Package ‘AdaptFitOS’

June 16, 2015

Title Adaptive Semiparametric Regression with Simultaneous Confidence Bands

Version 0.62

Date 2015-06-16

Author Manuel Wiesenfarth and Tatyana Krivobokova

Maintainer Manuel Wiesenfarth <m.wiesenfarth@dkfz.de>

Imports mgcv, SemiPar

Depends nlme, MASS, splines

Description Fits semiparametric regression models with spatially adaptive penalized splines and computes simultaneous confidence bands.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-06-16 11:49:29

R topics documented:

AdaptFitOS-package ... 2
asp2 ... 3
aspFormula ... 7
aspHetero ... 9
default.knots .. 10
fitted.asp ... 11
plot.asp ... 12
predict.asp ... 14
residuals.asp .. 15
scbM .. 16
sigma .. 18
summary.asp .. 19

Index 21
AdaptFitOS-package

Adaptive Semiparametric Regression with Simultaneous Confidence Bands

Description

Based on package AdaptFit, fits semiparametric regression models with spatially adaptive penalized splines and computes simultaneous confidence bands.

Particular differences to AdaptFit include the availability of simultaneous confidence bands and B-spline basis functions and different functionality of the plot function. However, random effects, autocorrelations and interaction surfaces are not supported. Further, only Gaussian responses are supported. Note that in contrast to AdaptFit, estimated curves are centered to have zero mean and dummies for categorical covariates are constructed automatically if a variable is given as factor. For computation of the critical value for simultaneous confidence bands based on Hotelling’s volume-of-tube formula, some functions of the libtube library by Catherine Loader (see package locfit) are used. See the references for details on the construction of the confidence bands.

Details

Package: AdaptFitOS
Version: 0.42
Date: 2012-06-03
Depends: MASS, nlme, cluster

Index:

asp2 Fit a semiparametric regression model with spatially adaptive penalized
aspFormula An asp formula
aspHetero Estimate varying residual variance
fitted.asp Fitted values for semiparametric regression.
plot.asp Plots fitted curves or their derivatives including simultaneous confidence bands
plot.scbm Plots fitted curves in a scbm object including simultaneous confidence bands
predict.asp Semiparametric regression prediction.
residuals.asp Residuals for semiparametric regression.
sbmM Calculate simultaneous confidence bands for penalized splines
summary.asp Semiparametric regression summary

The function asp2() is used to fit the model. Using the resulting asp object, fitted curves or their derivatives can be plotted with plot.asp and information on the parametric effects can be printed using summary.
Description

Fits semiparametric regression models using the mixed model representation of penalized splines with spatially adaptive penalties based on the `asp` function from package AdaptFit. Particular differences to AdaptFit include the availability of simultaneous confidence bands and B-spline basis functions and different functionality of the `plot` function. However, random effects, autocorrelations and interaction surfaces are not supported. Further, only Gaussian responses are supported. Note that in contrast to AdaptFit, estimated curves are centered to have zero mean.

Usage

```r
asp2(form, spar.method = "REML", contrasts=NULL, omit.missing = NULL, returnFit=FALSE, niter = 20, niter.var = 50, tol=1e-6, tol.theta=1e-6, control=NULL)
```

Arguments

- `form` a formula describing the model to be fitted. See `aspFormula` for further information. Note, that an intercept is always included, whether given in the formula or not.
- `spar.method` method for automatic smoothing parameter selection. May be "REML" (restricted maximum likelihood) or "ML" (maximum likelihood).
contrasts an optional list. See the contrasts.arg of model.matrix.default.
omit.missing a logical value indicating whether fields with missing values are to be omitted.
niter a maximum number of iterations for the mean estimation, default is 20.
niter.var a maximum number of iterations for the variance of random effects estimation, default is 50.
tol tolerance for the convergence criterion. Default is 1e-6.
tol.theta tolerance for the convergence criterion (smoothing parameter function routine). Default is 1e-6.
returnFit a logical value indicating whether the fitted object should be returned when the maximum number of iterations is reached without convergence of the algorithm. Default is FALSE.
control see lmeControl in the documentation to nlme.

Value
A list object of class asp containing the fitted model. The components are:
fitted fitted values.
coef.mean estimated mean coefficients.
design.matrices design matrices both for knots und subknots.
x x values.
knots knots.
y.cov estimated covariance matrix of the response.
random.var estimated covariance matrix of the random effects.
subknots subknots.
coef.random estimated spline coefficients of the covariance matrix of the random effects.
var.random.var estimated variance of the spline coefficients of the covariance matrix of the random effects.
fit mimics fit object of lme().
info information about the inputs.
aux auxiliary information such as variability estimates.

Author(s)
Manuel Wiesenfarth <m.wiesenfarth at dkfz.de>, Tatyana Krivobokova <tkrivob at gwdg.de>

References
Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/

See Also

`gam` (in package ‘mgcv’), `asp` (in package ‘AdaptFit’), `lme` (in package ‘nlme’)

Examples

```
# Examples as in package AdaptFit
## scatterplot smoothing
x <- 1:1000/1000
mu <- exp(-400*(x-0.6)^2)+
  5*exp(-500*(x-0.75)^2)/3+2*exp(-500*(x-0.9)^2)
y <- mu+0.5*runif(1000)

# fit with default knots
y.fit <- asp2(y-f(x, adap=TRUE))
plot(y.fit,residuals=TRUE,lwd=2,scb.lwd=2,scb.lty="dashed")
# with shaded confidence region.
# Use scb.lty="blank" to plot the shades only.
plot(y.fit,residuals=TRUE,shade=TRUE,scb.lty="blank")

## Not run:
## additive models
x1 <- 1:300/300
x2 <- runif(300)
mu1 <- exp(-400*(x1-0.6)^2)+
  5*exp(-500*(x1-0.75)^2)/3+2*exp(-500*(x1-0.9)^2)
mu2 <- sin(2*pi*x2)
y2 <- mu1+mu2+0.3*runif(300)
y2.fit <- asp2(y2-f(x1, adap=TRUE)+f(x2, adap=TRUE))
# switch off adaptive fitting for the first function
y21.fit <- asp2(y2-f(x1, adap=FALSE)+f(x2, adap=TRUE))
op <- par(mfrow = c(2, 2))
plot(y2.fit)
plot(y21.fit)
par(op)

## scatterplot smoothing with specified knots and subknots
x <- 1:400/400
mu <- sqrt(x*(1-x))*sin((2*pi*x*(1+2*((9-4*6)/5)))/(x+2*((9-4*6)/5)))/
  (x+0.2*runif(400))
y2 <- mu+0.2*runif(400)

kn <- default.knots(x, 80)
kn.var <- default.knots(kn, 20)
y.fit <- asp2(y-f(x, knots=kn))
```
y.fit2 <- asp2(y~f(x,knots=kn.var.knots=kn.var,adap=TRUE))
op <- par(mfrow = c(1, 2))
plot(y.fit)
plot(y.fit2)
par(op)

more examples
beta=function(l,m,x)
 return(gamma(l*m) * (gamma(l) * gamma(m)) ^ (-1) * x ^ (l-1) * (1-x) ^ (m-1))
f1 = function(x) return((0.6 * beta(30,17,x) + 0.4 * beta(3,11,x)) * x / 0.958)
f2 = function(z) return((sin(2*pi*(z-0.5)) ^ 2) * x / 1.3535)
f3 = function(z)
 return((exp(-400*(z-0.6)^2) +
 5/3 * exp(-500*(z-0.75)^2) + 2 * exp(-500*(z-0.9)^2)) * x / 0.549)

set.seed(1)
N = 500
x1 = runif(N,0,1)
x2 = runif(N,0,1)
x3 = runif(N,0,1)

kn1 <- default.knots(x1,40)
k2 <- default.knots(x2,40)
k3 <- default.knots(x3,40)
kn.var3 <- default.knots(kn3,5)
y <- f1(x1)+f2(x2)+f3(x3)+0.3*rnorm(N)

semiparametric model
fit1 = asp2(y~x1+f(x2,basis="os",degree=3,knots=kn2,adap=FALSE)
 +f(x3,basis="os",degree=3,
 knots=kn3,var.knots=kn.var3,adap=FALSE),
 niter = 20, niter.var = 200)
summary(fit1)
plot(fit1,pages=1)

all effects flexible
fit model with all smoothing parameters constant
fit2a = asp2(y~f(x1,basis="os",degree=3,knots=kn1,adap=FALSE)
 +f(x2,basis="os",degree=3,knots=kn2,adap=FALSE)
 +f(x3,basis="os",degree=3,knots=kn3,adap=FALSE),
 niter = 20, niter.var = 200)
plot(fit2a,pages=1)

fit model with last smoothing parameter adaptive
fit2b = asp2(y~f(x1,basis="os",degree=3,knots=kn1,adap=FALSE)
 +f(x2,basis="os",degree=3,knots=kn2,adap=FALSE)
 +f(x3,basis="os",degree=3,knots=kn3,adap=TRUE,
 var.knots=kn.var3,var.basis="os",var.degree=3),
 niter = 20, niter.var = 200)
plot smoothing parameter function for covariate x3.
Note that in the case of B-splines additional knots are added,
see references.
plot(seq(0,1,length.out=42), fit2b$y.cov/fit2b$random.var[85:126],
 ylab=expression(lambda(x3)), xlab="x3", type="l", lwd=3)

compute 95
You could skip this and use "fit2b" indstead of "scb2b" later on, however,
if N is large, computing the SCBs various times can take some time
if you don’t need fitted values and bounds for all covariate points
(can be computationally intensive due to large matrix dimensions),
set calc.stdev=F such that these are not computed.
scb2b <- scbM(fit2b, calc.stdev=FALSE)
plot(scb2b, pages=1)

plot only f(x2).
plot(scb2b, select=2, mfnrow=c(1,1), lwd=3, ylab="f(x2)", xlab="x2")

plot.scb (and plot.asp) returns fitted values and confidence limits,
if you only need the returned object set plot=FALSE
pscb = plot(scb2b, plot=FALSE)

add pointwise confidence intervals to the plot
polygon(c(pscb$grid.x[[2]], rev(pscb$grid.x[[2]])),
 c(pscb$fitted[[2]]+1.96*pscb$stdev[[2]],
 rev(pscb$fitted[[2]]-1.96*pscb$stdev[[2]])),
 col=grey(0.85), border = NA)
lines(pscb$grid.x[[2]], pscb$1cb[[2]], lty="dotted", lwd=3)
lines(pscb$grid.x[[2]], pscb$ucb[[2]], lwd=3)
lines(pscb$grid.x[[2]], pscb$fitted[[2]], lty="dotted", lwd=3)

plot first derivative of f(x1)
scb2bdrv <- scbM(fit2b, drv=1, calc.stdev=FALSE)
plot(scb2bdvr, select=1)
the following would give the same result
x11(); plot(fit2b, select=1, drv=1)
different style
plot(scb2bdvr, select=1, scb.lty="blank",
 shade=TRUE, shade.col="steelblue")

End(Not run)

Description

A formula to be used in `asp2`. The formula is close to the one used in `asp` of package `AdaptFit`. Dummies for categorical covariates are constructed automatically if a variable is given as factor (with contrasts as set by options(“contrasts”) or specified by a list in argument `contrasts`). Note
that only parametric interactions are supported and that interacting covariates have to be multiplied beforehand and given as a new variable in the formula. Smooth terms are given by

\[f(x, \text{basis}="os", \text{degree}=3, \text{knots}, \text{var.knots}, \text{var.basis}, \text{var.degree}, \text{adap}=\text{TRUE}) \]

with the following arguments:

Arguments

- **x**: the covariate
- **basis**: the spline basis function to be used. "trunc.poly" for truncated polynomials, "tps" for thin plate splines and "os" for B-splines. The use of B-splines is recommended. Note that in contrast to packages SemiPar and AdaptFit, "os" is the default.
- **degree**: the degree of the basis. In the case of B-splines also a vector of the form \(c(p, q)\) with \(p\) the B-spline degree and \(q\) the penalty order (the integrated \(q\)-th squared derivative is penalized, see references). If only a scalar is given \(q\) is chosen such that \(p=2q-1\). Defaults are \(\text{degree}=3\) (basis="tps"), \(\text{degree}=1\) (basis="trunc.poly") and \(\text{degree}=c(3,2)\) (basis="os"), respectively.
- **knots**: the knots to be used. Using e.g. \(\text{kn}=\text{default.knots}(x, 40)\) beforehand leads to 40 quantile based knots in the case of "tps" and "trunc.poly" bases. In the case of B-splines ("os"), knots are always equidistant and are automatically generated with the number equal to the length of the vector of knots given plus boundary knots. If no knots are given the number of knots is automatically chosen to be equal to \(\text{floor}(n/\text{max}(4, \text{floor}(n/35)) - 1)\).
- **adap**: TRUE for spatially adaptive smoothing parameter
- **var.knots**: the knots for the spline basis for adaptively estimating the smoothing parameter. Note that in package AdaptFit "\text{var.knot}" (i.e. without "s") is used instead. If missing the number of knots is automatically chosen to be equal to \(\text{floor}(\text{knets}/\text{max}(4, \text{floor}(\text{knots}/35)) - 1)\).
- **var.basis**: spline basis function for adaptive smoothing parameter estimation. If missing, the same basis as for estimation of \(f\) is used.
- **var.degree**: spline degree for adaptive smoothing parameter estimation. If missing, the same degree as for estimation of \(f\) is used.
- **spar**: the smoothing parameter if desired. Usually this is left unspecified, such that the smoothing parameter is estimated by restricted maximum likelihood (see references). Currently doesn’t work for basis="os".
- **df**: the number of degrees of freedom corresponding to the REML choice of smoothing parameter if desired. Usually this is left unspecified, such that the smoothing parameter is estimated by restricted maximum likelihood (see references). Currently doesn’t work for basis="os".
Description

Estimates a varying residual variance on basis of an asp object.

Usage

aspHetero(object, xx, nknots=5, knots=NULL, basis="os",
degree=c(3,2), tol=1e-8, niter=100, niter.var=250)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an asp object.</td>
</tr>
<tr>
<td>xx</td>
<td>the covariate.</td>
</tr>
<tr>
<td>nknots</td>
<td>the number of knots. Does not apply when knots are given.</td>
</tr>
<tr>
<td>knots</td>
<td>the knots. Does not apply if basis=="os". Otherwise, if NULL nknots equidistant knots are used.</td>
</tr>
<tr>
<td>basis</td>
<td>the spline basis: "os" (default), "trunc.poly" or "tps".</td>
</tr>
<tr>
<td>degree</td>
<td>the spline degree (and penalty order in case of B-splines). Defaults to c(3,2).</td>
</tr>
<tr>
<td>tol</td>
<td>tolerance for the convergence criterion. Default is 1e-8.</td>
</tr>
<tr>
<td>niter</td>
<td>a maximum number of iterations for residual variance function estimation, default is 100.</td>
</tr>
<tr>
<td>niter.var</td>
<td>a maximum number of iterations for the variance of random effects estimation within the residual variance function estimation routine, default is 250.</td>
</tr>
</tbody>
</table>

Value

An object of class asp with varying variances, with additional element sigmax including information on the spline of the varying variance.

Author(s)

Manuel Wiesenfarth <m.wiesenfarth at dkfz.de>

References

Examples

```r
# dontrun{
attach(mcycle)

y=accel
kn1 <- default.knots(times,20)
# fit model with constant residual variance
   fit= asp2(accel~f(times,basis="os",degree=3,knots=kn1,adapt=FALSE),
          niter = 20, niter.var = 200)

# fit model with varying residual variance
fitHhetero= aspHhetero(fitHtimes,tol=1eM8)
par <- par(Hmfrow = c(1,3))
plotHfit);plotHfitHhetero
#sigmaH) returns the fitted varying residual variance
plotHsortHtimes),sigma(fitHhetero[orderHtimes]),type="l")
parHpar)
#
```

default.knots
Compute default knots for a given x vector

Description

Computes default knots for a given x vector.

Usage

```r
default.knots(x, num.knots, knotchoice="quantiles")
```

Arguments

- `x`
 The covariate. Note that for B-splines, only the range of x is considered.

- `num.knots`
 The number of knots. Defaults to \(\text{floor}(n/\text{max}(4, \text{floor}(n/35))) - 1\).

- `knotchoice`
 Either "equidistant" or "quantiles" for equidistant and quantile based knots, respectively. Note that in case of B-splines, knots are always equidistant.
fitted.asp

Fitted values for semiparametric regression.

Description

Extracts fitted values from a semiparametric regression fit object.

Usage

```r
fitted(object,...)
```

Arguments

- `object`: a fitted `asp` object as produced by `asp2()`.
- `...`: other possible arguments.

Details

Extracts fitted from a semiparametric regression fit object. The fitted are defined to be the set of values obtained when the predictor variable data are substituted into the fitted regression model.

Value

The vector of fitted.

See Also

- `plot.asp`, `predict.asp`, `summary.asp`, `residuals.asp.asp` (package `AdaptFit`)

Examples

```r
#dontrun{
library(SemiPar)
data(fossil)attach(fossil)
fit <- asp2(strontium.ratio~f(age))plot(fit, bands=FALSE)
points(age, fitted(fit)-fit$coef[1], col="red")#
}`
plot.asp

Plots fitted curves or their derivatives

Description

Plots fitted curves or their derivatives together with simultaneous confidence bands.

Usage

## S3 method for class 'asp'
plot(x, select=NULL, drv=0, bands=TRUE, level=0.95, grid=50, pages=0,
plot=TRUE, ylim=NULL, xlab=NULL, ylab=NULL,
scb.lwd=1, scb.lty="dotted", shade=FALSE, shade.col=grey(0.85),
residuals=FALSE, residuals.col="steelblue",
bayes=FALSE, rug=TRUE,...)

Arguments

x an asp object
select vector specifying which curves in an additive model should be plotted. If NULL, all curves are plotted.
drv the derivative order. Defaults to 0, i.e. the estimated curves themselves are plotted. First and second derivatives are supported. Does not apply to objects created by scbM.
bands TRUE in order to include simultaneous confidence bands.
grid number of points used for the plot, default value 50.
plot if FALSE no plot is given
ylim vector or list of vectors of limits on y axes. If NULL limits are automatically chosen. If multiple curves are plotted and a two-dimensional vector is given, y axes for all curves will be equal. A list with length equal to the number of smooth curves in the model can be given to specify different y-axes for each smooth.
pages The number of pages over which to spread the output as in package mgcv. For example, if pages=1 then all terms will be plotted on one page in an automatic fashion. If pages=0 (default) all graphics settings are left as they are.
level the level of confidence (does not apply to objects created by scbM).
xlab label for the x axis. A list with length equal to the number of smooth curves in the model can be given to specify different labels for each smooth.
ylab label for the y axis. A list with length equal to the number of smooth curves in the model can be given to specify different labels for each smooth.
scb.lwd line width for simultaneous confidence bands
scb.lty line type for simultaneous confidence bands. Use scb.lty="blank", if you only want to plot the shades.
plot.asp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shade</td>
<td>set to TRUE to produce shaded regions as simultaneous confidence bands for smooths</td>
</tr>
<tr>
<td>shade.col</td>
<td>define the color used for shading confidence bands</td>
</tr>
<tr>
<td>residuals</td>
<td>if TRUE, partial residuals are added to the plot</td>
</tr>
<tr>
<td>residuals.col</td>
<td>color of partial residuals</td>
</tr>
<tr>
<td>rug</td>
<td>adds a rug representation (1-d plot) of the data to the plot.</td>
</tr>
<tr>
<td>bayes</td>
<td>FALSE for simultaneous confidence bands with (approximate) frequentist coverage probability, TRUE for (approximate) Bayesian coverage probability. See Krivobokova et al. (2010) for details.</td>
</tr>
</tbody>
</table>

... further arguments to be passed to plot()

Details

plot.asp() first calls `scbm` and then `plot.scbm()` to plot an asp object. If plotting takes long (because of a large data set) and you want to plot multiple times with different settings, use `scbm` and then plot the resulting `scbm` object with `plot.scbm()`. Different to packages SemiPar and AdaptFit, estimated fits are centred to have zero mean. The simultaneous confidence bands have (approximate) frequentist coverage probabilities with automatic bias correction (see references).

Value

- grid.x: list of the grid values used
- fitted: list of the fitted values on the grid
- lcb: list of the lower bounds of the confidence bands
- ucb: list of the upper bounds of the confidence bands
- drv: the derivative order
- Stdev.fit: the standard deviations on the grid
- ylim: list of ylim used for plotting
- residuals: the partial residuals.

Author(s)

Manuel Wiesenfarth <m.wiesenfarth at dkfz de>

References


See Also

- `plot.spm` in package SemiPar
predict.asp

**Description**

Takes a fitted asp object produced by asp2 and obtains predictions at new data values.

**Usage**

```r
S3 method for class 'asp'
predict(object, newdata, se, ...)
```

**Arguments**

- `object`: a fitted asp object as produced by asp2().
- `newdata`: a data frame containing the values of the predictors at which predictions are required. The columns should have the same name as the predictors. Further, minima and maxima should currently coincide with those of the predictors.
- `se`: when this is TRUE standard error estimates are returned for each prediction. The default is FALSE.
- `...`: other arguments.

**Details**

Takes a fitted asp object produced by asp2() and obtains predictions at new data values as specified by the ‘newdata’ argument. If ‘se=TRUE’ then standard error estimates are also obtained.

**Value**

If se=FALSE then a vector of predictions at ‘newdata’ is returned. If se=TRUE then a list with components named ‘fit’ and ‘se’ is returned. The ‘fit’ component contains the predictions. The ‘se’ component contains standard error estimates.

**Author(s)**

Manuel Wiesenfarth, based on implementation of M.P. Wand (package SemiPar).

**See Also**

`plot.asp`, `summary.asp.asp` (package AdaptFit)
Examples

library(SemiPar)
data(fossil)
attach(fossil)
fit <- asp2(strontium.ratio~f(age, basis="tps"))
newdata.age <- data.frame(age=c(90,100,110,120,130))
preds <- predict(fit,newdata=newdata.age,se=TRUE)
print(preds)

# Use predict to avoid centering of smooths in case of scatterplot
# smoothing
fit <- asp2(strontium.ratio~f(age,basis="tps"))
newdata.age <- data.frame(age=seq(90,130,length.out=50))
preds <- predict(fit,newdata=newdata.age,se=TRUE)
plot(age,strontium.ratio)
lines(newdata.age$age,preds$fit,col="red")
lines(unlist(newdata.age),preds$fit+2*preds$se,col="blue")
lines(unlist(newdata.age),preds$fit-2*preds$se,col="green")

residuals.asp  Residuals for semiparametric regression.

Description

Extracts residuals from a semiparametric regression fit object.

Usage

## S3 method for class 'asp'
residuals(object,...)

Arguments

object  a fitted asp object as produced by asp2().
...    other possible arguments.

Details

Extracts residuals from a semiparametric regression fit object. The residuals are defined to be the difference between the response variable and the fitted values.

Value

The vector of residuals.

See Also

plot.asp, predict.asp, summary.asp, fitted.asp
asp (package AdaptFit)
Examples

library(SemiPar)
data(fossil)
attach(fossil)

fit <- asp2(strontium.ratio~f(age))
plot(age,residuals(fit))
abline(0,0)

Description

Calculates simultaneous (uniform) confidence bands for the mixed model representation of penalized splines based on volume-of-tube formula.

Usage

scbm(object,select=NULL,drv=0,level=0.95,div=1000,
calc.stdev=TRUE,bayes=FALSE)

Arguments

object an asp object.
select vector specifying which curves in an additive model should be considered. If NULL, all curves are considered.
drv the derivative order. Defaults to 0, i.e. the estimated function itself is plotted. First and second derivatives are supported.
level level of confidence.
div precision for the integral used for calculation of the length of the curve, default is 1000.
calc.stdev TRUE to compute standard deviation and confidence bands for each value of the covariates. Computationally intensive for large data sets. Use plot.scbm() or plot.asp() to compute standard deviation and bounds only for a grid. If FALSE only critical values are computed.
bayes FALSE for confidence bands with (approximate) frequentist coverage probability, TRUE for (approximate) Bayesian coverage probability. See Krivobokova et al. (2010) for details.

Details

Returns a scbm object and prints critical values. The resulting confidence bands have (approximate) frequentist coverage probabilities with automatic bias correction (see references). Makes use of the libtube library by Catherine Loader (see package locfit).
Value

A list object of class `scbm` containing

- `aspm`  an asp object.
- `drv`  the derivative order.
- `crit`  a list of critical values.
- `sigma2`  the variance of the residuals.
- `cov.coef`  a list of covariance matrices of spline coefficients in the mixed model framework.
- `stdev`  the standard deviations of estimates. Only given if `calc.stdev=TRUE`.
- `fitted`  a list of fitted values. Only given if `calc.stdev=TRUE`.
- `lcb`  a list of lower bounds of confidence bands. Only given if `calc.stdev=TRUE`.
- `ucb`  a list of upper bounds of confidence bands. Only given if `calc.stdev=TRUE`.
- `...`  further

Author(s)

Manuel Wiesenfarth <m.wiesenfarth at dkfz.de>, Tatyana Krivobokova <tkrivob at gwdg.de>

References


Examples

```r
Not run:
beta=function(l,m,x)
return((gamma(l+m)/((gamma(l)*gamma(m))^(1/m)))*(1-x)^l)*(1-x)^m)
f1 = function(x) return((0.6*beta(30,17,x)+0.4*beta(3,11,x))*1/0.958)
f2 = function(z) return((sin(z*pi*(z-0.5))^2)*1/.3535)
f3 = function(z)
return((exp(-400*(z-0.6)^2)+
5/3*exp(-500*(z-0.75)^2)+2*exp(-500*(z-0.9)^2))*1/0.549)
center=function(x) return(x-mean(x))
set.seed(1)
N <- 500
x1 = runif(N,0,1)
x2 = runif(N,0,1)
x3 = runif(N,0,1)
```

kn1 <- default.knots(x1,40)
k2 <- default.knots(x2,40)
k3 <- default.knots(x3,40)
kn.var3 <- default.knots(kn3,5)
y <- f1(x1)+f2(x2)+f3(x3)+0.3*rnorm(N)

# fit model with last smoothing parameter adaptive
fit2b= asp2(y~f(x1, basis="os", degree=3, knots=kn1, adap=FALSE) +f(x2, basis="os", degree=3, knots=kn2, adap=FALSE) +f(x3, basis="os", degree=3, knots=kn3, adap=TRUE, var.knots=kn.var3, var.basis="os", var.degree=3), niter = 20, niter.var = 200)

# compute 95
# You could skip this and use "fit2b" indstead of "scb2b" later on,
# however, if N is large, computing the SCBs various times can take
# some time if you don't need fitted values and bounds for all covariate points
# (can be computationally intensive due to large matrix dimensions),
# set calc.stdev=F such that these are not computed.
scb2b<- scbM(fit2b,calc.stdev=FALSE)
plot(scb2b,pages=1)

# plot first derivative of f(x1)
scb2bdrv<- scbM(fit2b,drv=1,calc.stdev=FALSE)
plot(scb2bdrv,select=1)
#the following would give the same result
#plot(fit2b,select=1,drv=1)
#different style
plot(scb2bdrv,select=1,scb.lty="blank", shade=TRUE, shade.col= "steelblue")

## End(Not run)

---

**sigma**

*Extract estimated varying residual variance*

**Description**

Extracts the estimated varying residual variance on basis of an object created by `aspHetero()`.

**Usage**

`sigma(object)`

**Arguments**

- **object**
  
an object created by `aspHetero()`.
**Author(s)**

Manuel Wiesenfarth <m.wiesenfarth at dkfz de>

**Examples**

```r
see aspHetero()
```

---

## summary.asp

**Semiparametric regression summary**

**Description**

Takes a fitted asp object produced by asp2() and summarises the fit. This function is extensively based on the summary function in package SemiPar.

**Usage**

```r
S3 method for class 'asp'
summary(object, test1 = FALSE, test2 = FALSE, signif = 0.05, ...)
```

**Arguments**

- `object`: a fitted asp object as produced by asp2().
- `test1`: TRUE in order to include a test for significance of a nonparametrically estimated effect. The test corresponds to checking whether the zero line is entirely inside the simultaneous confidence band.
- `test2`: TRUE in order to include the nonparametric specification test proposed in Wiesenfarth et al. (2012). Only works with B-splines. The function under the null hypothesis is a polynomial of degree q-1 where q is the penalty order.
- `signif`: the significance level.
- `...`: other arguments.

**Details**

Produces tables for the linear (parametric) and non-linear (nonparametric) components. The linear table provides coefficient estimates, standard errors and p-values. The non-linear table provides degrees of freedom values and other information.

**Value**

The function generates summary tables.
References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/

Direct Simultaneous Inference in Additive Models and its Application to Model Undernutrition.

See Also

plot.asp, predict.asp
asp (package AdaptFit)

Examples

#\dontrun{
library(SemiPar)
data(onions)attach(onions)
log.yield <- log(yield)
fit <- asp2(log.yield~location+f(dens, degree=c(3,2)))summary(fit,test1=TRUE,test2=TRUE)
#}
Index

*Topic adaptive
  asp2, 3
*Topic aplot
  plot.asp, 12
*Topic dplot
  plot.asp, 12
  scbm, 16
*Topic models
  asp2, 3
  fitted.asp, 11
  predict.asp, 14
  residuals.asp, 15
  summary.asp, 19
*Topic nonlinear
  asp2, 3
*Topic package
  AdaptFitOS-package, 2
*Topic regression
  asp2, 3
  fitted.asp, 11
  predict.asp, 14
  residuals.asp, 15
  summary.asp, 19
*Topic smooth
  asp2, 3
  aspHetero, 9
  fitted.asp, 11
  predict.asp, 14
  residuals.asp, 15
  scbm, 16
  sigma, 18
  summary.asp, 19

default.knots, 10
fitted.asp, 11, 15
gam, 5
lme, 5
locfit, 2, 16
mgcv, 12
model.matrix.default, 4
plot.asp, 2, 11, 12, 14, 15, 20
plot.scbm(plot.asp), 12
plot.spm, 13
predict.asp, 11, 14, 15, 20
residuals.asp, 11, 15
scbm, 12, 13, 16
sigma, 18
spm, 3
summary, 2
summary.asp, 11, 14, 15, 19

AdaptFitOS (AdaptFitOS-package), 2
AdaptFitOS-package, 2
asp, 3, 5, 7, 11, 14, 15, 20
asp2, 3, 7
aspFormula, 3, 7
aspHetero, 9