Package ‘APIS’

Type Package
Title Auto-Adaptive Parentage Inference Software Tolerant to Missing Parents
Version 1.0.0
Author Ronan Griot, François Allal, Romain Morvezen, Sophie Brard-Fudulea, Pierrick Haffray, Florence Phocas and Marc Vandeputte
Maintainer Ronan Griot <ronan.griot@gmail.com>
Description Parentage assignment package.
 Parentage assignment is performed based on observed average Mendelian transmission probability distributions.
 The main function of this package is the function APIS(), which is the parentage assignment function.
License GPL
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends R (>= 3.4.0)
Imports foreach, parallel, doParallel, ggplot2, gridExtra, methods
NeedsCompilation yes
Suggests knitr, rmarkdown
VignetteBuilder knitr
Repository CRAN
Date/Publication 2019-12-12 13:20:02 UTC

R topics documented:

 allFreq .. 2
 APIS ... 2
 APIS_dam .. 3
 APIS_offspring .. 4
allFreq

Estimate the allele frequencies

Description
This function estimates allele frequencies

Usage
allFreq(genotype)

Arguments
genotype A matrix of genotypes (n*p) n = number of individuals p = number of markers (coded as "All1/All2", ex: "A/A" or "NA/NA" for missing genotype)

Value
allele frequencies

Examples
data("APIS_offspring")
freq <- allFreq(APIS_offspring)

APIS

API function that assigns with observed data

Description
This function performs the APIS procedure

Usage
APIS(off.genotype, sire.genotype, dam.genotype, error = 0,
exclusion.threshold = ncol(off.genotype), preselect.Parent = FALSE,
 nb.cores = 2, verbose = TRUE)
Arguments

off.genotype Offspring genotypes | Matrix (n*p) where n = number of individuals p = number of markers rownames(offspring) = labels of offspring marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype)
sire.genotype Sire genotypes | Matrix (n*p) where n = number of individuals p = number of markers rownames(sire) = labels of sires marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype)
dam.genotype Dam genotypes | Matrix (n*p) where n = number of individuals p = number of markers rownames(dam) = labels of dams marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype)
error (default: 0) The assignment error rate accepted by the user
exclusion.threshold (default: ncol(off.genotype)) Threshold for exclusion (number of mismatches allowed)
preselect.Parent (default: FALSE) Preselection of parents. Can be FALSE, an integer or a vector of two integers (number of sires, numbers of dams)
nb.cores (default: 2) Number of cores to use. If you have more than 2 cores, you can use the "parallel" function detectCores()
verbose (default : TRUE) Display the process of the function on the console.

Value

pedigree
a log file

Examples

data("APIS_offspring")
data("APIS_sire")
data("APIS_dam")

result <- APIS(off.genotype = APIS_offspring[1:50,],
sire.genotype = APIS_sire,
dam.genotype = APIS_dam,
error = 0.05,
verbose = FALSE)

APIs Dam Example dam genotypes

Description

Example dam genotypes
Usage

- **APIS_dam**

Format

A matrix with 14 rows (one row = one dam) and 100 columns (one column = one marker)

APIS_offspring

Example offspring genotypes

Description

Example offspring genotypes

Usage

- **APIS_offspring**

Format

A matrix with 1068 rows (one row = one offspring) and 100 columns (one column = one marker)

APIS_sire

Example sire genotypes

Description

Example sire genotypes

Usage

- **APIS_sire**

Format

A matrix with 39 rows (one row = one sire) and 100 columns (one column = one marker)
assignmentFortran

Assignment function to obtain the average Mendelian transmission probabilities using a Fortran library

Description

This function calculates the average Mendelian transmission probabilities

Usage

assignmentFortran(offspring, sire, dam, thresh = ncol(offspring),
preselect.Parent = FALSE, nb.cores = 2, verbose = TRUE)

Arguments

offspring Offspring genotypes | Matrix (n*p) where n = number of individuals, p = number of markers rownames(offspring) = labels of offspring marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype)
sire Sire genotypes | Matrix (n*p) where n = number of individuals, p = number of markers rownames(sire) = labels of sires marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype)
dam Dam genotypes | Matrix (n*p) where n = number of individuals, p = number of markers rownames(dam) = labels of dams marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype)
thresh (default: ncol(offspring) Threshold for exclusion (number of mismatches allowed)
preselect.Parent (default: FALSE) Preselection of parents. Can be FALSE, an integer or a vector of two integers (number of sires, numbers of dams)
nb.cores (default: 2) Number of cores to use. If you have more than 2 cores, you can use the "parallel" function detectCores()
verbose (default : TRUE) Display the process of the function on the console.

Value

intermidiate pedigree
log file for Mendelian transmission probabilities
log file for exclusion

Examples

data("APIS_offspring")
data("APIS_sire")
data("APIS_dam")

assignment <- assignmentFortran(APIS_offspring[1:50,], APIS_sire, APIS_dam, verbose = FALSE)
Description

This function calculates the theoretical assignment power of the marker set.

Usage

```r
assignmentPower(sire, dam)
```

Arguments

- **sire**: Sire genotypes | Matrix (n*p) where n = number of individuals, p = number of markers. rownames(sire) = labels of sires. marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype).

- **dam**: Dam genotypes | Matrix (n*p) where n = number of individuals, p = number of markers. rownames(dam) = labels of dams. marker coding = "All1/All2" example: "A/A", "A/B", "NA/NA" (for missing genotype).

Value

Theoretical assignment power of the marker set.

Examples

```r
data("APIS_sire")
data("APIS_dam")
assignmentPower(APIS_sire, APIS_dam)
```

personalThreshold

Establish personal threshold

Description

This function allows the user to set up his own threshold.

Usage

```r
personalThreshold(APIS.result, method, threshold = NULL, verbose = TRUE)
```
selectParents

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APIS.result</td>
<td>API output</td>
</tr>
<tr>
<td>method</td>
<td>Method for new threshold ('delta' for deltas, 'Pmendel' for Mendelian</td>
</tr>
<tr>
<td>threshold</td>
<td>Personal threshold</td>
</tr>
<tr>
<td>verbose</td>
<td>(default: TRUE) Display the process of the function on the console.</td>
</tr>
</tbody>
</table>

Value

new pedigree from the new threshold

Examples

```r
data("APIS_offspring")
data("APIS_sire")
data("APIS_dam")

result <- APIS(off.genotype = APIS_offspring[1:50,],
                sire.genotype = APIS_sire,
                dam.genotype = APIS_dam,
                error = 0.05,
                verbose = FALSE)

new.result <- personalThreshold(result, method = "exclusion", threshold = 2, verbose = FALSE)
```

Description

This function allows the selection of the most likely parents for assignment, reducing computation time.

Usage

```r
selectParents(off.genotype, parent.genotype, parent.sex, n.Parent)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>off.genotype</td>
<td>Genotype of one offspring</td>
</tr>
<tr>
<td>parent.genotype</td>
<td>Genotype matrix of parent genotypes</td>
</tr>
<tr>
<td>parent.sex</td>
<td>Vector of parent sex</td>
</tr>
<tr>
<td>n.Parent</td>
<td>Vector of number of sires and dams to select</td>
</tr>
</tbody>
</table>
setThreshold

Value

list of potential sires and dams

setThreshold Set the APIS threshold

Description

This function calculates the threshold for APIS

Usage

setThreshold(ped.log, ped.exclu, nb.mrk, error = NULL, verbose = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ped.log</td>
<td>log.like from assignment function</td>
</tr>
<tr>
<td>ped.exclu</td>
<td>log.exclu from assignment function</td>
</tr>
<tr>
<td>nb.mrk</td>
<td>Number of markers</td>
</tr>
<tr>
<td>error</td>
<td>(default: NULL) The assignment error rate accepted by the user</td>
</tr>
<tr>
<td>verbose</td>
<td>(default : TRUE) Display the process of the function on the console.</td>
</tr>
</tbody>
</table>

Value

pedigree
log file
Index

*Topic **APIS**
 APIIS, 2
 personalThreshold, 6
 selectParents, 7
*Topic **allele**
 allFreq, 2
*Topic **assignment**
 APIIS, 2
 assignmentFortran, 5
 assignmentPower, 6
 personalThreshold, 6
 selectParents, 7
 setThreshold, 8
*Topic **datasets**
 APIIS_dam, 3
 APIIS_offspring, 4
 APIIS_sire, 4
*Topic **exclusion**
 assignmentPower, 6
*Topic **frequencies**
 allFreq, 2
*Topic **power**
 assignmentPower, 6
*Topic **threshold**
 personalThreshold, 6
 selectParents, 7

 allFreq, 2
 APIIS, 2
 APIIS_dam, 3
 APIIS_offspring, 4
 APIIS_sire, 4
 assignmentFortran, 5
 assignmentPower, 6
 personalThreshold, 6
 selectParents, 7
 setThreshold, 8