Package ‘AdaptiveSparsity’

August 21, 2018

Type Package
Title Adaptive Sparsity Models
Version 1.6
Date 2018-08-20
Author Kristen Zygmunt, Eleanor Wong, Tom Fletcher
Maintainer Kris Campbell <kris@sci.utah.edu>
License LGPL (>= 3.0)
Depends R (>= 3.0.2)
Imports MASS, Matrix, Rcpp
LinkingTo Rcpp (>= 0.12.13), RcppArmadillo (>= 0.2.0)
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-08-20 22:20:03 UTC

R topics documented:

aslm-package .. 2
asggm .. 2
asggm-internal .. 4
asl ... 5
asl-internal ... 6
asl-methods ... 7
summary.aslm ... 8

Index 9
aslm-package

Adaptive Sparsity Models Model

Description

implements the adaptive sparse linear model using Figueiredo’s EM algorithm for adaptive sparsity (Jeffreys prior) and the adaptively sparse gaussian graphical model using Wong’s parameter-free algorithm.

Author(s)

Kristen Zygmunt, Eleanor Wong, Tom Fletcher

Maintainer: Kristen Zygmunt <krismz@sci.utah.edu>

References

See Also

aslm, asggm

asggm

Adaptively Sparse Gaussian Graphical Model

Description

implements a parameter-free adaptively sparse Gaussian graphical model.

Usage

S3 method for class 'formula'
asggm(formula, data=list(), ...)
Default S3 method:
asggm(x, iterations = 100000000, init = NULL, epsilon = 0.001, ...)

Arguments

- **formula**: an object of class “formula” (or one that can be coerced to that class): a symbolic description of the model to be fitted. See `lm` Details for further information.
- **data**: an optional data frame, list or environment containing the variables in the model.
- **x**: design matrix
- **iterations**: number of iterations of the algorithm to run.
- **init**: optional initialization, for instance, the cholesky of x. If NULL, it defaults to the cholesky of x.
- **epsilon**: amount to add for numerical stability.
- **...**: further arguments

Details

An effective approach to structure learning and parameter estimation for Gaussian graphical models is to impose a sparsity prior, such as a Laplace prior, on the entries of the precision matrix. We introduce a parameter-free method for estimating a precision matrix with sparsity that adapts to the data automatically, achieved by formulating a hierarchical Bayesian model of the precision matrix with a non-informative Jeffreys’ hyperprior. We also naturally enforce the symmetry and positive-definiteness constraints on the precision matrix by parameterizing it with the Cholesky decomposition.

Value

`asggm` returns an object of class “asggm”.

An object of class “asggm” is a list containing at least the following components:

Author(s)

Kristen Zygmunt, Eleanor Wong, Tom Fletcher

References

Examples

```R
A = diag(3)
asggm(A)
```
Description
These are the fitting and initialization functions used by asggm. These should generally not be used directly.

Usage
rCSL(x, iterations = 500, init = NULL, epsilon = 1e-05, ansL = NULL)
genL(kNodes, spP)
genData(L, nSamples)

Arguments
x design matrix
iterations number of iterations of the algorithm to run.
init optional initialization, for instance, the cholesky of x. If NULL, it defaults to the cholesky of x.
epsilon amount to add for numerical stability.
ansL
kNodes
spP
L L created by genL
nSamples number of samples.

Details
rCSL calls the C++ code to compute the Wong EM algorithm. genL and genData are used together to create example data.

Value
rCSL returns a list with the following components:

References

See Also
asggm, which should be used directly instead of these methods
aslm

Adaptive Sparse Linear Model

Description

implements the adaptive sparse linear model using Figueiredo’s EM algorithm for adaptive sparsity (Jeffreys prior)

Usage

S3 method for class 'formula'
aslm(formula, data=list(), na.action=na.omit, ...)
Default S3 method:
aslm(x, y, ...)
getSparseModel(object)

Arguments

- **formula**: an object of class “formula” (or one that can be coerced to that class): a symbolic description of the model to be fitted. See *lm* Details for further information.
- **data**: an optional data frame, list or environment containing the variables in the model.
- **na.action**: action to use when data contains NAs. Options include na.omit, na.exclude, na.fail
- **x**: design matrix
- **y**: vector of observations
- **...**: further arguments
- **object**: an object of class “aslm”.

Value

aslm returns an object of class c("aslm", "lm").
An object of class “aslm” is a list containing at least the following components:
- **coefficients**: a named vector of coefficients
- **residuals**: the residuals, that is response minus fitted values.
- **fitted.values**: the fitted mean values
- **rank**: the numeric rank of the fitted linear model
- **df**: the residual degrees of freedom
- **call**: the matched call
- **terms**: the terms object used
- **sigma**: the standard deviation of the errors

getSparseModel returns an object of class "lm" that is a model consisting of only the sparse nonzero variables from the original model.
Author(s)
Kristen Zygmunt, Eleanor Wong, Tom Fletcher

References

See Also
summary.aslm, loglik.aslm, print.aslm

Examples
s = aslm(Infant.Mortality~.,data=swiss)
m = getSparseModel(s)

summary(s)
coef(m)

Description
These are the fitting and initialization functions used by aslm. These should generally not be used.

Usage
figEM(x, y, init = NULL, stopDiff = 1e-08, epsilon = 1e-06, a = 1)
fit.ols.lm(x, y)
init.ones(x, y)
init.rnorm(x, y)
init.runif(x, y)

Arguments
x design matrix of dimension \(n \times p \).
y vector of observations of length \(n \), or a matrix with \(n \) rows.
init optional initialization, a list with components containing an initial estimate for beta and sigma
stopDiff convergence criteria. Algorithm stops once difference in beta and sigma from one iteration to the next is less than stopDiff.
epsilon amount to add to beta for numerical stability,
a scaling of sigmaSqr to provide numerical stability for solving steps.
Details

figEM computes the Figueiredo EM algorithm for adaptive sparsity using Jeffreys prior.
fit.ols.lm computes an initial beta and sigma based on finding the lm.fit of the full design matrix.
init.ones computes an initial beta that is all ones and computes the associated sigmas.
init.rnorm computes an initial beta that is normally distributed with a mean of 0 and a standard deviation of 50
init.runif computes an initial beta that is uniformly distributed from 0 to 1
Currently, figEM uses fit.ols.lm to initialize beta and sigma if no init list is provided.

Value

figEM returns a list with the following components:
- coefficients p vector (also known as beta).
- vcov variance-covariance matrix.
- sigma norm of the model error.
- df degrees of freedom of residuals.

fit.ols.lm and init.ones are used to initialize beta and sigma if init is not provided to figEM. Each of these functions returns a list with the following components:
- beta initial p vector.
- sigma initial norm of the model error based on this initial beta.

References

See Also

aslm, which should be used directly instead of these methods

Description

These methods are implemented by the lm parent class:
- logLik – Extract log-likelihood
- predict – Predict values based on linear model
- nobs – Extract the number of observations from a fit

See Also

predict.lm, logLik.lm, nobs
Summary

Handling aslm objects

Description

summary and print methods for class “aslm”

Usage

S3 method for class 'aslm'
summary(object, ...)
S3 method for class 'summary.aslm'
print(x, ...)
S3 method for class 'aslm'
print(x, ...)

Arguments

object An object of class “aslm”, usually a result of a call to aslm
x An object of class “summary.aslm” or “aslm”
... Further arguments

Details

summary and print methods to help display and work with aslm objects.

Value

print prints a brief overview

Author(s)

Kristen Zygmunt, Eleanor Wong, Tom Fletcher

See Also

aslm
Index

*Topic classes
 asggm, 2
 aslm, 5

*Topic methods
 asggm-internal, 4
 aslm-internal, 6
 aslm-methods, 7
 summary.aslm, 8

*Topic models
 asggm, 2
 aslm, 5
 aslm-methods, 7
 aslm-package, 2

*Topic multivariate
 asggm, 2
 aslm, 5
 aslm-package, 2

*Topic package
 aslm-package, 2

*Topic print
 summary.aslm, 8

AdaptiveSparsity (aslm-package), 2
 asggm, 2, 2, 4
 asggm-internal, 4
 asggm-package (aslm-package), 2
 aslm, 2, 5, 5, 8
 aslm-internal, 6
 aslm-methods, 7
 aslm-package, 2

figEM (aslm-internal), 6
fit.ols.lm (aslm-internal), 6
formula, 3, 5

genData (asggm-internal), 4
genL (asggm-internal), 4
getSparseModel (aslm), 5

init.ones (aslm-internal), 6
init.rnorm (aslm-internal), 6
init.runif (aslm-internal), 6

lm, 3, 5, 7
logLik.aslm, 6
logLik.aslm (aslm-methods), 7
logLik.lm, 7
nobs, 7
nobs.aslm (aslm-methods), 7

predict.aslm (aslm-methods), 7
predict.lm, 7
print.aslm, 6
print.aslm (summary.aslm), 8
print.summary.aslm (summary.aslm), 8

rCSL (asggm-internal), 4
summary.aslm, 6, 8