Package ‘ASV’

June 2, 2022

Type Package
Title Stochastic Volatility Models with or without Leverage
Version 1.0.0
Date 2022-05-21
Maintainer Yasuhiro Omori <omori.yasuhiro@gmail.com>
Description The efficient Markov chain Monte Carlo estimation of stochastic volatility models with and without leverage (asymmetric and symmetric stochastic volatility models). Further, it computes the logarithm of the likelihood given parameters using particle filters.
URL https://sites.google.com/view/omori-stat/english/software/asv-r
License GPL (>= 2)
Imports Rcpp (>= 1.0.7), freqdom, stats, graphics
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Author Yasuhiro Omori [aut, cre], Ryuji Hashimoto [ctr]
Repository CRAN
Date/Publication 2022-06-02 11:00:02 UTC

R topics documented:

ASV-package .. 2
asv_apf ... 2
asv_mcmc .. 4
asv_pf .. 5
ReportMCMC ... 7
sv_apf ... 8
sv_mcmc .. 10
sv_pf ... 11

Index 13
ASV-package

Description

This function estimates model parameters and latent log volatilities for stochastic volatility models:
\[y(t) = \text{eps}(t) \times \exp(h(t)/2), \quad h(t+1) = \mu + \phi \times (h(t) - \mu) + \eta(t) \]
\[\text{eps}(t) \sim \text{i.i.d. } \text{N}(0,1), \quad \eta(t) \sim \text{i.i.d. } \text{N}(0, \sigma_{\eta}^2) \]
where we assume the correlation between \(\text{eps}(t) \) and \(\eta(t) \) equals to rho.

Details

The highly efficient Markov chain Monte Carlo algorithm is based on the mixture sampler by Omori, Chib, Shephard and Nakajima (2007), but it further corrects the approximation error within the sampling algorithm. See Takahashi, Omori and Watanabe (2022+) for more details.

References

See Also

sv_mcmc, asv_mcmc, sv_pf, asv_pf, sv_apf, asv_apf

asv_apf

Description

The function computes the log likelihood given (mu, phi, sigma_eta, rho) for stochastic volatility models with leverage (asymmetric stochastic volatility models).

Usage

\texttt{asv_apf(mu, phi, sigma_eta, rho, Y, I)}
Arguments

- **mu**: parameter value such as the posterior mean of mu
- **phi**: parameter value such as the posterior mean of phi
- **sigma_eta**: parameter value such as the posterior mean of sigma_eta
- **rho**: parameter value such as the posterior mean of rho
- **Y**: T x 1 vector \(y(1),...,y(T) \)' of returns where T is a sample size.
- **I**: Number of particles to approximate the filtering density.

Value

Logarithm of the likelihood of Y given parameters (mu, phi, sigma_eta, rho) using the auxiliary particle filter by Pitt and Shephard (1999).

Author(s)

Yasuhiro Omori, Ryuji Hashimoto

References

Examples

```r
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3; rho = -0.3;
h = 0; Y = c();
for(i in 1:nobs){
  eps = rnorm(1, 0, 1)
  eta = rho*sigma_eta*eps + sigma_eta*sqrt(1-rho^2)*rnorm(1, 0, 1)
  y = eps * exp(0.5*h)
  h = mu + phi * (h-mu) + eta
  Y = append(Y, y)
}
npart = 5000
asv_apf(mu, phi, sigma_eta, rho, Y, npart)
```
Description

This function estimates model parameters and latent log volatilities for stochastic volatility models with leverage (asymmetric stochastic volatility models):
\[
y(t) = \epsilon(t) \exp(h(t)/2), \quad h(t+1) = \mu + \phi(h(t)-\mu) + \eta(t)
\]
\[
\epsilon(t) \sim \text{i.i.d. } N(0,1), \quad \eta(t) \sim \text{i.i.d. } N(0,\sigma_{\eta}^2)
\]

where we assume the correlation between \(\epsilon(t)\) and \(\eta(t)\) equals to \(\rho\). Prior distributions are
\[
\mu \sim N(\mu_0,\sigma_0^2), \quad \phi + 1/2 \sim \text{Beta}(a_0,b_0), \quad \sigma_{\eta}^2 \sim \text{IG}(n_0/2,S_0/2),
\]
\[
(\rho + 1/2) \sim \text{Beta}(a_1,b_1),
\]

where \(N\), \(\text{Beta}\) and \(\text{IG}\) denote normal, beta and inverse gaussian distributions respectively. Note that the probability density function of \(x \sim \text{IG}(a,b)\) is proportional to \((1/x)^{a+1} \exp(-b/x)\).

The highly efficient Markov chain Monte Carlo algorithm is based on the mixture sampler by Omori, Chib, Shephard and Nakajima (2007), but it further corrects the approximation error within the sampling algorithm. See Takahashi, Omori and Watanabe (2022+) for more details.

Usage

\[
\text{asv_mcmc}(\text{return_vector}, \text{nSim} = \text{NULL}, \text{nBurn} = \text{NULL}, \text{vHyper} = \text{NULL})
\]

Arguments

- \text{return_vector} \: T x 1 vector \((y(1),...,y(T))'\) of returns where \(T\) is a sample size.
- \text{nSim} \: Number of iterations for the MCMC estimation. Default value is 5000.
- \text{nBurn} \: Number of iterations for the burn-in period. Default value is the maximum integer less than or equal to \(2*\text{sqrt(nSim)}+1\).
- \text{vHyper} \: 8 x 1 vector of hyperparameters. \((\mu_0,\sigma_0^2,a_0,b_0,a_1,b_1,n_0,S_0)\). Default values are \((0,1000,1,1,1,1,0.01,0.01)\).

Value

A list with components:

- \text{vmu} \: nSim x 1 vector of MCMC samples of \(\mu\)
- \text{vphi} \: nSim x 1 vector of MCMC samples of \(\phi\)
- \text{vsigma_eta} \: nSim x 1 vector of MCMC samples of \(\sigma_{\eta}\)
- \text{vrho} \: nSim x 1 vector of MCMC samples of \(\rho\)
- \text{mh} \: nSim x T matrix of latent log volatilities \((h(1),...,h(T))\). For example, the first column is a vector of MCMC samples for \(h(1)\).

Further, the acceptance rates of MH algorithms will be shown for \(h\) and \((\mu,\phi,\sigma_{\eta},\rho)\).
asv_pf

Author(s)

Yasuhiro Omori, Ryuji Hashimoto

References

See Also

See also ReportMCMC, asv_pf

Examples

```r
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3; rho = -0.3;
h = 0; Y = c();
for(i in 1:nobs){
  eps = rnorm(1, 0, 1)
  eta = rho*sigma_eta*eps + sigma_eta*sqrt(1-rho^2)*rnorm(1, 0, 1)
  y = eps * exp(0.5*h)
  h = mu + phi * (h-mu) + eta
  Y = append(Y, y)
}
# This is a toy example. Increase nsim and nburn 
# until the convergence of MCMC in practice.
nsim = 500; nburn = 100;
vhyper = c(0.0,1000,1.0,1.0,0.01,0.01)
out = asv_mcmc(Y, nsim, nburn, vhyper)
vmu = out[[1]]; vphi = out[[2]]; vsigma_eta = out[[3]]; vrho = out[[4]]; 
vh = out[[5]];
```

asv_pf

Particle filter for stochastic volatility models with leverage

Description

The function computes the log likelihood given (mu, phi, sigma_eta, rho) for stochastic volatility models with leverage (asymmetric stochastic volatility models).

Usage

asv_pf(mu, phi, sigma_eta, rho, Y, I)
Arguments

- **mu**: parameter value such as the posterior mean of mu
- **phi**: parameter value such as the posterior mean of phi
- **sigma_eta**: parameter value such as the posterior mean of sigma_eta
- **rho**: parameter value such as the posterior mean of rho
- **Y**: T x 1 vector (y(1),...,y(T))' of returns where T is a sample size.
- **I**: Number of particles to approximate the filtering density.

Value

Logarithm of the likelihood of Y given parameters (mu, phi, sigma_eta, rho)

Author(s)

Yasuhiro Omori, Ryuji Hashimoto

References

Examples

```r
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3; rho = -0.3;
h = 0; Y = c();
for(i in 1:nobs){
  eps = rnorm(1, 0, 1)
  eta = rho*sigma_eta*eps + sigma_eta*sqrt(1-rho^2)*rnorm(1, 0, 1)
  y = eps * exp(0.5*h)
  h = mu + phi * (h-mu) + eta
  Y = append(Y, y)
}
npart = 5000
asv_pf(mu, phi, sigma_eta, rho, Y, npart)
```
ReportMCMC

Summary statistics, diagnostic statistics and plots.

Description

This function reports summary statistics of the MCMC samples such as the posterior mean, the posterior standard deviation, the 95% credible interval, the expected sample size, the inefficiency factor, the posterior probability that the parameter is positive. Further it plots the sample path, the sample autocorrelation function and the estimated posterior density.

Usage

ReportMCMC(mx, dBm = NULL, vname = NULL)

Arguments

mx nSim x m matrix where nSim is the MCMC sample size and m is the number of parameters.
dBm The bandwidth to compute the inefficient factor. Default value is the maximum integer less than or equal to 2*sqrt(nSim)+1.
vname The vector of variable names. Default names are Param1, Param2 and so forth.

Value

Mean The posterior mean of the parameter
Std Dev The posterior standard deviation of the parameter
95%L The lower limit of the 95% credible interval of the parameter
Median The posterior median of the parameter
95%U The upper limit of the 95% credible interval of the parameter
ESS Expected sample size defined as the MCMC sample size divided by IF
IF Inefficiency factor. See, for example, Kim, Shephard and Chib (1998).
CD p-value of convergence diagnostics test by Geweke (1992). H_0:mean of the first 10% of MCMC samples is equal to mean of the last 50% of MCMC samples vs. H_1:not H_0.
Pr(+) The posterior probability that the parameter is positive.

Further, it plots the sample path, the sample autocorrelation function and the posterior density for each parameter.

Note

‘freqdom’ package needs to be pre-installed.
Author(s)
Yasuhiro Omori

References

Examples

```r
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3; rho = 0.0;
h = 0; Y = c();
for(i in 1:nobs){
  eps = rnorm(1, 0, 1)
  eta = rho*sigma_eta*eps + sigma_eta*sqrt(1-rho^2)*rnorm(1, 0, 1)
  y = eps * exp(0.5*h)
  h = mu + phi * (h-mu) + eta
  Y = append(Y, y)
}
# This is a toy example. Increase nsim and nburn
# until the convergence of MCMC in practice.
nsim = 500; nburn = 100;
whyper = c(0.0,1000,1.0,1.0,0.01,0.01)
out = sv_mcmc(Y, nsim, nburn, whyper)
vmu = out[[1]]; vphi = out[[2]]; vsigma_eta = out[[3]]; mh = out[[4]];
myname = c(expression(mu), expression(phi),expression(sigma[eta]))
ReportMCMC(cbind(vmu,vphi,vsigma_eta), vname=myname)
```

sv_apf

Auxiliary particle filter for stochastic volatility models without leverage

Description
The function computes the log likelihood given (mu, phi, sigma_eta) for stochastic volatility models without leverage (symmetric stochastic volatility models).

Usage

```
sv_apf(mu, phi, sigma_eta, Y, I)
```
Arguments

mu parameter value such as the posterior mean of mu
phi parameter value such as the posterior mean of phi
sigma_eta parameter value such as the posterior mean of sigma_eta
Y T x 1 vector (y(1),...,y(T))’ of returns where T is a sample size.
I Number of particles to approximate the filtering density.

Value

Logarithm of the likelihood of Y given parameters (mu, phi, sigma_eta) using the auxiliary particle filter by Pitt and Shephard (1999).

Author(s)

Yasuhiro Omori, Ryuji Hashimoto

References

Examples

```r
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3;
h = 0; Y = c();
for(i in 1:nobs){
    eps = rnorm(1, 0, 1)
    eta = rnorm(1, 0, sigma_eta)
    y = eps * exp(0.5*h)
    h = mu + phi * (h-mu) + eta
    Y = append(Y, y)
}
npart = 5000
sv_pf(mu, phi, sigma_eta, Y, npart)
```
sv_mcmc

MCMC estimation for stochastic volatility models without leverage

Description

This function estimates model parameters and latent log volatilities for stochastic volatility models without leverage (symmetric stochastic volatility models):

\[
y(t) = \text{eps}(t) \times \exp(h(t)/2), \quad h(t+1) = \mu + \phi \times (h(t)-\mu) + \text{eta}(t)
\]

\[
\text{eps}(t) \sim \text{i.i.d. N}(0,1), \quad \text{eta}(t) \sim \text{i.i.d. N}(0,\sigma_{\text{eta}}^2)
\]

where we assume the correlation between \text{eps}(t) and \text{eta}(t) equals to zero. Prior distributions are

\[
\mu \sim \text{N}(\mu_0,\sigma_0^2), \quad (\phi+1)/2 \sim \text{Beta}(a_0,b_0), \quad \sigma_{\text{eta}}^2 \sim \text{IG}(n_0/2,S_0/2)
\]

where \text{N}, \text{Beta} and \text{IG} denote normal, beta and inverse gaussian distributions respectively. Note that the probability density function of \(x \sim \text{IG}(a,b) \) is proportional to \((1/x)^{(a+1)} \exp(-b/x) \).

The highly efficient Markov chain Monte Carlo algorithm is based on the mixture sampler by Omori, Chib, Shephard and Nakajima (2007), but it further corrects the approximation error within the sampling algorithm. See Takahashi, Omori and Watanabe (2022+) for more details.

Usage

\[
\text{sv}_\text{mcmc}(\text{return}_\text{vector}, \text{nSim} = \text{NULL}, \text{nBurn} = \text{NULL}, \text{vHyper} = \text{NULL})
\]

Arguments

- **return_vector** T x 1 vector (y(1),...,y(T)’) of returns where T is a sample size.
- **nSim** Number of iterations for the MCMC estimation. Default value is 5000.
- **nBurn** Number of iterations for the burn-in period. Default value is the maximum integer less than or equal to \(2 \times \text{sqrt(nSim)}+1 \).
- **vHyper** 6 x 1 vector of hyperparameters. \((\mu_0,\sigma_0^2,a_0,b_0,n_0,S_0)\). Default values are \((0,1000, 1,1,0,01,0,01)\).

Value

A list with components:

- **vmu** nSim x 1 vector of MCMC samples of mu
- **vphi** nSim x 1 vector of MCMC samples of phi
- **vsigma_eta** nSim x 1 vector of MCMC samples of sigma_eta
- **vmh** nSim x T matrix of latent log volatilities (h(1),...,h(T)). For example, the first column is a vector of MCMC samples for h(1).

Further, the acceptance rates of MH algorithms will be shown for h and (mu,phi,sigma_eta).

Author(s)

Yasuhiro Omori, Ryuji Hashimoto
References

See Also

See also ReportMCMC, sv_pf

Examples

```r
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3;
h = 0; Y = c();
for(i in 1:nobs){
  eps = rnorm(1, 0, 1)
  eta = rnorm(1, 0, sigma_eta)
  y = eps * exp(0.5*h)
  h = mu + phi * (h-mu) + eta
  Y = append(Y, y)
}
# This is a toy example. Increase nsim and nburn
# until the convergence of MCMC in practice.
nsim = 500; nburn = 100;
vhyp = c(0.0,1000,1.0,1.0,0.01,0.01)
out = sv_mcmc(Y, nsim, nburn, vhyper)
vmu = out[[1]]; vphi = out[[2]]; vsigma_eta = out[[3]]; mh = out[[4]];
```

sv_pf

Particle filter for stochastic volatility models without leverage

Description

This function computes the log likelihood given (mu, phi, sigma_eta) for stochastic volatility models without leverage (symmetric stochastic volatility models).

Usage

```r
sv_pf(mu, phi, sigma_eta, Y, I)
```
Arguments

- `mu`: parameter value such as the posterior mean of `mu`
- `phi`: parameter value such as the posterior mean of `phi`
- `sigma_eta`: parameter value such as the posterior mean of `sigma_eta`
- `Y`: T x 1 vector (y(1),...,y(T))' of returns where T is a sample size.
- `I`: Number of particles to approximate the filtering density.

Value

Logarithm of the likelihood of `Y` given parameters (mu, phi, sigma_eta)

Author(s)

Yasuhiro Omori, Ryuji Hashimoto

References

Examples

```r
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3;
h = 0; Y = c();
for(i in 1:nobs){
    eps = rnorm(1, 0, 1)
    eta = rnorm(1, 0, sigma_eta)
    y = eps * exp(0.5*h)
    h = mu + phi * (h-mu) + eta
    Y = append(Y, y)
}
npart = 5000
sv_pf(mu, phi, sigma_eta, Y, npart)
```
Index

* Markov chain Monte Carlo Stochastic volatility Leverage Asymmetry

ASV-package, 2

ASV (ASV-package), 2
ASV-package, 2
asv_apf, 2, 2
asv_mcmc, 2, 4
asv_pf, 2, 5, 5

ReportMCMC, 5, 7, 11

sv_apf, 2, 8
sv_mcmc, 2, 10
sv_pf, 2, 11, 11