel, y_var = "mainTrip_distance", apc_dimension = "period", log_scale = TRUE, plot_type = "line")

# plot a categorical variable
plot_variable(dat = travel, y_var = "household_size", apc_dimension = "period")
plot_variable(dat = travel, y_var = "household_size", apc_dimension = "period", geomBar_position = "stack")

Description

This dataset from the Reiseanalyse survey comprises travel information on German travelers between 1971 and 2018. Data were collected in a yearly repeated cross-sectional survey of German pleasure travels, based on a sample representative for the (West) German citizens (until 2009) or for all German-speaking residents (starting 2010). Travelers from former East Germany are only included since 1990. Note that the sample only contains trips with at least five days of trip length. For details see Weigert et al. (2021).

Usage

data(travel)
Format

A dataframe containing

- **period**: Year in which the respondent traveled.
- **age**: Age of the respondent.
- **sampling_weight**: Individual weight of each respondent to account for a not perfectly representative sample and project the sample results to the population of German citizens (until 2009) or of German-speaking residents (starting 2010). Only available since 1974.
- **german_citizenship**: Indicator if the respondent is German citizen or not. Only available since 2010. Until 2009, all respondents were German citizens.
- **residence_region**: Indicator if the respondent’s main residence is in a federal state in the former area of West Germany or in the former area of East Germany.
- **household_size**: Categorized size of the respondent’s household.
- **household_income**: Joint income (in €) of the respondent’s household.
- **mainTrip_duration**: Categorized trip length of the respondent’s *main trip*. The main trip is the trip which the respondent stated was his/her most important trip in the respective year.
- **mainTrip_distance**: Distance (in km) between the center of the respondent’s federal state and the center of the country of destination, for the *main trip*. The main trip is the trip which the respondent stated was his/her most important trip in the respective year.

Details

The data are a 10% random sample of all respondents who undertook at least one trip in the respective year, between 1971 and 2018. We thank the Forschungsgemeinschaft Urlaub und Reisen e.V. for allowing us to publish this sample.

References


Index

* datasets
  - drug_deaths, 9
  - travel, 32

bam, 4, 5, 7, 8, 10–14, 17, 26–30

calc_density, 2
capitalize_firstLetter, 3
compute_xCoordinate, 4
compute_yCoordinate, 4
create_APCsummary, 4, 8
create_groupVariable, 6
create_highlightDiagonalData, 6, 12, 24, 25
create_modelSummary, 7
create_oneAPCsummaryTable, 8
cut, 19, 21, 25
density, 3, 20, 25
drug_deaths, 9

ensure_segmentsInPlotRange, 10
extract_summary_linearEffects, 10, 27

gam, 4, 5, 7, 8, 10–14, 17, 26–30
gem_bar, 32
get_plotGAMobject, 11

gg_addReferenceLines, 10, 11
gg_highlightDiagonals, 12
ggarrange, 15, 26, 30

kable, 4, 5, 7
plot.gam, 11
plot_1Dsmooth, 12
plot_APChexamap, 11, 14, 18
plot_APCheatmap, 11, 14, 18

plot_partialAPCeffects, 28, 29
plot_variable, 31

scale_fill_gradient2, 15

travel, 32

plot_linearEffects, 27
plot_marginalAPCeffects, 28
plot_jointMarginalAPCeffects, 25
plot_density, 3, 19, 22–24
plot_density_categorical, 23
plot_density_metric, 24
plot_densityMatrix, 3, 6, 19, 20, 20