Package ‘ARpLMEC’

October 12, 2022

Type Package
Title Censored Mixed-Effects Models with Different Correlation Structures
Version 2.4.1
Date 2022-06-02
Author Rommy C. Olivari, Kelin Zhong, Aldo M. Garay and Victor H. Lachos
Maintainer Rommy C. Olivari <rco1@de.ufpe.br>
Description Left, right or interval censored mixed-effects linear model with autoregressive errors of order p or DEC correlation structure using the type-EM algorithm. The error distribution can be Normal or t-Student. It provides the parameter estimates, the standard errors and prediction of future observations (available only for the normal case). Olivari et al (2021) <doi:10.1080/10543406.2020.1852246>.
Depends R (>= 2.14)
Imports numDeriv, stats, MASS, mnormt, tcltk, expm, relliptical, TruncatedNormal, LaplacesDemon
NeedsCompilation no
License GPL (>= 2)
RoxygenNote 7.2.0
Encoding UTF-8
Repository CRAN
Date/Publication 2022-06-26 23:50:02 UTC

R topics documented:

ARpMMEC.est .. 2
ARpMMEC.sim .. 5

Index 7
Censored Mixed-Effects Models with Autoregressive Correlation Structure and DEC for Normal and t-Student Errors

Description

This function fits left, right or interval censored mixed-effects linear model, with autoregressive errors of order \(p \), using the EM algorithm. It returns estimates, standard errors and prediction of future observations.

Usage

```r
ARpMMEC.est(
  y,
  x,
  z,
  tt,
  cc,
  nj,
  struc = "UNC",
  order = 1,
  initial = NULL,
  nu.fixed = TRUE,
  typeModel = "Normal",
  cens.type = "left",
  LI = NULL,
  LS = NULL,
  MaxIter = 200,
  error = 1e-04,
  Prev = FALSE,
  step = NULL,
  isubj = NULL,
  xpre = NULL,
  zpre = NULL
)
```

Arguments

- \(y \) Vector \(1 \times n \) of censored responses, where \(n \) is the sum of the number of observations of each individual
- \(x \) Design matrix of the fixed effects of order \(n \times s \), corresponding to vector of fixed effects.
- \(z \) Design matrix of the random effects of order \(n \times b \), corresponding to vector of random effects.
- \(tt \) Vector \(1 \times n \) with the time the measurements were made, where \(n \) is the total number of measurements for all individuals. Default it’s considered regular times.
Vector of censoring indicators of length \(n \), where \(n \) is the total of observations. For each observation: 0 if non-censored, 1 if censored.

Vector \(1 \times m \) with the number of observations for each subject, where \(m \) is the total number of individuals.

Vector \(1 \times m \) with the number of observations for each subject, where \(m \) is the total number of individuals.

Order of the autoregressive process. Must be a positive integer value.

List with the initial values in the next order: betas, sigma2, alphas, phi and nu. If it is not indicated it will be provided automatically. Default is NULL

Logical. Should estimate the parameter "nu" for the t-student distribution?. If is False indicates the value in the list of initial values. Default is FALSE

Normal for Normal distribution and Student for t-Student distribution. Default is Normal

left for left censoring, right for right censoring and interval for intervalar censoring. Default is left

Vector censoring lower limit indicator of length \(n \). For each observation: 0 if non-censored, -inf if censored. It is only indicated for when cens.type is both. Default is NULL

Vector censoring upper limit indicator of length \(n \). For each observation: 0 if non-censored, inf if censored. It is only indicated for when cens.type is both. Default is NULL

The maximum number of iterations of the EM algorithm. Default is 200

The convergence maximum error. Default is 0.0001

Indicator of the prediction process. Available at the moment only for the typeModel=normal case. Default is FALSE

Number of steps for prediction. Default is NULL

Vector indicator of subject included in the prediction process. Default is NULL

Design matrix of the fixed effects to be predicted. Default is NULL.

Design matrix of the random effects to be predicted. Default is NULL.

returns list of class “ARpMMEC”:

Data frame with: estimate, standar errors and confidence intervals of the fixed effects.

Data frame with: estimate, standar errors and confidence intervals of the variance of the white noise process.

Data frame with: estimate, standar errors and confidence intervals of the autoregressive parameters.

Data frame with: estimate, standar errors and confidence intervals of the random effects.

the parameter "nu" for the t-student distribution
Est
Vector of parameters estimate (fixed Effects, sigma2, phi, random effects).
SE
Vector of the standard errors of (fixed Effects, sigma2, phi, random effects).
Residual
Vector of the marginal residuals.
loglik
Log-likelihood value.
AIC
Akaike information criterion.
BIC
Bayesian information criterion.
AICc
Corrected Akaike information criterion.
iter
Number of iterations until convergence.
Yfit
Vector "y" fitted
MI
Information matrix
Prev
Predicted values (if xpre and zpre is not NULL).
time
Processing time.
others
The first and second moments of the random effect and vector Y

References

Examples
Not run:
p.cens = 0.1
m = 10
D = matrix(c(0.049,0.001,0.001,0.002),2,2)
sigma2 = 0.30
phi = 0.6
beta = c(1,2,1)
nj=rep(4,10)
tt=rep(1:4,length(nj))
x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta))
z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1])
data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens)
teste1=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal",MaxIter = 2)
teste2=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Student",MaxIter = 2)
xx=matrix(runif(6*length(beta),-1,1),6,length(beta))
zz=matrix(runif(6*dim(D)[1],-1,1),6,dim(D)[1])
isubj=c(1,4,5)
teste3=ARpMMEC.est(data$y_cc,x,z,tt,data$cc,nj,struc="ARp",order=1,typeModel="Normal",
 MaxIter = 2,Prev=TRUE,step=2,isubj=isubj,xpre=xx,zpre=zz)
teste3$Prev
End(Not run)
Generating Censored Autoregressive Dataset with Mixed Effects, for normal distribution.

Description

This function simulates a censored response variable with autoregressive errors of order p, with mixed effect and a established censoring rate. This function returns the censoring vector and censored response vector.

Usage

ARpMMEC.sim(
 m,
 x = NULL,
 z = NULL,
 tt = NULL,
 nj,
 beta,
 sigm ae,
 D,
 phi,
 struc = "ARp",
 order = 1,
 typeModel = "Normal",
 p.cens = NULL,
 n.cens = NULL,
 cens.type = "left",
 nu = NULL
)

Arguments

m Number of individuals
x Design matrix of the fixed effects of order n x s, corresponding to vector of fixed effects.
z Design matrix of the random effects of order n x b, corresponding to vector of random effects.
tt Vector 1 x n with the time the measurements were made, where n is the total number of measurements for all individuals.
nj Vector 1 x n with the number of observations for each subject, where m is the total number of individuals.
beta Vector of values fixed effects.
sigae It’s the value for sigma.
D Covariance Matrix for the random effects.
phi Vector of length Arp, of values for autoregressive parameters.
struc Correlation structure. This must be one of UNC, ARp, DEC, SYM or DEC(AR).
order Order of the autoregressive process. Must be a positive integer value.
typeModel Normal for Normal distribution and Student for t-Student distribution. Default is Normal
p.cens Censoring percentage for the process. Default is NULL
n.cens Censoring level for the process. Default is NULL
cens.type left for left censoring, right for right censoring and interval for interval censoring. Default is left
nu degrees of freedom for t-Student distribution (nu > 0, maybe non-integer).

Value
returns list:
cc Vector of censoring indicators.
y_cc Vector of responses censoring.

Examples
Not run:
p.cens = 0.1
m = 10
D = matrix(c(0.049,0.001,0.001,0.002),2,2)
sigma2 = 0.30
phi = 0.6
beta = c(1,2,1)
nj=rep(4,10)
tt=rep(1:4,length(nj))
x<-matrix(runif(sum(nj)*length(beta),-1,1),sum(nj),length(beta))
z<-matrix(runif(sum(nj)*dim(D)[1],-1,1),sum(nj),dim(D)[1])
data=ARpMMEC.sim(m,x,z,tt,nj,beta,sigma2,D,phi,struc="ARp",typeModel="Normal",p.cens=p.cens)
y<-data$y_cc
ccc<-data$cc

End(Not run)
Index

ARpMMEC.est, 2
ARpMMEC.sim, 5