Package ‘AdhereR’

May 12, 2020

Type Package
Title Adherence to Medications
Version 0.6.1
Author Dan Dediu [aut, cre], Alexandra Dima [aut], Samuel Allemann [aut]
Maintainer Dan Dediu <ddediu@gmail.com>
Description Computation of adherence to medications from Electronic Health care Data and visualization of individual medication histories and adherence patterns. The package implements a set of S3 classes and functions consistent with current adherence guidelines and definitions. It allows the computation of different measures of adherence (as defined in the literature, but also several original ones), their publication-quality plotting, the estimation of event duration and time to initiation, the interactive exploration of patient medication history and the real-time estimation of adherence given various parameter settings. It scales from very small datasets stored in flat CSV files to very large databases and from single-thread processing on mid-range consumer laptops to parallel processing on large heterogeneous computing clusters. It exposes a standardized interface allowing it to be used from other programming languages and platforms, such as Python.

URL https://github.com/ddediu/AdhereR
License GPL (>= 2)
LazyData TRUE
RoxygenNote 7.1.0
Imports lubridate (>= 1.5), parallel (>= 3.0), data.table (>= 1.9), jpeg (>= 0.1), png (>= 0.1), webp (>= 1.0)
Depends R (>= 3.0)
Suggests rmarkdown (>= 1.1), knitr (>= 1.20), R.rsp (>= 0.40), rsvg (>= 1.3), AdhereRViz (>= 0.1)
VignetteBuilder knitr, R.rsp
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2020-05-12 12:20:09 UTC

R topics documented:

callAdhereR .. 3
CMA0 ... 4
CMA1 ... 7
CMA2 ... 12
CMA5 ... 17
CMA6 ... 22
CMA7 ... 26
CMA8 ... 31
CMA9 ... 36
CMA_per_episode .. 40
CMA_polypharmacy .. 46
CMA_sliding_window ... 50
compute.event.int.gaps ... 55
compute.treatment.episodes 59
compute_event_durations ... 63
cover_special_periods ... 68
durcomp.dispensing ... 70
durcomp.hospitalisation ... 71
durcomp.prescribing ... 72
get.event.plotting.area .. 73
get.legend.plotting.area ... 73
get.plotted.events .. 74
get.plotted.partial.cmas .. 75
getCallerWrapperLocation 76
getCMA .. 77
last.plot.get.info .. 78
map.event.coords.to.plot 79
med.events .. 81
plot.CMA0 .. 82
plot.CMA1 .. 87
plot.CMA_per_episode .. 92
plot_interactive_cma ... 100
print.CMA0 .. 101
prune_event_durations .. 104
time_to_initiation ... 106

Index 108
Description

The function encapsulating all the logics that allows AdhereR to be called from any platform using the generic shell mechanism.

Usage

callAdhereR(shared.data.directory)

Arguments

shared.data.directory

A string containing the path to the directory where all the exchanged (shared) data (both input and output) is. AdhereR needs read and write access to this directory.

Details

In most cases this should not be done directly by the user, but instead used by an appropriate wrapper on the client platform. It allows transparent use of AdhereR from virtually any platform or programming language for which an appropriate wrapper is provided. For more details see the vignette describing the included reference Python 3 wrapper.

Value

This function displays any messages to the console, tries to also write them to the Adherer-results.txt file in the shared.data.directory directory, and, when finished, forces R to quit with a given shell error code:

• 0 The processing ended without major errors;
• 1 General error (hopefully there are messages in the Adherer-results.txt file);
• 10 The directory shared.data.directory does not exit;
• 11 AdhereR does not have read access to the shared.data.directory directory;
• 12 AdhereR does not have write access to the shared.data.directory directory;
• 13 issues with the parameters file parameters.log;
• 14 issues with the data file dataset.csv;
• 15 plotting issues;
• 16 interactive plotting issues;
• 17 issues exporting the results.
Description

Constructs a basic CMA (continuous multiple-interval measures of medication availability/gaps) object.

Usage

```r
CMA0(
  data = NULL,
  ID.colname = NA,
  event.date.colname = NA,
  event.duration.colname = NA,
  event.daily.dose.colname = NA,
  medication.class.colname = NA,
  medication.groups = NULL,
  carryover.within.obs.window = NA,
  carryover.into.obs.window = NA,
  carry.only.for.same.medication = NA,
  consider.dosage.change = NA,
  followup.window.start = 0,
  followup.window.start.unit = c("days", "weeks", "months", "years")[1],
  followup.window.duration = 365 * 2,
  followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
  observation.window.start = 0,
  observation.window.start.unit = c("days", "weeks", "months", "years")[1],
  observation.window.duration = 365 * 2,
  observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
  date.format = "%m/%d/%Y",
  summary = "Base CMA object",
  suppress.warnings = FALSE,
  arguments.that.should.not.be.defined = NULL,
  ...
)
```

Arguments

data A `data.frame` containing the medication events (prescribing or dispensing) used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname A `string`, the name of the column in data containing the unique patient ID, or NA if not defined.
event.date.colname
A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter), or NA if not defined.

event.duration.colname
A string, the name of the column in data containing the event duration (in days), or NA if not defined.

event.daily.dose.colname
A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname
A string, the name of the column in data containing the classes/types/groups of medication, or NA if not defined.

medication.groups
A list of vectors of vectors of medication class names; if (some of) these vectors are named, these names will be used the names of the classes, otherwise automatic names will be generated by concatenating their contents separated by "+". One example could be, list(c("A","B"),"G2"=c("C","D","E")). Class names that are not included in the list are considered to be their own group. If NULL (the default), there’s a single group containing all the medications.

carryover.within.obs.window
Logical, if TRUE consider the carry-over within the observation window, or NA if not defined.

carryover.into.obs.window
Logical, if TRUE consider the carry-over from before the starting date of the observation window, or NA if not defined.

carry.only.for.same.medication
Logical, if TRUE the carry-over applies only across medications of the same type, or NA if not defined.

consider.dosage.change
Logical, if TRUE the carry-over is adjusted to reflect changes in dosage, or NA if not defined.

followup.window.start
If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event; or NA if not defined.

followup.window.start.unit
can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration
either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant
treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit
can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit

the definition of the observation window (see the follow-up window parameters above for details).

date.format

A string giving the format of the dates used in the data and the other parameters; see the format parameters of the \texttt{as.Date} function for details (NB, this concerns only the dates given as strings and not as Date objects).

summary

Metadata as a string, briefly describing this CMA.

suppress.warnings

Logical, if TRUE don't show any warnings.

arguments.that.should.not.be.defined

a list of argument names and pre-defined values for which a warning should be thrown if passed to the function.

... other possible parameters

Details

In most cases this should not be done directly by the user, but it is used internally by the other CMAs.

Value

An S3 object of class \texttt{CMA0} with the following fields:

- \texttt{data} The actual event (prescribing or dispensing) data, as given by the \texttt{data} parameter.
- \texttt{ID.colname} the name of the column in \texttt{data} containing the unique patient ID, as given by the \texttt{ID.colname} parameter.
- \texttt{event.date.colname} the name of the column in \texttt{data} containing the start date of the event (in the format given in the \texttt{date.format} parameter), as given by the \texttt{event.date.colname} parameter.
- \texttt{event.duration.colname} the name of the column in \texttt{data} containing the event duration (in days), as given by the \texttt{event.duration.colname} parameter.
- \texttt{event.daily.dose.colname} the name of the column in \texttt{data} containing the prescribed daily dose, as given by the \texttt{event.daily.dose.colname} parameter.
- \texttt{medication.class.colname} the name of the column in \texttt{data} containing the classes/types/groups of medication, as given by the \texttt{medication.class.colname} parameter.
- \texttt{carryover.within.obs.window} whether to consider the carry-over within the observation window, as given by the \texttt{carryover.within.obs.window} parameter.
- \texttt{carryover.into.obs.window} whether to consider the carry-over from before the starting date of the observation window, as given by the \texttt{carryover.into.obs.window} parameter.
- \texttt{carry.only.for.same.medication} whether the carry-over applies only across medication of the same type, as given by the \texttt{carry.only.for.same.medication} parameter.
• consider.dosage.change whether the carry-over is adjusted to reflect changes in dosage, as given by the consider.dosage.change parameter.
• followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.
• followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.
• followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.
• followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.
• observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
• observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.
• observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.
• observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.
• date.format the format of the dates, as given by the date.format parameter.
• summary the metadata, as given by the summary parameter.

Examples

cma0 <- CMA0(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 followup.window.start=0,
 followup.window.start.unit="days",
 followup.window.duration=2*365,
 followup.window.duration.unit="days",
 observation.window.start=30,
 observation.window.start.unit="days",
 observation.window.duration=365,
 observation.window.duration.unit="days",
 date.format="%m/%d/%Y",
 summary="Base CMA");

CMA1

CMA1 and CMA3 constructors.

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) type 1 or type 3 object.
Usage

CMA1(
 data = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = NA,
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
 arguments.that.should.not.be.defined = c(carryover.within.obs.window = FALSE,
 carryover.into.obs.window = FALSE, carry.only.for.same.medication = FALSE,
 consider.dosage.change = FALSE),
 ...
)

CMA3(
 data = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = NA,
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
Arguments

data A data frame containing the events used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must be present.

event.date.colname A string, the name of the column in data containing the start date of the event (in the format given in the date format parameter); must be present.

event.duration.colname A string, the name of the column in data containing the event duration (in days); must be present.

followup.window.start If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant's first event; or NA if not defined.

followup.window.start.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit the definition of the observation window (see the follow-up window parameters above for details).
date.format
A string giving the format of the dates used in the data and the other parameters; see the format parameters of the \texttt{as.Date} function for details (NB, this concerns only the dates given as strings and not as \texttt{Date} objects).

summary
Metadata as a string, briefly describing this CMA.

event.interval.colname
A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname
A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

force.NA.CMA.for.failed.patients
Logical describing how the patients for which the CMA estimation fails are treated: if \texttt{TRUE} they are returned with an NA CMA estimate, while for \texttt{FALSE} they are omitted.

parallel.backend
Can be "none" (the default) for single-threaded execution, "multicore" (using \texttt{mclapply} in package \texttt{parallel}) for multicore processing (NB, not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package \texttt{snow} for details; the last two require packages \texttt{Rmpi} and \texttt{nws}, respectively, not automatically installed with \texttt{AdhereR}).

parallel.threads
Can be "auto" (for parallel.backend == "multicore", defaults to the number of cores in the system as given by \texttt{options("cores")}, while for parallel.backend == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package \texttt{snow} for details).

suppress.warnings
Logical, if \texttt{TRUE} don’t show any warnings.

arguments.that.should.not.be.defined
a list of argument names and pre-defined values for which a warning should be thrown if passed to the function.

...
other possible parameters

Details

CMA1 considers the total number of days with medication supplied in all medication events in the observation window, excluding the last event. CMA3 is identical to CMA1 except that it is capped at 100%.
The formula is
\[
\frac{\text{number of days supply excluding last}}{\text{first to last event}}
\]

Thus, the durations of all events are added up, possibly resulting in an CMA estimate (much) bigger than 1.0 (100%).

\text{CMA2} and \text{CMA1} differ in the inclusion or not of the last event.

\textbf{Value}

An \textsf{S3} object of class \texttt{CMA1} (derived from \texttt{CMA0}) with the following fields:

- \texttt{data} The actual event data, as given by the \texttt{data} parameter.
- \texttt{ID.colname} the name of the column in \texttt{data} containing the unique patient ID, as given by the \texttt{ID.colname} parameter.
- \texttt{event.date.colname} the name of the column in \texttt{data} containing the start date of the event (in the format given in the \texttt{date.format} parameter), as given by the \texttt{event.date.colname} parameter.
- \texttt{event.duration.colname} the name of the column in \texttt{data} containing the event duration (in days), as given by the \texttt{event.duration.colname} parameter.
- \texttt{event.daily.dose.colname} the name of the column in \texttt{data} containing the prescribed daily dose, as given by the \texttt{event.daily.dose.colname} parameter.
- \texttt{medication.class.colname} the name of the column in \texttt{data} containing the classes/types/groups of medication, as given by the \texttt{medication.class.colname} parameter.
- \texttt{followup.window.start} the beginning of the follow-up window, as given by the \texttt{followup.window.start} parameter.
- \texttt{followup.window.start.unit} the time unit of the \texttt{followup.window.start}, as given by the \texttt{followup.window.start.unit} parameter.
- \texttt{followup.window.duration} the duration of the follow-up window, as given by the \texttt{followup.window.duration} parameter.
- \texttt{followup.window.duration.unit} the time unit of the \texttt{followup.window.duration}, as given by the \texttt{followup.window.duration.unit} parameter.
- \texttt{observation.window.start} the beginning of the observation window, as given by the \texttt{observation.window.start} parameter.
- \texttt{observation.window.start.unit} the time unit of the \texttt{observation.window.start}, as given by the \texttt{observation.window.start.unit} parameter.
- \texttt{observation.window.duration} the duration of the observation window, as given by the \texttt{observation.window.duration} parameter.
- \texttt{observation.window.duration.unit} the time unit of the \texttt{observation.window.duration}, as given by the \texttt{observation.window.duration.unit} parameter.
- \texttt{date.format} the format of the dates, as given by the \texttt{date.format} parameter.
- \texttt{summary} the metadata, as given by the \texttt{summary} parameter.
- \texttt{event.info} the \texttt{data.frame} containing the event info (irrelevant for most users; see \texttt{compute.event.int.gaps} for details).
- \texttt{CMA} the \texttt{data.frame} containing the actual CMA estimates for each participant (the \texttt{ID.colname} column).
See Also

CMAs 1 to 8 are described in:

Examples

cma1 <- CMA1(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 followup.window.start=30,
 observation.window.start=30,
 observation.window.duration=365,
 date.format="%m/%d/%Y"
);

cma3 <- CMA3(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 followup.window.start=30,
 observation.window.start=30,
 observation.window.duration=365,
 date.format="%m/%d/%Y"
);

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) type 2 or type 4 object.

Usage

CMA2(
 data = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event-duration.colname = NA,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%d/%m/%Y"
);
CMA2

observation.window.duration = 365 * 2,
observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
date.format = "%m/%d/%Y",
summary = NA,
event.interval.colname = "event.interval",
gap.days.colname = "gap.days",
force.NA.CMA.for.failed.patients = TRUE,
parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
"snow(NWS)")[1],
parallel.threads = "auto",
suppress.warnings = FALSE,
arguments.that.should.not.be.defined = c(carryover.within.obs.window = FALSE,
carryover.into.obs.window = FALSE, carry.only.for.same.medication = FALSE,
consider.dosage.change = FALSE),
...

CMA4(
data = NULL,
ID.colname = NA,
event.date.colname = NA,
event.duration.colname = NA,
followup.window.start = 0,
followup.window.start.unit = c("days", "weeks", "months", "years")[1],
followup.window.duration = 365 * 2,
followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
observation.window.start = 0,
observation.window.start.unit = c("days", "weeks", "months", "years")[1],
observation.window.duration = 365 * 2,
observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
date.format = "%m/%d/%Y",
summary = NA,
event.interval.colname = "event.interval",
gap.days.colname = "gap.days",
force.NA.CMA.for.failed.patients = TRUE,
parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
"snow(NWS)")[1],
parallel.threads = "auto",
suppress.warnings = FALSE,
arguments.that.should.not.be.defined = c(carryover.within.obs.window = FALSE,
carryover.into.obs.window = FALSE, carry.only.for.same.medication = FALSE,
consider.dosage.change = FALSE),
...
)

Arguments

data A data.frame containing the events used to compute the CMA. Must contain,
at a minimum, the patient unique ID, the event date and duration, and might
also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname
A string, the name of the column in data containing the unique patient ID; must be present.

event.date.colname
A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.

event.duration.colname
A string, the name of the column in data containing the event duration (in days); must be present.

followup.window.start
If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event; or NA if not defined.

followup.window.start.unit
Can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration
Either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit
Can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit
The definition of the observation window (see the follow-up window parameters above for details).

date.format
A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

summary
Metadata as a string, briefly describing this CMA.

event.interval.colname
A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname
A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days"
should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

force.NA.CMA.for.failed.patients

Logical describing how the patients for which the CMA estimation fails are treated: if TRUE they are returned with an NA CMA estimate, while for FALSE they are omitted.

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using mclapply in package parallel) for multicore processing (NB. not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package snow for details; the last two require packages Rmpi and nws, respectively, not automatically installed with AdhereR).

parallel.threads

Can be "auto" (for parallel.backend == "multicore", defaults to the number of cores in the system as given by options("cores"), while for parallel.backend == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package snow for details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

arguments.that.should.not.be.defined

a list of argument names and pre-defined values for which a warning should be thrown if passed to the function.

... other possible parameters

Details

CMA2 considers the total number of days with medication supplied in all medication events in the observation window, including the last event. CMA4 is identical to CMA2 except that it is capped at 100%.

The formula is

\[
\frac{\text{number of days supply including last event}}{\text{first to last event}}
\]

Thus, the durations of all events are added up, possibly resulting in an CMA estimate (much) bigger than 1.0 (100%)

CMA2 and CMA1 differ in the inclusion or not of the last event.

Value

An S3 object of class CMA2 (derived from CMA0) with the following fields:

- data The actual event data, as given by the data parameter.
• ID.colname the name of the column in data containing the unique patient ID, as given by the ID.colname parameter.

• event.date.colname the name of the column in data containing the start date of the event (in the format given in the date.format parameter), as given by the event.date.colname parameter.

• event.duration.colname the name of the column in data containing the event duration (in days), as given by the event.duration.colname parameter.

• event.daily.dose.colname the name of the column in data containing the prescribed daily dose, as given by the event.daily.dose.colname parameter.

• medication.class.colname the name of the column in data containing the classes/types/groups of medication, as given by the medication.class.colname parameter.

• followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.

• followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.

• followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.

• followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.

• observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.

• observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.

• observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.

• observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.

• date.format the format of the dates, as given by the date.format parameter.

• summary the metadata, as given by the summary parameter.

• event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).

• CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column).

See Also

CMAs 1 to 8 are defined in:

Examples

```r
## Not run:
cma2 <- CMA2(data=med.events,
    ID.colname="PATIENT_ID",
    event.date.colname="DATE",
    event.duration.colname="DURATION",
    followup.window.start=30,
    observation.window.start=30,
    observation.window.duration=365,
    date.format="%m/%d/%Y"
);

cma4 <- CMA4(data=med.events,
    ID.colname="PATIENT_ID",
    event.date.colname="DATE",
    event.duration.colname="DURATION",
    followup.window.start=30,
    observation.window.start=30,
    observation.window.duration=365,
    date.format="%m/%d/%Y"
);
## End(Not run)
```

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) type 5 object.

Usage

```r
CMA5(
    data = NULL,
    ID.colname = NA,
    event.date.colname = NA,
    event.duration.colname = NA,
    event.daily.dose.colname = NA,
    medication.class.colname = NA,
    carry.only.for.same.medication = FALSE,
    consider.dosage.change = FALSE,
    followup.window.start = 0,
    followup.window.start.unit = c("days", "weeks", "months", "years")[1],
    followup.window.duration = 365 * 2,
    followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
    observation.window.start = 0,
    observation.window.start.unit = c("days", "weeks", "months", "years")[1],
    observation.window.duration = 365 * 2,
)
```
observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
date.format = "%m/%d/%Y",
summary = NA,
event.interval.colname = "event.interval",
gap.days.colname = "gap.days",
force.NA.CMA.for.failed.patients = TRUE,
parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
parallel.threads = "auto",
suppress.warnings = FALSE,
arguments.that.should.not.be.defined = c(carryover.within.obs.window = TRUE,
 carryover.into.obs.window = FALSE),
 ...
)

Arguments

data A data.frame containing the medication events used to compute the CMA.
 Must contain, at a minimum, the patient unique ID, the event date and duration,
 and might also contain the daily dosage and medication type (the actual column
 names are defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must
 be present.

event.date.colname
 A string, the name of the column in data containing the start date of the event
 (in the format given in the date.format parameter); must be present.

event.duration.colname
 A string, the name of the column in data containing the event duration (in days);
 must be present.

event.daily.dose.colname
 A string, the name of the column in data containing the prescribed daily dose,
 or NA if not defined.

medication.class.colname
 A string, the name of the column in data containing the medication type, or NA
 if not defined.

carry.only.for.same.medication
 Logical, if TRUE, the carry-over applies only across medication of the same type.

consider.dosage.change
 Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage.

followup.window.start
 If a Date object, it represents the actual start date of the follow-up window; if a
 string it is the name of the column in data containing the start date of the follow-
 up window either as the numbers of followup.window.start.unit units after
 the first event (the column must be of type numeric) or as actual dates (in which
 case the column must be of type Date); if a number it is the number of time units
 defined in the followup.window.start.unit parameter after the begin of the
 participant’s first event; or NA if not defined.
followup.window.start.unit
can be either "days", "weeks", "months" or "years", and represents the time units
that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration
either a number representing the duration of the follow-up window in the time
units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant
medication events are recorded accurately (e.g. not extend after end of relevant
treatment, loss-to-follow-up or change to a health care provider not covered by
the database).

followup.window.duration.unit
can be either "days", "weeks", "months" or "years", and represents the time units
that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit
the definition of the observation window (see the follow-up window parameters
above for details).

date.format
A string giving the format of the dates used in the data and the other param-
eters; see the format parameters of the as.Date function for details (NB, this
concerns only the dates given as strings and not as Date objects).

summary
Metadata as a string, briefly describing this CMA.

event.interval.colname
A string, the name of a newly-created column storing the number of days be-	ween the start of the current event and the start of the next one; the default
value "event.interval" should be changed only if there is a naming conflict with
a pre-existing "event.interval" column in event.info.

gap.days.colname
A string, the name of a newly-created column storing the number of days when
medication was not available (i.e., the "gap days"); the default value "gap.days"
should be changed only if there is a naming conflict with a pre-existing "gap.days"
column in event.info.

force.NA.CMA.for.failed.patients
Logical describing how the patients for which the CMA estimation fails are
 treated: if TRUE they are returned with an NA CMA estimate, while for FALSE
they are omitted.

parallel.backend
Can be "none" (the default) for single-threaded execution, "multicore" (using
mclapply in package parallel) for multicore processing (NB. not currently
implemented on MS Windows and automatically falls back on "snow" on this
platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or
"snow(NWS)" specifying various types of SNOW clusters (can be on the local
machine or more complex setups – please see the documentation of package
snow for details; the last two require packages Rmpi and nws, respectively, not
automatically installed with AdhereR).

parallel.threads
Can be "auto" (for parallel.backend == "multicore", defaults to the number of
cores in the system as given by options("cores"), while for parallel.backend
== "snow", defaults to 2), a strictly positive integer specifying the number of
parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package snow for details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

arguments.that.should.not.be.defined

a list of argument names and pre-defined values for which a warning should be thrown if passed to the function.

... other possible parameters

Details

CMA5 assumes that, within the observation window, the medication is used as prescribed and new medication is "banked" until needed (oversupply from previous events is used first, followed new medication supply). It computes days of theoretical use by extracting the total number of gap days from the total time interval between the first and the last event, accounting for carry over for all medication events within the observation window. Thus, it accounts for timing within the observation window, and excludes the remaining supply at the start of the last event within the observation window.

The formula is

\[
\frac{\text{number of daysof theoretical use}}{\text{first to last event}}
\]

Observations:

- the carry.only.for.same.medication parameter controls the transmission of carry-over across medication changes, producing a "standard" CMA5 (default value is FALSE), and an "alternative" CMA5b, respectively;
- the consider.dosage.change parameter controls if dosage changes are taken into account, i.e. if set as TRUE and a new medication event has a different daily dosage recommendation, carry-over is recomputed assuming medication use according to the new prescribed dosage (default value is FALSE).

Value

An S3 object of class CMA5 (derived from CMA0) with the following fields:

- data The actual event data, as given by the data parameter.
- ID.colname the name of the column in data containing the unique patient ID, as given by the ID.colname parameter.
- event.date.colname the name of the column in data containing the start date of the event (in the format given in the date.format parameter), as given by the event.date.colname parameter.
- event.duration.colname the name of the column in data containing the event duration (in days), as given by the event.duration.colname parameter.
- event.daily.dose.colname the name of the column in data containing the prescribed daily dose, as given by the event.daily.dose.colname parameter.
• medication.class.colname the name of the column in data containing the classes/types/groups of medication, as given by the medication.class.colname parameter.

• carry.only.for.same.medication whether the carry-over applies only across medication of the same type, as given by the carry.only.for.same.medication parameter.

• consider.dosage.change whether the carry-over is adjusted to reflect changes in dosage, as given by the consider.dosage.change parameter.

• followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.

• followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.

• followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.

• followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.

• observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.

• observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.

• observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.

• observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.

• date.format the format of the dates, as given by the date.format parameter.

• summary the metadata, as given by the summary parameter.

• event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).

• CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column).

See Also

CMAs 1 to 8 are defined in:

Examples

cma5 <- CMA5(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 carry.only.for.same.medication=FALSE,
CMA6

CMA6 constructor.

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) type 6 object.

Usage

CMA6(
 data = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 event.daily.dose.colname = NA,
 medication.class.colname = NA,
 carry.only.for.same.medication = FALSE,
 consider.dosage.change = FALSE,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = NA,
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
 arguments.that.should.not.be.defined = c(carryover.within.obs.window = TRUE,
 carryover.into.obs.window = FALSE),
 ...)
Arguments

data A data.frame containing the events used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must be present.

event.date.colname A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.

event.duration.colname A string, the name of the column in data containing the event duration (in days); must be present.

event.daily.dose.colname A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication Logical, if TRUE, the carry-over applies only across medication of the same type.

consider.dosage.change Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage.

followup.window.start If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event; or NA if not defined.

followup.window.start.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit the definition of the observation window (see the follow-up window parameters above for details).
date.format A string giving the format of the dates used in the data and the other parameters; see the format parameters of the \texttt{as.Date} function for details (NB, this concerns only the dates given as strings and not as \texttt{Date} objects).

summary Metadata as a string, briefly describing this CMA.

event.interval.colname A \texttt{string}, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in \texttt{event.info}.

gap.days.colname A \texttt{string}, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in \texttt{event.info}.

force.NA.CMA.for.failed.patients \texttt{Logical} describing how the patients for which the CMA estimation fails are treated: if \texttt{TRUE} they are returned with an NA CMA estimate, while for \texttt{FALSE} they are omitted.

parallel.backend Can be "none" (the default) for single-threaded execution, "multicore" (using \texttt{mclapply} in package \texttt{parallel}) for multicore processing (NB, not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)") (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package \texttt{snow} for details; the last two require packages \texttt{Rmpi} and \texttt{nws}, respectively, not automatically installed with \texttt{AdhereR}).

parallel.threads Can be "auto" (for \texttt{parallel.backend} == "multicore", defaults to the number of cores in the system as given by \texttt{options("cores")}, while for \texttt{parallel.backend} == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for \texttt{parallel.backend} == "snow" (see the documentation of package \texttt{snow} for details).

suppress.warnings \texttt{Logical}, if \texttt{TRUE} don’t show any warnings.

arguments.that.should.not.be.defined a \texttt{list} of argument names and pre-defined values for which a warning should be thrown if passed to the function.

... other other possible parameters

Details

CMA6 assumes that, within the observation window, the medication is used as prescribed and new medication is "banked" until needed (oversupply from previous events is used first, followed new medication supply). It computes days of theoretical use by extracting the total number of gap days from the total time interval between the first event and the end of the observation window.
accounting for carry over for all medication events within the observation window. Thus, it accounts for timing within the observation window, and excludes the remaining supply at the end of the observation window.

The formula is

\[
\frac{\text{number of days of theoretical use}}{\text{first event to end of observation window}}
\]

Observations:

- the `carry.only.for.same.medication` parameter controls the transmission of carry-over across medication changes, producing a "standard" CMA6 (default value is FALSE), and an "alternative" CMA6b, respectively;
- the `consider.dosage.change` parameter controls if dosage changes are taken into account, i.e. if set as TRUE and a new medication event has a different daily dosage recommendation, carry-over is recomputed assuming medication use according to the new prescribed dosage (default value is FALSE).

Value

An S3 object of class CMA6 (derived from CMA0) with the following fields:

- `data` The actual event data, as given by the `data` parameter.
- `ID.colname` the name of the column in `data` containing the unique patient ID, as given by the `ID.colname` parameter.
- `event.date.colname` the name of the column in `data` containing the start date of the event (in the format given in the `date.format` parameter), as given by the `event.date.colname` parameter.
- `event.duration.colname` the name of the column in `data` containing the event duration (in days), as given by the `event.duration.colname` parameter.
- `event.daily.dose.colname` the name of the column in `data` containing the prescribed daily dose, as given by the `event.daily.dose.colname` parameter.
- `medication.class.colname` the name of the column in `data` containing the classes/types/groups of medication, as given by the `medication.class.colname` parameter.
- `carry.only.for.same.medication` whether the carry-over applies only across medication of the same type, as given by the `carry.only.for.same.medication` parameter.
- `consider.dosage.change` whether the carry-over is adjusted to reflect changes in dosage, as given by the `consider.dosage.change` parameter.
- `followup.window.start` the beginning of the follow-up window, as given by the `followup.window.start` parameter.
- `followup.window.start.unit` the time unit of the `followup.window.start`, as given by the `followup.window.start.unit` parameter.
- `followup.window.duration` the duration of the follow-up window, as given by the `followup.window.duration` parameter.
- `followup.window.duration.unit` the time unit of the `followup.window.duration`, as given by the `followup.window.duration.unit` parameter.
• observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
• observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.
• observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.
• observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.
• date.format the format of the dates, as given by the date.format parameter.
• summary the metadata, as given by the summary parameter.
• event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).
• CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column).

See Also

CMAs 1 to 8 are defined in:

Examples

cma6 <- CMA6(data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=30,
observation.window.start=30,
observation.window.duration=365,
date.format="%m/%d/%Y"
);
Usage

CMA7(
 data = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 event.daily.dose.colname = NA,
 medication.class.colname = NA,
 carry.only.for.same.medication = FALSE,
 consider.dosage.change = FALSE,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = NA,
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
 arguments.that.should.not.be.defined = c(carryover.within.obs.window = TRUE,
 carryover.into.obs.window = TRUE),
...)

Arguments

data A data.frame containing the events used to compute the CMA. Must contain,
at a minimum, the patient unique ID, the event date and duration, and might
also contain the daily dosage and medication type (the actual column names are
defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must
be present.

event.date.colname A string, the name of the column in data containing the start date of the event
(in the format given in the date.format parameter); must be present.

event.duration.colname A string, the name of the column in data containing the event duration (in days);
must be present.
event.daily.dose.colname
A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname
A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication
Logical, if TRUE, the carry-over applies only across medication of the same type.

consider.dosage.change
Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage.

followup.window.start
If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant's first event; or NA if not defined.

followup.window.start.unit
can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration
either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit
can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit
the definition of the observation window (see the follow-up window parameters above for details).

date.format
A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

summary
Metadata as a string, briefly describing this CMA.

event.interval.colname
A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname
A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.
force.NA.CMA.for.failed.patients

Logical describing how the patients for which the CMA estimation fails are treated: if TRUE they are returned with an NA CMA estimate, while for FALSE they are omitted.

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using mclapply in package parallel) for multicore processing (NB. not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package snow for details; the last two require packages Rmpi and nws, respectively, not automatically installed with AdhereR).

parallel.threads

Can be "auto" (for parallel.backend == "multicore", defaults to the number of cores in the system as given by options("cores"), while for parallel.backend == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package snow for details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

arguments.that.should.not.be.defined

a list of argument names and pre-defined values for which a warning should be thrown if passed to the function.

... other possible parameters

Details

CMA7 assumes that, within and before the observation window, the medication is used as prescribed and new medication is "banked" until needed (oversupply from previous events is used first, followed new medication supply). It computes days of theoretical use by extracting the total number of gap days from the total time interval between the start and the end of the observation window, accounting for carry over for all medication events within and before the observation window. All medication events in the follow up window before observation window are considered for carry-over calculation. Thus, it accounts for timing within and before the observation window, and excludes the remaining supply at the end of the observation window.

The formula is

\[
\frac{\text{number of days of theoretical use}}{\text{start to end of observation window}}
\]

Observations:

- the carry.only.for.same.medication parameter controls the transmission of carry-over across medication changes, producing a "standard" CMA7 (default value is FALSE), and an "alternative" CMA7b, respectively;
- the consider.dosage.change parameter controls if dosage changes are taken into account, i.e. if set as TRUE and a new medication event has a different daily dosage recommendation,
carry-over is recomputed assuming medication use according to the new prescribed dosage (default value is FALSE).

Value

An S3 object of class CMA7 (derived from CMA0) with the following fields:

- data The actual event data, as given by the data parameter.
- ID.colname the name of the column in data containing the unique patient ID, as given by the ID.colname parameter.
- event.date.colname the name of the column in data containing the start date of the event (in the format given in the date.format parameter), as given by the event.date.colname parameter.
- event.duration.colname the name of the column in data containing the event duration (in days), as given by the event.duration.colname parameter.
- event.daily.dose.colname the name of the column in data containing the prescribed daily dose, as given by the event.daily.dose.colname parameter.
- medication.class.colname the name of the column in data containing the classes/types/groups of medication, as given by the medication.class.colname parameter.
- carry.only.for.same.medication whether the carry-over applies only across medication of the same type, as given by the carry.only.for.same.medication parameter.
- consider.dosage.change whether the carry-over is adjusted to reflect changes in dosage, as given by the consider.dosage.change parameter.
- followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.
- followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.
- followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.
- followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.
- observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
- observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.
- observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.
- observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.
- date.format the format of the dates, as given by the date.format parameter.
- summary the metadata, as given by the summary parameter.
- event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).
- CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column).
Examples

cma7 <- CMA7(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 carry.only.for.same.medication=FALSE,
 consider.dosage.change=FALSE,
 followup.window.start=30,
 observation.window.start=30,
 observation.window.duration=365,
 date.format="%m/%d/%Y"
);

CMA8

CMA8 constructor.

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) type 8 object.

Usage

CMA8(
 data = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 event.daily.dose.colname = NA,
 medication.class.colname = NA,
 carry.only.for.same.medication = FALSE,
 consider.dosage.change = FALSE,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = NA,
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI),

"snow(NWS")[[1]],
parallel.threads = "auto",
suppress.warnings = FALSE,
arguments.that.should.not.be.defined = c(carryover.within.obs.window = TRUE,
carryover.into.obs.window = TRUE),
...)

Arguments

data A data.frame containing the events used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must be present.

event.date.colname A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.

event.duration.colname A string, the name of the column in data containing the event duration (in days); must be present.

event.daily.dose.colname A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication Logical, if TRUE, the carry-over applies only across medication of the same type.

consider.dosage.change Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage.

followup.window.start
If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant's first event; or NA if not defined.

followup.window.start.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant
medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit

can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit

the definition of the observation window (see the follow-up window parameters above for details).

date.format

A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

summary

Metadata as a string, briefly describing this CMA.

event.interval.colname

A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname

A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

force.NA.CMA.for.failed.patients

Logical describing how the patients for which the CMA estimation fails are treated: if TRUE they are returned with an NA CMA estimate, while for FALSE they are omitted.

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using mclapply in package parallel) for multicore processing (NB. not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package snow for details; the last two require packages Rmpi and nws, respectively, not automatically installed with AdhereR).

parallel.threads

Can be "auto" (for parallel.backend == "multicore", defaults to the number of cores in the system as given by options("cores"), while for parallel.backend == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package snow for details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

arguments.that.should.not.be.defined

a list of argument names and pre-defined values for which a warning should be thrown if passed to the function.
Details

CMA8 is similar to CMA6 in that it assumes that, within the observation window, the medication is used as prescribed and new medication is "banked" until needed (oversupply from previous events is used first, followed new medication supply). Unlike CMA6 it accounts for carry-over from before the window - but in a different way from CMA7: by adding a time lag at the start of the observation window equal to the duration of carry-over from before. It is designed for situations when an event with a hypothesized causal effect on adherence happens at the start of the observation window (e.g. enrolment in an intervention study); in this case, it may be that the existing supply is not part of the relationship under study (e.g. it delays the actual start of the study for that participant) and needs to be excluded by shortening the time interval examined. The end of the observation window remains the same. Thus, CMA8 computes days of theoretical use by extracting the total number of gap days from the total time interval between the lagged start and the end of the observation window, accounting for carry over for all medication events within the observation window. All medication events in the follow up window before observation window are considered for carry-over calculation. Thus, as CMA7, it accounts for timing within the observation window, as well as before (different adjustment than CMA7), and excludes the remaining supply at the end of the observation window.

The formula is

\[
\frac{\text{number of days of theoretical use}}{\text{lagged start to end of observation window}}
\]

Observations:

- the `carry.only.for.same.medication` parameter controls the transmission of carry-over across medication changes, producing a "standard" CMA8 (default value is FALSE), and an "alternative" CMA8b, respectively;
- the `consider.dosage.change` parameter controls if dosage changes are taken into account, i.e. if set as TRUE and a new medication event has a different daily dosage recommendation, carry-over is recomputed assuming medication use according to the new prescribed dosage (default value is FALSE).

Value

An S3 object of class CMA8 (derived from CMA0) with the following fields:

- `data` The actual event data, as given by the `data` parameter.
- `ID.colname` the name of the column in `data` containing the unique patient ID, as given by the `ID.colname` parameter.
- `event.date.colname` the name of the column in `data` containing the start date of the event (in the format given in the `date.format` parameter), as given by the `event.date.colname` parameter.
- `event.duration.colname` the name of the column in `data` containing the event duration (in days), as given by the `event.duration.colname` parameter.
- `event.daily.dose.colname` the name of the column in `data` containing the prescribed daily dose, as given by the `event.daily.dose.colname` parameter.
- medication.class.colname the name of the column in data containing the classes/types/groups of medication, as given by the medication.class.colname parameter.
- carry.only.for.same.medication whether the carry-over applies only across medication of the same type, as given by the carry.only.for.same.medication parameter.
- consider.dosage.change whether the carry-over is adjusted to reflect changes in dosage, as given by the consider.dosage.change parameter.
- followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.
- followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.
- followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.
- followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.
- observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
- observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.
- observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.
- observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.
- date.format the format of the dates, as given by the date.format parameter.
- summary the metadata, as given by the summary parameter.
- event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).
- CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column).

See Also

CMAs 1 to 8 are defined in:

Examples

cma8 <- CMA8(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=30,
observation.window.start=30,
observation.window.duration=365,
date.format="%m/%d/%Y"
);

CMA9 constructor.

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) type 9 object.

Usage

CMA9(
data = NULL,
ID.colname = NA,
event.date.colname = NA,
event.duration.colname = NA,
event.daily.dose.colname = NA,
medication.class.colname = NA,
carry.only.for.same.medication = FALSE,
consider.dosage.change = FALSE,
followup.window.start = 0,
followup.window.start.unit = c("days", "weeks", "months", "years")[1],
followup.window.duration = 365 * 2,
followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
observation.window.start = 0,
observation.window.start.unit = c("days", "weeks", "months", "years")[1],
observation.window.duration = 365 * 2,
observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
date.format = "%m/%d/%Y",
summary = NA,
event.interval.colname = "event.interval",
gap.days.colname = "gap.days",
force.NA.CMA.for.failed.patients = TRUE,
parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
"snow(NWS)")[1],
parallel.threads = "auto",
suppress.warnings = FALSE,
arguments.that.should.not.be.defined = c(carryover.within.obs.window = TRUE,
carryover.into.obs.window = TRUE),
...)
)
Arguments

data A data.frame containing the events used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must be present.

event.date.colname A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.

event.duration.colname A string, the name of the column in data containing the event duration (in days); must be present.

event.daily.dose.colname A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication Logical, if TRUE, the carry-over applies only across medication of the same type.

consider.dosage.change Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage.

followup.window.start If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event; or NA if not defined.

followup.window.start.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit the definition of the observation window (see the follow-up window parameters above for details).
date.format
A *string* giving the format of the dates used in the data and the other parameters; see the *format* parameters of the `as.Date` function for details (NB, this concerns only the dates given as strings and not as `Date` objects).

summary
Metadata as a *string*, briefly describing this CMA.

event.interval.colname
A *string*, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in `event.info`.

gap.days.colname
A *string*, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in `event.info`.

force.NA.CMA.for.failed.patients
Logical describing how the patients for which the CMA estimation fails are treated: if `TRUE` they are returned with an NA CMA estimate, while for `FALSE` they are omitted.

parallel.backend
Can be "none" (the default) for single-threaded execution, "multicore" (using `mclapply` in package `parallel`) for multicore processing (NB, not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package `snow` for details; the last two require packages `Rmpi` and `nws`, respectively, not automatically installed with AdhereR).

parallel.threads
Can be "auto" (for `parallel.backend == "multicore"`, defaults to the number of cores in the system as given by `options("cores")`, while for `parallel.backend == "snow"`, defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for `parallel.backend == "snow"` (see the documentation of package `snow` for details).

suppress.warnings
Logical, if `TRUE` don't show any warnings.

arguments.that.should.not.be.defined
a *list* of argument names and pre-defined values for which a warning should be thrown if passed to the function.

... other possible parameters

Details

CMA9 is similar to CMA7 and CMA8 in that it accounts for carry-over within and before the observation window assuming that new medication is "banked" until needed (oversupply from previous events is used first, followed new medication supply). Yet, unlike these previous CMAs, it does not assume
the medication is used as prescribed; in longitudinal studies with multiple CMA measures, this assumption may introduce additional variation in CMA estimates depending on when the observation window starts in relation to the previous medication event. A shorter time distance from the previous event (and longer to the first event in the observation window) results in higher values even if the number of gap days is the same, and it may also be that the patient has had a similar use pattern for that time interval, rather than perfect adherence followed by no medication use. **CMA9** applies a different adjustment: it computes a ratio of days supply over each interval between two prescriptions and considers this applies for each day of that interval, up to 100% (moving oversupply to the next event interval). All medication events in the follow up window before observation window are considered for carry-over calculation. The last interval ends at the end of the follow-up window. Thus, it accounts for timing within the observation window, as well as before (but differently from **CMA7** and **CMA8**), and excludes the remaining supply at the end of the observation window, if any.

The formula is

\[
\frac{\text{number of days in the observation window, each weighted by the ratio of days supply applicable to the event interval}}{\text{start to end of observation window}}
\]

Observations:

- the `carry.only.for.same.medication` parameter controls the transmission of carry-over across medication changes, producing a "standard" **CMA7** (default value is FALSE), and an "alternative" **CMA7b**, respectively;

- the `consider.dosage.change` parameter controls if dosage changes are taken into account, i.e. if set as TRUE and a new medication event has a different daily dosage recommendation, carry-over is recomputed assuming medication use according to the new prescribed dosage (default value is FALSE).

Value

An S3 object of class **CMA9** (derived from **CMA0**) with the following fields:

- `data` The actual event data, as given by the `data` parameter.
- `ID.colname` the name of the column in data containing the unique patient ID, as given by the `ID.colname` parameter.
- `event.date.colname` the name of the column in data containing the start date of the event (in the format given in the `date.format` parameter), as given by the `event.date.colname` parameter.
- `event.duration.colname` the name of the column in data containing the event duration (in days), as given by the `event.duration.colname` parameter.
- `event.daily.dose.colname` the name of the column in data containing the prescribed daily dose, as given by the `event.daily.dose.colname` parameter.
- `medication.class.colname` the name of the column in data containing the classes/types/groups of medication, as given by the `medication.class.colname` parameter.
- `carry.only.for.same.medication` whether the carry-over applies only across medication of the same type, as given by the `carry.only.for.same.medication` parameter.
- `consider.dosage.change` whether the carry-over is adjusted to reflect changes in dosage, as given by the `consider.dosage.change` parameter.
• followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.
• followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.
• followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.
• followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.
• observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
• observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.
• observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.
• observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.
• date.format the format of the dates, as given by the date.format parameter.
• summary the metadata, as given by the summary parameter.
• event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).
• CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column).

Examples

cma9 <- CMA9(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 carry.only.for.same.medication=FALSE,
 consider.dosage.change=FALSE,
 followup.window.start=30,
 observation.window.start=30,
 observation.window.duration=365,
 date.format="%m/%d/%Y"
);

CMA_per_episode

CMA_per_episode constructor.

Description

Applies a given CMA to each treatment episode and constructs a CMA_per_episode object.
Usage

CMA_per_episode(
 CMA.to.apply,
 data,
 treat.epi = NULL,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 event.daily.dose.colname = NA,
 medication.class.colname = NA,
 carry.only.for.same.medication = NA,
 consider.dosage.change = NA,
 medication.change.means.new.treatment.episode = TRUE,
 dosage.change.means.new.treatment.episode = FALSE,
 maximum.permissible.gap = 180,
 maximum.permissible.gap.unit = c("days", "weeks", "months", "years", "percent")[1],
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = "CMA per treatment episode",
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
 ...
)

Arguments

CMA.to.apply A string giving the name of the CMA function (1 to 9) that will be computed for each treatment episode.

data A data.frame containing the events (prescribing or dispensing) used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

treat.epi A data.frame containing the treatment episodes. Must contain the patient ID (as given in ID.colname), the episode unique ID (increasing sequentially, episode.ID), the episode start date (episode.start), the episode duration in days (episode.duration), and the episode end date (episode.end).
ID.colname
A string, the name of the column in data containing the unique patient ID; must be present.

event.date.colname
A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.

event.duration.colname
A string, the name of the column in data containing the event duration (in days); must be present.

event.daily.dose.colname
A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname
A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication
Logical, if TRUE, the carry-over applies only across medication of the same type; valid only for CMAs 5 to 9, in which case it is coupled (i.e., the same value is used for computing the treatment episodes and the CMA on each treatment episode).

consider.dosage.change
Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage; valid only for CMAs 5 to 9, in which case it is coupled (i.e., the same value is used for computing the treatment episodes and the CMA on each treatment episode).

medication.change.means.new.treatment.episode
Logical, should a change in medication automatically start a new treatment episode?

dosage.change.means.new.treatment.episode
Logical, should a change in dosage automatically start a new treatment episode?

maximum.permissible.gap
The number of units given by maximum.permissible.gap.unit representing the maximum duration of permissible gaps between treatment episodes (can also be a percent, see maximum.permissible.gap.unit for details).

maximum.permissible.gap.unit
can be either "days", "weeks", "months", "years" or "percent", and represents the time units that maximum.permissible.gap refers to; if percent, then maximum.permissible.gap is interpreted as a percent (can be greater than 100%) of the duration of the current prescription.

followup.window.start
If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event; or NA if not defined.
followup.window.start.unit

can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration

either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit

can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit

the definition of the observation window (see the follow-up window parameters above for details).

date.format

A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

summary

Metadata as a string, briefly describing this CMA.

event.interval.colname

A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname

A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

force.NA.CMA.for.failed.patients

Logical describing how the patients for which the CMA estimation fails are treated: if TRUE they are returned with an NA CMA estimate, while for FALSE they are omitted.

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using mclapply in package parallel) for multicore processing (NB. not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package snow for details; the last two require packages Rmpi and nws, respectively, not automatically installed with AdhereR).

parallel.threads

Can be "auto" (for parallel.backend == "multicore"), defaults to the number of cores in the system as given by options("cores"), while for parallel.backend == "snow", defaults to 2), a strictly positive integer specifying the number of
CMA_per_episode

parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package snow for details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

... other possible parameters

Details

CMA_per_episode first identifies the treatment episodes for the whole follow-up window (using the compute.treatment.episodes function), and then computes the given "simple" CMA for each treatment episode that intersects with the observation window. NB: the CMA is computed for the period of the episode that is part of the observations window; thus, if an episode starts earlier or ends later than the observation window, CMA will be computed for a section of that episode. Thus, as opposed to the "simple" CMAs 1 to 9, it returns a set of CMAs, with possibly more than one element.

It is highly similar to CMA_sliding_window which computes a CMA for a set of sliding windows.

Value

An S3 object of class CMA_per_episode with the following fields:

• data The actual event data, as given by the data parameter.
• ID.colname the name of the column in data containing the unique patient ID, as given by the ID.colname parameter.
• event.date.colname the name of the column in data containing the start date of the event (in the format given in the date.format parameter), as given by the event.date.colname parameter.
• event.duration.colname the name of the column in data containing the event duration (in days), as given by the event.duration.colname parameter.
• event.daily.dose.colname the name of the column in data containing the prescribed daily dose, as given by the event.daily.dose.colname parameter.
• medication.class.colname the name of the column in data containing the classes/types/groups of medication, as given by the medication.class.colname parameter.
• carry.only.for.same.medication whether the carry-over applies only across medication of the same type, as given by the carry.only.for.same.medication parameter.
• consider.dosage.change whether the carry-over is adjusted to reflect changes in dosage, as given by the consider.dosage.change parameter.
• followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.
• followup.window.start.unit the time unit of the followup.window.start, as given by the followup.window.start.unit parameter.
• followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.
• followup.window.duration.unit the time unit of the followup.window.duration, as given by the followup.window.duration.unit parameter.
• observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
• observation.window.start.unit the time unit of the observation.window.start, as given by the observation.window.start.unit parameter.
• observation.window.duration the duration of the observation window, as given by the observation.window.duration parameter.
• observation.window.duration.unit the time unit of the observation.window.duration, as given by the observation.window.duration.unit parameter.
• date.format the format of the dates, as given by the date.format parameter.
• summary the metadata, as given by the summary parameter.
• event.info the data.frame containing the event info (irrelevant for most users; see compute.event.int.gaps for details).
• computed.CMA the class name of the computed CMA.
• CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column) and treatment episode, with columns:
 – ID.colname the patient ID as given by the ID.colname parameter.
 – episode.ID the unique treatment episode ID (within patients).
 – episode.start the treatment episode’s start date (as a Date object).
 – end.episode.gap.days the corresponding gap days of the last event in this episode.
 – episode.duration the treatment episode’s duration in days.
 – episode.end the treatment episode’s end date (as a Date object).
 – CMA the treatment episode’s estimated CMA.

See Also

CMA_sliding_window is very similar, computing a "simple" CMA for each of a set of same-size sliding windows. The "simple" CMAs that can be computed comprise CMA1, CMA2, CMA3, CMA4, CMA5, CMA6, CMA7, CMA8, CMA9, as well as user-defined classes derived from CMA0 that have a CMA component giving the estimated CMA per patient as a data.frame.

Examples

```r
## Not run:
cmaE <- CMA_per_episode(CMA="CMA1",
data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=0,
observation.window.start=0,
observation.window.duration=365,
date.format="%m/%d/%Y"
);

## End(Not run)
```
CMA_polypharmacy

Description

Constructs a CMA (continuous multiple-interval measures of medication availability/gaps) object for polypharmacy.

Usage

CMA_polypharmacy(
 data = data,
 medication.groups = medication.class.colname,
 CMA.to.apply = NA,
 aggregate.first = TRUE,
 aggregation.method = NA,
 aggregation.method.arguments = NA,
 thresholds = NA,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 event.daily.dose.colname = NA,
 medication.class.colname = NA,
 carry.only.for.same.medication = NA,
 consider.dosage.change = NA,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 summary = "CMA for polypharmacy",
 force.NA.CMA.for.failed.patients = TRUE,
 parallel.backend = c("none", " multicore", " snow", " snow(SOCK)", " snow(MPI)",
 " snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
 ...
)

Arguments

data A data.frame containing the events (prescribing or dispensing) used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event
date and duration, medication type, and might also contain the daily dosage (the actual column names are defined in the following four parameters).

medication.groups
A string with the name of the column containing the medication groups, or a *list of vectors* with medication class names (from medication.class.colname) belonging to the same treatment group. As multiple medication classes should belong to the same treatment group, these can be differentiated here (important to investigate treatment switches).

CMA.to.apply
A string giving the name of the CMA function (1 to 9) that will be computed for each treatment group.

aggregate.first
Logical, if TRUE, aggregate across treatment groups before summarizing over time during OW.

aggregation.method
A string giving the name of the function to aggregate CMA values of medication group, or NA to return only raw CMA estimates per medication group. Accepts summary functions such as "mean", "sd", "var", "min", "max", and "median". Custom functions are possible as long as they take a numeric vector as input and return a single numeric value.

aggregation.method.arguments
optional, A named list of additional arguments to the function given in aggregation.method, e.g. na.rm = TRUE.

thresholds
optional, a number to apply as threshold between aggregation and summarizing.

ID.colname
A string, the name of the column in data containing the medication type. Defaults to medication.class.colname.

event.date.colname
A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.

event.duration.colname
A string, the name of the column in data containing the event duration (in days); must be present.

event.daily.dose.colname
A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname
A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication
Logical, if TRUE, the carry-over applies only across medication of the same type; valid only for CMAs 5 to 9, in which case it is coupled (i.e., the same value is used for computing the treatment episodes and the CMA on each treatment episode).

consider.dosage.change
Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage; valid only for CMAs 5 to 9, in which case it is coupled (i.e., the same value is used for computing the treatment episodes and the CMA on each treatment episode).
followup_window_start

If a `Date` object, it represents the actual start date of the follow-up window; if a `string` it is the name of the column in data containing the start date of the follow-up window either as the numbers of `followup_window.start.unit` units after the first event (the column must be of type `numeric`) or as actual dates (in which case the column must be of type `Date`); if a `number` it is the number of time units defined in the `followup_window.start.unit` parameter after the begin of the participant's first event; or NA if not defined.

followup_window.start.unit

can be either "days", "weeks", "months" or "years", and represents the time units that `followup_window.start` refers to (when a number), or NA if not defined.

followup_window.duration

either a `number` representing the duration of the follow-up window in the time units given in `followup_window.duration.unit`, or a `string` giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup_window.duration.unit

can be either "days", "weeks", "months" or "years", and represents the time units that `followup_window.duration` refers to, or NA if not defined.

observation_window.start, observation_window.start.unit, observation_window.duration, observation_window.duration.unit

the definition of the observation window (see the follow-up window parameters above for details). Can be defined separately for each patient and treatment group.

date.format

A `string` giving the format of the dates used in the data and the other parameters; see the `format` parameters of the `as.Date` function for details (NB, this concerns only the dates given as strings and not as `Date` objects).

summary

Metadata as a `string`, briefly describing this CMA.

force.NA.CMA.for.failed.patients

`Logical` describing how the patients for which the CMA estimation fails are treated: if `TRUE` they are returned with an NA CMA estimate, while for `FALSE` they are omitted.

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using `mclapply` in package `parallel`) for multicore processing (NB. not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package `snow` for details; the last two require packages `Rmpi` and `nws`, respectively, not automatically installed with `AdhereR`).

parallel.threads

Can be "auto" (for `parallel.backend == "multicore"`). defaults to the number of cores in the system as given by `options("cores")`, while for `parallel.backend == "snow"`, defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes.
for parallel.backend == "snow" (see the documentation of package snow for
details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

...
other possible parameters

Value

An S3 object of class CMA_polypharmacy with the following fields:

- data The actual event data, as given by the data parameter.
- ID.colname the name of the column in data containing the unique patient ID, as given by the
 ID.colname parameter.
- event.date.colname the name of the column in data containing the start date of the event
 (in the format given in the date.format parameter), as given by the event.date.colname parameter.
- event.duration.colname the name of the column in data containing the event duration (in
days), as given by the event.duration.colname parameter.
- event.daily.dose.colname the name of the column in data containing the prescribed daily
dose, as given by the event.daily.dose.colname parameter.
- medication.class.colname the name of the column in data containing the classes/types/groups
 of medication, as given by the medication.class.colname parameter.
- carry.only.for.same.medication whether the carry-over applies only across medication
 of the same type, as given by the carry.only.for.same.medication parameter.
- consider.dosage.change whether the carry-over is adjusted to reflect changes in dosage, as
given by the consider.dosage.change parameter.
- followup.window.start the beginning of the follow-up window, as given by the followup.window.start parameter.
- followup.window.start.unit the time unit of the followup.window.start, as given by the
 followup.window.start.unit parameter.
- followup.window.duration the duration of the follow-up window, as given by the followup.window.duration parameter.
- followup.window.duration.unit the time unit of the followup.window.duration, as given
 by the followup.window.duration.unit parameter.
- observation.window.start the beginning of the observation window, as given by the observation.window.start parameter.
- observation.window.start.unit the time unit of the observation.window.start, as given
 by the observation.window.start.unit parameter.
- observation.window.duration the duration of the observation window, as given by the
 observation.window.duration parameter.
- observation.window.duration.unit the time unit of the observation.window.duration, as given by the
 observation.window.duration.unit parameter.
- date.format the format of the dates, as given by the date.format parameter.
• summary the metadata, as given by the summary parameter.
• event.info the data.frame containing the event info (irrelevant for most users; see `compute.event.int.gaps` for details).
• aggregation.method the aggregation method to combine CMA values from different groups.
• computed.CMA the class name of the computed CMA.
• medication.groups a data.frame with medication groups and classes
• CMA the data.frame containing the actual CMA estimates for each participant (the ID.colname column) and sometimes treatment group, with columns:
 – ID.colname the patient ID as given by the ID.colname parameter.
 – medication.groups only when no aggregation method is used (aggregation.method = NA); the treatment group as given by the medication.groups parameter.
 – CMA the treatment episode’s estimated CMA.

Examples

```r
## Not run:
CMA_PP <- CMA_polypharmacy(data = med.events.pp,
  medication.groups = med.groups,
  CMA.to.apply = "CMA7",
  aggregate.first = TRUE, # aggregate before summarizing
  aggregation.method = "mean", # compute mean of CMA
  aggregation.method.arguments = list(na.rm = TRUE), # remove NA's during calculation
  thresholds = NA, # don't apply threshold
  ID.colname="PATIENT_ID",
  event.date.colname="DATE",
  event.duration.colname="DURATION",
  event.daily.dose.colname="PERDAY",
  medication.class.colname="CATEGORY",
  followup.window.start=0,
  observation.window.start=180,
  observation.window.duration=365,
  carry.only.for.same.medication = TRUE);
## End(Not run)
```

CMA_sliding_window CMA_sliding_window constructor.

Description

Applies a given CMA to each sliding window and constructs a CMA_sliding_window object.

Usage

```r
CMA_sliding_window(
  CMA.to.apply,
  data,
```
ID.colname = NA,
event.date.colname = NA,
event.duration.colname = NA,
event.daily.dose.colname = NA,
medication.class.colname = NA,
carry.only.for.same.medication = NA,
consider.dosage.change = NA,
followup.window.start = 0,
followup.window.start.unit = c("days", "weeks", "months", "years")[1],
followup.window.duration = 365 * 2,
followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
observation.window.start = 0,
observation.window.start.unit = c("days", "weeks", "months", "years")[1],
observation.window.duration = 365 * 2,
observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
sliding.window.start = 0,
sliding.window.duration = 90,
sliding.window.duration.unit = c("days", "weeks", "months", "years")[1],
sliding.window.step.duration = 30,
sliding.window.step.unit = c("days", "weeks", "months", "years")[1],
sliding.window.no.steps = NA,
date.format = "%m/%d/%Y",
summary = "CMA per sliding window",
event.interval.colname = "event.interval",
gap.days.colname = "gap.days",
force.NA.CMA.for.failed.patients = TRUE,
parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)", "snow(NWS)")[1],
parallel.threads = "auto",
suppress.warnings = FALSE,
...
)

Arguments

CMA.to.apply A string giving the name of the CMA function (1 to 9) that will be computed for each treatment episode.
data A data.frame containing the events used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters).

ID.colname A string, the name of the column in data containing the unique patient ID; must be present.
event.date.colname A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter); must be present.
event.duration.colname
 A string, the name of the column in data containing the event duration (in days); must be present.

event.daily.dose.colname
 A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname
 A string, the name of the column in data containing the medication type, or NA if not defined.

carry.only.for.same.medication
 Logical, if TRUE, the carry-over applies only across medication of the same type.

consider.dosage.change
 Logical, if TRUE, the carry-over is adjusted to also reflect changes in dosage.

followup.window.start
 If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event; or NA if not defined.

followup.window.start.unit
 can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration
 either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).

followup.window.duration.unit
 can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit
 the definition of the observation window (see the follow-up window parameters above for details).

sliding.window.start, sliding.window.start.unit, sliding.window.duration, sliding.window.duration.unit
 the definition of the first sliding window (see the follow-up window parameters above for details).

sliding.window.step.duration, sliding.window.step.unit
 if not missing (NA), these give the step (or "jump") to the right of the sliding window in time units.

sliding.window.no.steps
 a integer specifying the desired number of sliding windows to cover the observation window (if possible); trumps sliding.window.step.duration and sliding.window.step.unit.
date.format

A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

summary

Metadata as a string, briefly describing this CMA.

event.interval.colname

A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname

A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

force.NA.CMA.for.failed.patients

Logical describing how the patients for which the CMA estimation fails are treated: if TRUE they are returned with an NA CMA estimate, while for FALSE they are omitted.

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using mclapply in package parallel) for multicore processing (NB, not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package snow for details; the last two require packages Rmpi and nws, respectively, not automatically installed with AdhereR).

parallel.threads

Can be "auto" (for parallel.backend == "multicore", defaults to the number of cores in the system as given by options("cores"), while for parallel.backend == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for parallel.backend == "snow" (see the documentation of package snow for details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

... other possible parameters

Details

CMA_sliding_window first computes a set of fixed-size (possibly partly overlapping) sliding windows, each sliding to the right by a fixed timelag, and then, for each of them, it computes the given "simple" CMA. Thus, as opposed to the "simple" CMAs 1 to 9, it returns a set of CMAs, with possibly more than one element.

It is highly similar to CMA_per_episode which computes a CMA for a set of treatment episodes.
Value

An S3 object of class CMA_sliding_window with the following fields:

- `data` The actual event data, as given by the `data` parameter.
- `ID.colname` the name of the column in `data` containing the unique patient ID, as given by the `ID.colname` parameter.
- `event.date.colname` the name of the column in `data` containing the start date of the event (in the format given in the `date.format` parameter), as given by the `event.date.colname` parameter.
- `event.duration.colname` the name of the column in `data` containing the event duration (in days), as given by the `event.duration.colname` parameter.
- `event.daily.dose.colname` the name of the column in `data` containing the prescribed daily dose, as given by the `event.daily.dose.colname` parameter.
- `medication.class.colname` the name of the column in `data` containing the classes/types/groups of medication, as given by the `medication.class.colname` parameter.
- `carry.only.for.same.medication` whether the carry-over applies only across medication of the same type, as given by the `carry.only.for.same.medication` parameter.
- `consider.dosage.change` whether the carry-over is adjusted to reflect changes in dosage, as given by the `consider.dosage.change` parameter.
- `followup.window.start` the beginning of the follow-up window, as given by the `followup.window.start` parameter.
- `followup.window.start.unit` the time unit of the `followup.window.start`, as given by the `followup.window.start.unit` parameter.
- `followup.window.duration` the duration of the follow-up window, as given by the `followup.window.duration` parameter.
- `followup.window.duration.unit` the time unit of the `followup.window.duration`, as given by the `followup.window.duration.unit` parameter.
- `observation.window.start` the beginning of the observation window, as given by the `observation.window.start` parameter.
- `observation.window.start.unit` the time unit of the `observation.window.start`, as given by the `observation.window.start.unit` parameter.
- `observation.window.duration` the duration of the observation window, as given by the `observation.window.duration` parameter.
- `observation.window.duration.unit` the time unit of the `observation.window.duration`, as given by the `observation.window.duration.unit` parameter.
- `date.format` the format of the dates, as given by the `date.format` parameter.
- `summary` the metadata, as given by the `summary` parameter.
- `event.info` the `data.frame` containing the event info (irrelevant for most users; see `compute.event.int.gaps` for details).
- `computed.CMA` the class name of the computed CMA.
- `CMA` the `data.frame` containing the actual CMA estimates for each participant (the `ID.colname` column) and sliding window, with columns:
compute.event.int.gaps

- ID.colname the patient ID as given by the ID.colname parameter.
- window.ID the unique window ID (within patients).
- window.start the window’s start date (as a Date object).
- window.end the window’s end date (as a Date object).
- CMA the window’s estimated CMA.

See Also

CMA_per_episode is very similar, computing a "simple" CMA for each of the treatment episodes. The "simple" CMAs that can be computed comprise CMA1, CMA2, CMA3, CMA4, CMA5, CMA6, CMA7, CMA8, CMA9, as well as user-defined classes derived from CMA0 that have a CMA component giving the estimated CMA per patient as a data.frame.

Examples

```r
## Not run:
cmaW <- CMA_sliding_window(CMA="CMA1",
data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=0,
observation.window.start=0,
observation.window.duration=365,
sliding.window.start=0,
sliding.window.start.unit="days",
sliding.window.duration=90,
sliding.window.duration.unit="days",
sliding.window.step.duration=7,
sliding.window.step.unit="days",
sliding.window.no.steps=NA,
date.format="%m/%d/%Y"
);
## End(Not run)
```

compute.event.int.gaps

Gap Days and Event (prescribing or dispensing) Intervals.

Description

For a given event (prescribing or dispensing) database, compute the gap days and event intervals in various scenarios.
compute.event.int.gaps(data,
 ID.colname = NA,
 event.date.colname = NA,
 event.duration.colname = NA,
 event.daily.dose.colname = NA,
 medication.class.colname = NA,
 event.interval.colname = "event.interval",
 gap.days.colname = "gap.days",
 carryover.within.obs.window = FALSE,
 carryover.into.obs.window = FALSE,
 carry.only.for.same.medication = FALSE,
 consider.dosage.change = FALSE,
 followup.window.start = 0,
 followup.window.start.unit = c("days", "weeks", "months", "years")[1],
 followup.window.duration = 365 * 2,
 followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
 observation.window.start = 0,
 observation.window.start.unit = c("days", "weeks", "months", "years")[1],
 observation.window.duration = 365 * 2,
 observation.window.duration.unit = c("days", "weeks", "months", "years")[1],
 date.format = "%m/%d/%Y",
 keep.window.start.end.dates = FALSE,
 remove.events.outside.followup.window = TRUE,
 keep.event.interval.for.all.events = FALSE,
 parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)",
 "snow(NWS)")[1],
 parallel.threads = "auto",
 suppress.warnings = FALSE,
 return.data.table = FALSE,
 ...)

Arguments

data A data.frame containing the events used to compute the CMA. Must contain,
at a minimum, the patient unique ID, the event date and duration, and might also
contain the daily dosage and medication type (the actual column names are de-
defined in the following four parameters); the CMA constructors call this parameter
data.

ID.colname A string, the name of the column in data containing the unique patient ID; must
be present.

event.date.colname A string, the name of the column in data containing the start date of the event
in the format given in the date.format parameter; must be present.

event.duration.colname A string, the name of the column in data containing the event duration (in days);
must be present.

event.daily.dose.colname

A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname

A string, the name of the column in data containing the classes/types/groups of medication, or NA if not defined.

event.interval.colname

A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname

A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

carryover.within.obs.window

Logical, if TRUE consider the carry-over within the observation window, or NA if not defined.

carryover.into.obs.window

Logical, if TRUE consider the carry-over from before the starting date of the observation window, or NA if not defined.

carry.only.for.same.medication

Logical, if TRUE the carry-over applies only across medication of the same type, or NA if not defined.

consider.dosage.change

Logical, if TRUE the carry-over is adjusted to reflect changes in dosage, or NA if not defined.

followup.window.start

If a Date object, it represents the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window either as the numbers of followup.window.start.unit units after the first event (the column must be of type numeric) or as actual dates (in which case the column must be of type Date); if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant’s first event.

followup.window.start.unit

can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration

either a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or a string giving the column containing these numbers. Should represent a period for which relevant medication events are recorded accurately (e.g. not extend after end of relevant treatment, loss-to-follow-up or change to a health care provider not covered by the database).
followup.window.duration.unit
can be either "days", "weeks", "months" or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

observation.window.start, observation.window.start.unit, observation.window.duration, observation.window.duration.unit
define the definition of the observation window (see the follow-up window parameters above for details).

date.format
A string giving the format of the dates used in the data and the other parameters; see the format parameters of the \texttt{as.Date} function for details (NB, this concerns only the dates given as strings and not as \texttt{Date} objects).

keep.window.start.end.dates
\texttt{Logical}, should the computed start and end dates of the windows be kept?

remove.events.outside.followup.window
\texttt{Logical}, should the events that fall outside the follow-up window be removed from the results?

keep.event.interval.for.all.events
\texttt{Logical}, should the computed event intervals be kept for all events, or NA'ed for those outside the OW?

parallel.backend
Can be "none" (the default) for single-threaded execution, "multicore" (using \texttt{mclapply} in package \texttt{parallel}) for multicore processing (NB, not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package \texttt{snow} for details; the last two require packages \texttt{Rmpi} and \texttt{nws}, respectively, not automatically installed with \texttt{AdhereR}).

parallel.threads
Can be "auto" (for \texttt{parallel.backend} == "multicore", defaults to the number of cores in the system as given by \texttt{options("cores")}, while for \texttt{parallel.backend} == "snow", defaults to 2), a strictly positive integer specifying the number of parallel threads, or a more complex specification of the SNOW cluster nodes for \texttt{parallel.backend} == "snow" (see the documentation of package \texttt{snow} for details).

suppress.warnings
\texttt{Logical}, if \texttt{TRUE} don't show any warnings.

return.data.table
\texttt{Logical}, if \texttt{TRUE} return a \texttt{data.table} object, otherwise a \texttt{data.frame}.

... extra arguments.

\textbf{Details}
This should in general not be called directly by the user, but is provided as a basis for the extension to new CMAs.

\textbf{Value}
A \texttt{data.frame} or \texttt{data.table} extending the event.info parameter with:
compute.treatment.episodes

- event.interval Or any other name given in event.interval.colname, containing the number of days between the start of the current event and the start of the next one.
- gap.days Or any other name given in gap.days.colname, containing the number of days when medication was not available for the current event (i.e., the "gap days").
- .FU.START.DATE,.FU.END.DATE if kept, the actual start and end dates of the follow-up window (after adjustments due to the various parameters).
- .OBS.START.DATE,.OBS.END.DATE if kept, the actual start and end dates of the observation window (after adjustments due to the various parameters).
- .EVENT.STARTS.BEFORE.OBS.WINDOW if kept, TRUE if the current event starts before the start of the observation window.
- .TDIFF1,.TDIFF2 if kept, various auxiliary time differences (in days).
- .EVENT.STARTS.AFTER.OBS.WINDOW if kept, TRUE if the current event starts after the end of the observation window.
- .CARRY.OVER.FROM.BEFORE if kept, the carry-over (if any) from the previous events.
- .EVENT.WITHIN.FU.WINDOW if kept, TRUE if the current event is within the follow-up window.

compute.treatment.episodes

Compute Treatment Episodes.

Description

For a given event (prescribing or dispensing) database, compute the treatment episodes for each patient in various scencarios.

Usage

```r
compute.treatment.episodes(
  data,
  ID.colname = NA,
  event.date.colname = NA,
  event.duration.colname = NA,
  event.daily.dose.colname = NA,
  medication.class.colname = NA,
  carryover.within.obs.window = TRUE,
  carry.only.for.same.medication = TRUE,
  consider.dosage.change = TRUE,
  medication.change.means.new.treatment.episode = TRUE,
  dosage.change.means.new.treatment.episode = FALSE,
  maximum.permissible.gap = 90,
  maximum.permissible.gap.unit = c("days", "weeks", "months", "years", "percent")[1],
  followup.window.start = 0,
  followup.window.start.unit = c("days", "weeks", "months", "years")[1],
  followup.window.duration = 365 * 2,
)```


followup.window.duration.unit = c("days", "weeks", "months", "years")[1],
event.interval.colname = "event.interval",
gap.days.colname = "gap.days",
date.format = "%m/%d/%Y",
parallel.backend = c("none", "multicore", "snow", "snow(SOCK)", "snow(MPI)", "snow(NWS)")[1],
parallel.threads = "auto",
suppress.warnings = FALSE,
return.data.table = FALSE,
}

Arguments

data A data.frame containing the events used to compute the CMA. Must contain, at a minimum, the patient unique ID, the event date and duration, and might also contain the daily dosage and medication type (the actual column names are defined in the following four parameters); the CMA constructors call this parameter data.

ID.colname A string, the name of the column in data containing the unique patient ID, or NA if not defined.

event.date.colname A string, the name of the column in data containing the start date of the event (in the format given in the date.format parameter), or NA if not defined.

event.duration.colname A string, the name of the column in data containing the event duration (in days), or NA if not defined.

event.daily.dose.colname A string, the name of the column in data containing the prescribed daily dose, or NA if not defined.

medication.class.colname A string, the name of the column in data containing the classes/types/groups of medication, or NA if not defined.

carryover.within.obs.window Logical, if TRUE consider the carry-over within the observation window, or NA if not defined.

carry.only.for.same.medication Logical, if TRUE the carry-over applies only across medication of the same type, or NA if not defined.

consider.dosage.change Logical, if TRUE the carry-over is adjusted to reflect changes in dosage, or NA if not defined.

medication.change.means.new.treatment.episode Logical, should a change in medication automatically start a new treatment episode?

dosage.change.means.new.treatment.episode Logical, should a change in dosage automatically start a new treatment episode?
maximum.permissible.gap

The number of units given by maximum.permissible.gap.unit representing the maximum duration of permissible gaps between treatment episodes (can also be a percent, see maximum.permissible.gap.unit for details).

maximum.permissible.gap.unit
can be either "days", "weeks", "months", or "years", and represents the time units that maximum.permissible.gap refers to; if percent, then maximum.permissible.gap is interpreted as a percent (can be greater than 100%) of the duration of the current prescription.

followup.window.start

If a Date object it is the actual start date of the follow-up window; if a string it is the name of the column in data containing the start date of the follow-up window; if a number it is the number of time units defined in the followup.window.start.unit parameter after the begin of the participant's first event; or NA if not defined.

followup.window.start.unit
can be either "days", "weeks", "months", or "years", and represents the time units that followup.window.start refers to (when a number), or NA if not defined.

followup.window.duration

a number representing the duration of the follow-up window in the time units given in followup.window.duration.unit, or NA if not defined.

followup.window.duration.unit
can be either "days", "weeks", "months", or "years", and represents the time units that followup.window.duration refers to, or NA if not defined.

event.interval.colname

A string, the name of a newly-created column storing the number of days between the start of the current event and the start of the next one; the default value "event.interval" should be changed only if there is a naming conflict with a pre-existing "event.interval" column in event.info.

gap.days.colname

A string, the name of a newly-created column storing the number of days when medication was not available (i.e., the "gap days"); the default value "gap.days" should be changed only if there is a naming conflict with a pre-existing "gap.days" column in event.info.

date.format

A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

parallel.backend

Can be "none" (the default) for single-threaded execution, "multicore" (using mclapply in package parallel) for multicore processing (NB. not currently implemented on MS Windows and automatically falls back on "snow" on this platform), or "snow", "snow(SOCK)" (equivalent to "snow"), "snow(MPI)" or "snow(NWS)" specifying various types of SNOW clusters (can be on the local machine or more complex setups – please see the documentation of package snow for details; the last two require packages Rmpi and nws, respectively, not automatically installed with AdhereR).

parallel.threads

Can be "auto" (for parallel.backend == "multicore"), defaults to the number of cores in the system as given by options("cores"), while for parallel.backend
compute.treatment.episodes

== "snow", defaults to 2), a strictly positive integer specifying the number of
class parallel threads, or a more complex specification of the SNOW cluster nodes
for parallel.backend == "snow" (see the documentation of package snow for
details).

suppress.warnings

Logical, if TRUE don’t show any warnings.

return.data.table

Logical, if TRUE return a data.table object, otherwise a data.frame.

... extra arguments.

Details

This should in general not be called directly by the user, but is provided as a basis for the extension
to new CMAs.

For the last treatment episode, the gap is considered only when longer than the maximum permissible
gap. Please note the following:

• episode starts at first medication event for a particular medication,
• episode ends on the day when the last supply of that medication finished or if a period longer
than the permissible gap preceded the next medication event, or at the end of the FUW,
• end episode gap days represents either the number of days after the end of the treatment
episode (if medication changed, or if a period longer than the permissible gap preceded the
next medication event) or at the end of (and within) the episode, i.e. the number of days after
the last supply finished (if no other medication event followed until the end of the FUW),
• the duration of the episode is the interval between the episode start and episode end (and may
include the gap days at the end, in the latter condition described above),
• the number of gap days after the end of the episode can be computed as all values larger than
the permissible gap and 0 otherwise,
• if medication change starts new episode, then previous episode ends when the last supply is
finished (irrespective of the length of gap compared to a maximum permissible gap); any days
before the date of the new medication supply are considered a gap; this maintains consistency
with gaps between episodes (whether they are constructed based on the maximum permissible
gap rule or the medication change rule).

Value

A data.frame or data.table with the following columns (or NULL if no treatment episodes could
be computed):

• patid the patient ID.
• episode.ID the episode unique ID (increasing sequentially).
• episode.start the episode start date.
• end.episode.gap.days the corresponding gap days of the last event in this episode.
• episode.duration the episode duration in days.
• episode.end the episode end date.
compute_event_durations

Computation of event durations.

Description

Computes event durations based on dispensing, prescription, and other data (e.g. hospitalization data) and returns a data.frame which can be used with the CMA constructors in AdhereR.

Usage

compute_event_durations(
  disp.data = NULL,
  presc.data = NULL,
  special.periods.data = NULL,
  ID.colname,
  medication.class.colnames,
  disp.date.colname,
  total.dose.colname,
  presc.date.colname,
  presc.daily.dose.colname,
  presc.duration.colname,
  visit.colname,
  split.on.dosage.change = TRUE,
  force.init.presc = FALSE,
  force.presc.renew = FALSE,
  trt.interruption = c("continue", "discard", "carryover")[1],
  special.periods.method = trt.interruption,
  carryover = FALSE,
  date.format = "%d.%m.%Y",
  suppress.warnings = FALSE,
  return.data.table = FALSE,
  progress.bar = TRUE,
  ...
)

Arguments

disp.data A data.frame or data.table containing the dispensing events. Must contain, at a minimum, the patient unique ID, one medication identifier, the dispensing date, and total dispensed dose, and might also contain additional columns to identify and group medications (the actual column names are defined in the medication.class.colnames parameter).

presc.data A data.frame containing the prescribing events. Must contain, at a minimum, the same unique patient ID and medication identifier(s) as the dispensing data, the prescription date, the daily prescribed dose, and the prescription duration. Optionally, it might also contain a visit number.
special.periods.data
Optional, NULL or a data.frame containing the information about special periods (e.g., hospitalizations or other situations where medication use may differ, e.g. during incarcerations or holidays). Must contain the same unique patient ID as dispensing and prescription data, the start and end dates of the special periods with the exact column names DATE.IN and DATE.OUT. Optional columns are TYPE (indicating the type of special situation), customized instructions how to handle a specific period (see special.periods.method), and any of those specified in medication.class.colnames.

ID.colname A string, the name of the column in disp.data, presc.data, and special.periods.data containing the unique patient ID.

medication.class.colnames A Vector of strings, the name(s) of the column(s) in disp.data and presc.data containing the classes/types/groups of medication.

disp.date.colname A string, the name of the column in disp.data containing the dispensing date (in the format given in the date.format parameter).

total.dose.colname A string, the name of the column in disp.data containing the total dispensed dose as numeric (e.g. 500 for 10 tablets of 50 mg).

presc.date.colname A string, the name of the column in presc.data containing the prescription date (in the format given in the date.format parameter).

presc.daily.dose.colname A string, the name of the column in presc.data containing the daily prescribed dose as numeric (e.g. 50 for 50 mg once per day, or 25 for 50 mg once every 2 days).

presc.duration.colname A string, the name of the column in presc.data containing the duration of the prescription as numeric or NA if duration is unknown.

visit.colname A string, the name of the column in presc.data containing the number of the visit or a new column name if the prescribing data does not contain such a column.

split.on.dosage.change Logical or string. If TRUE split the dispensing event on days with dosage change and create a new event with the new dosage for the remaining supply. If string, the name of the column containing the Logical in disp.data for each medication class separately. Important if carryover should be considered later on.

force.init.presc Logical. If TRUE advance the date of the first prescription event to the date of the first dispensing event, if the first prescription event is after the first dispensing event for a specific medication. Only if the first prescription event is not limited in duration (as indicated in the presc.duration.colname).

force.presc.renew Logical or string. If TRUE require a new prescription for all medications for every prescription event (visit), otherwise prescriptions end on the first visit without
renewal. If `string`, the name of the column in `disp.data` containing the Logical for each medication class separately.

**trt.interruption**

Can be either of "continue", "discard", "carryover", or a `string`. It indicates how to handle durations during treatment interruptions (see `special.periods.method`). If `string`, the name of the (character) column in `disp.data` containing the information ("continue", "discard", or "carryover") for each medication class separately.

**special.periods.method**

Can be either of `continue`, `discard`, `carryover`, or `custom`. It indicates how to handle durations during special periods. With `continue`, special periods have no effect on durations and event start dates. With `discard`, durations are truncated at the beginning of special periods and the remaining quantity is discarded. With `carryover`, durations are truncated at the beginning of a special period and a new event with the remaining duration is created after the end of the special period. With `custom`, the mapping has to be included in `special.periods.data`.

**carryover**

`Logical`, if `TRUE` apply carry-over to medications of the same type (according to `medication.class.colnames`). Can only be used together with CMA7 and above in combination with `carry.only.for.same.medication = TRUE`.

**date.format**

A `string` giving the format of the dates used in the data and the other parameters; see the `format` parameters of the `as.Date` function for details (NB, this concerns only the dates given as strings and not as `Date` objects).

**suppress.warnings**

`Logical`, if `TRUE` don’t show any warnings.

**return.data.table**

`Logical`, if `TRUE` return a `data.table` object, otherwise a `data.frame`.

**progress.bar**

`Logical`, if `TRUE` show a progress bar.

**...**

Other possible parameters.

**Details**

Computation of CMAs requires a supply duration for medications dispensed to patients. If medications are not supplied for fixed durations but as a quantity that may last for various durations based on the prescribed dose, the supply duration has to be calculated based on dispensed and prescribed doses. Treatments may be interrupted and resumed at later times, for which existing supplies may or may not be taken into account. Patients may be hospitalized or incarcerated, and may not use their own supplies during these periods. This function calculates supply durations, taking into account the aforementioned situations and providing various parameters for flexible adjustments.

**Value**

A list with the following elements:

- **event_durations**: A `data.table` or `data.frame` with the following columns:
  - `ID.colname` the unique patient ID, as given by the `ID.colname` parameter.
- medication.class.colnames the column(s) with classes/types/groups of medication, as given by the medication.class.colnames parameter.
- disp.date.colname the date of the dispensing event, as given by the disp.date.colname parameter.
- total.dose.colname the total dispensed dose, as given by the total.dose.colname parameter.
- presc.daily.dose.colname the prescribed daily dose, as given by the presc.daily.dose.colname parameter.
- DISP.START the start date of the dispensing event, either the same as in disp.date.colname or a later date in case of dosage changes or treatment interruptions/hospitalizations.
- DURATION the calculated duration of the supply, based on the total dispensed dose and the prescribed daily dose, starting from the DISP.START date.
- episode.start: the start date of the current prescription episode.
- episode.end: the end date of the current prescription episode. Can be before the start date of the dispensing event if dispensed during a treatment interruption.
- SPECIAL.DURATION the number of days during the current duration affected by special durations or treatment interruptions of type "continue".
- CARRYOVER.DURATION the number of days after the current duration affected by special durations or treatment interruptions of type "carryover".
- EVENT.ID: in case of multiple events with the same dispensing date (e.g. for dosage changes or interruptions); a unique ID starting at 1 for the first event
- tot.presc.interruptions the total number of prescription interruptions per patient for a specific medication.
- tot.dosage.changes the total number of dosage changes per patient for a specific medication.

- prescription_episodes: A data.table or data.frame with the following columns:
  - ID.colname the unique patient ID, as given by the ID.colname parameter.
  - medication.class.colnames: the column(s) with classes/types/groups of medication, as given by the medication.class.colnames parameter.
  - presc.daily.dose.colname: the prescribed daily dose, as given by the presc.daily.dose.colname parameter.
  - episode.start: the start date of the prescription episode.
  - episode.duration: the duration of the prescription episode in days.
  - episode.end: the end date of the prescription episode.

- special_periods: A data.table or data.frame, the special.periods.data with an additional column SPECIAL.DURATION: the number of days between DATE.IN and DATE.OUT

- ID.colname the name of the columns containing the unique patient ID, as given by the ID.colname parameter.

- medication.class.colnames the name(s) of the column(s) in disp.data and presc.data containing the classes/types/groups of medication, as given by the medication.class.colnames parameter.

- disp.date.colname the name of the column in disp.data containing the dispensing date, as given in the disp.date.colname parameter.
compute_event_durations

• total.dose.colname the name of the column in disp.data containing the total dispensed dose, as given by the total.dose.colname parameter.

• presc.date.colname the name of the column in presc.data containing the prescription date, as given in the presc.date.colname parameter.

• presc.daily.dose.colname the name of the column in presc.data containing the daily prescribed dose, as given by the presc.daily.dose.colname parameter.

• presc.duration.colname the name of the column in presc.data containing the duration of the prescription, as given by the presc.duration.colname parameter.

• visit.colname the name of the column containing the number of the visit, as given by the visit.colname parameter

• split.on.dosage.change whether to split the dispensing event on days with dosage changes and create a new event with the new dosage for the remaining supply, as given by the split.on.dosage.change parameter.

• force.init.presc whether the date of the first prescription event was set back to the date of the first dispensing event, when the first prescription event was after the first dispensing event for a specific medication, as given by the force.init.presc parameter.

• force.presc.renew whether a new prescription was required for all medications for every prescription event (visit), as given by the force.presc.renew parameter.

• trt.interruption how durations during treatment interruptions were handled, as given by the trt.interruption parameter.

• special.periods.method as given by the special.periods.method parameter.

• date.format the format of the dates, as given by the date.format parameter.

Examples

```r
Not run:
event_durations <- compute_event_durations(disp.data = durcomp.dispensing,
presc.data = durcomp.prescribing,
special.periods.data = durcomp.hospitalisation,
ID.colname = "ID",
presc.date.colname = "DATE.PRESC",
disp.date.colname = "DATE.DISP",
medication.class.colnames = c("ATC.CODE", "UNIT", "FORM"),
total.dose.colname = "TOTAL.DOSE",
presc.daily.dose.colname = "DAILY.DOSE",
presc.duration.colname = "PRESC.DURATION",
visit.colname = "VISIT",
split.on.dosage.change = TRUE,
force.init.presc = TRUE,
force.presc.renew = TRUE,
trt.interruption = "continue",
special.periods.method = "continue",
date.format = "%Y-%m-%d",
suppress.warnings = FALSE,
return.data.table = TRUE);
End(Not run)
```
cover_special_periods  

Cover special periods.

Description

Identifies special periods that are in proximity to already covered durations and adds additional events for these durations.

Usage

cover_special_periods(
  events.data, 
  special.periods.data, 
  ID.colname, 
  medication.class.colnames, 
  disp.start.colname, 
  duration.colname, 
  days.before, 
  days.after, 
  date.format, 
  suppress.warnings = FALSE, 
  return.data.table = FALSE, 
  ...
)

Arguments

events.data  A data.frame or data.table with the event durations.
special.periods.data  a data.frame or data.table containing the information about special periods (e.g., hospitalizations or other situations where medication use may differ, e.g. during incarcerations or holidays). Must contain the same unique patient ID as dispensing and prescription data, the start and end dates of the special periods with the exact column names DATE.IN and DATE.OUT.

ID.colname  A string, the name of the column in events.data and special.periods.data containing the unique patient ID.

medication.class.colnames  A Vector of strings, the name(s) of the column(s) in the events.data identify medication classes.

disp.start.colname  A string, the name of the column in events.data containing the event start date (in the format given in the date.format parameter).

duration.colname  A string, the name of the column in events.data containing the duration of the medication event.
days.before  an integer, the number of days before the start of a special period within which an event duration must end to consider the special period as covered.

days.after an integer, the number of days after a special period within which an event duration must start to consider the special period as covered.

date.format A string giving the format of the dates used in the data and the other parameters; see the `format` parameters of the `as.Date` function for details (NB, this concerns only the dates given as strings and not as `Date` objects).

suppress.warnings Logical, if `TRUE` don’t show any warnings.

return.data.table Logical, if `TRUE` return a `data.table` object, otherwise a `data.frame`.

Details

Special periods may appear as gaps, possibly leading to underestimation of implementation or even assumption of discontinuation and non-persistence. To consider such periods as covered, this function adds additional durations, for example when it is assumed that hospitalized patients are adherent during the hospitalization period. This function should be used after pruning with `prune_event_durations`.

Value

A `data.frame` or `data.table`, the `events.data` with the additional durations for special periods covered.

Examples

```r
Not run:
select medication class of interest and compute event durations
disp_data <- durcomp.dispensing[ID == 3 & grepl("J01EE01", ATC.CODE)]
presc_data <- durcomp.prescribing[ID == 3 & grepl("J01EE01", ATC.CODE)]

event_durations_list <- compute_event_durations(disp.data = disp_data,
 presc.data = presc_data,
 special.periods.data = durcomp.hospitalisation,
 special.periods.method = "carryover",
 ID.colname = "ID",
 presc.date.colname = "DATE.PRESC",
 disp.date.colname = "DATE.DISP",
 date.format = "%Y-%m-%d",
 medication.class.colnames = c("ATC.CODE",
 "UNIT",
 "FORM"),
 total.dose.colname = "TOTAL.DOSE",
 presc.daily.dose.colname = "DAILY.DOSE",
 presc.duration.colname = "PRESC.DURATION",
 visit.colname = "VISIT",
 force.init.presc = TRUE,
 force.presc.renew = TRUE,
 ...)```
durcomp.dispensing

Example dispensing events for 16 patients.

Description

A sample dataset containing dispensing events (one per row) for 16 patients over a period of roughly 24 months (1794 events in total). This is the appropriate format to compute event durations with the `compute_event_durations` function. Each row represents an individual dispensing record for a specific dose of a specific medication for a patient at a given date. More than one column to group medications can be supplied (such as ATC code, Form and Unit).

Usage

durcomp.dispensing

Format

A data frame with 1794 rows and 6 variables:

ID integer here; patient unique identifier. Can also be string.

DATE Date here: the dispensing event date, by default in the yyyy-mm-dd format. Can also be string.
ATC.CODE character; the medication type, according to the WHO ATC classification system. This can be a researcher-defined classification depending on study aims (e.g., based on therapeutic use, mechanism of action, chemical molecule, or pharmaceutical formulation). The `compute_event_durations` function will match prescribed medication to dispensed medications based on this variable.

UNIT integer; the unit of the dispensed dose. This is optional and can be used as a separate variable to match between prescription and dispensing events.

FORM character; the galenic form of the dispensed preparation. This is optional and can be used as a separate variable to match between prescription and dispensing events.

TOTAL.DOSE numeric; the total dispensed dose supplied at this medication event (e.g., 5000 for 10 tables of 500 mg).

durcomp.hospitalisation

Example special periods for 10 patients.

Description

A sample dataset containing special periods (one per row) for 10 patients over a period of roughly 18 months (28 events in total). This is the appropriate format to compute event durations with the `compute_event_durations` function. Each row represents an individual special period of type "hospitalization" of a patient for whom event durations should be calculated. Besides hospitalizations, this could cover other situations where medication use may differ, e.g. during incarcerations or holidays. All column names must match the format provided in this example.

Usage

durcomp.hospitalisation

Format

A data frame with 28 rows and 3 variables:

ID Integer here; patient unique identifier. Can also be `string`.

DATE.IN Date here; the start of the hospitalization period, by default in the yyyy-mm-dd format. Can also be `string`.

DATE.OUT Date: the end of the hospitalization period, by default in the yyyy-mm-dd format. Can also be `string`.
Example prescription events for 16 patients.

Description

A sample dataset containing prescription events (one per row) for 16 patients over a period of roughly 15 months (1502 events in total). This is the appropriate format to compute event durations with the compute_event_durations function. Each row represents an individual prescription record for a specific dose of a specific medication for a patient at a given date. Visit number and Duration are optional, and more than one column to group medications can be supplied (such as ATC Code, Form or Unit).

Usage
durcomp.prescribing

Format

A data table with 1502 rows and 8 variables:

- **ID** integer here; patient unique identifier. Can also be string.
- **DATE.PRESC** Date here; the prescription event date, by default in the yyyy-mm-dd format. Can also be string.
- **VISIT** integer; the consecutive number of the prescription instances. This column is optional and will be generated internally when not supplied. It is used to identify treatment interruptions.
- **ATC.CODE** character; the medication type, according to the WHO ATC classification system. This can be a researcher-defined classification depending on study aims (e.g., based on therapeutic use, mechanism of action, chemical molecule, or pharmaceutical formulation). The compute_event_durations function will match prescribed medication to dispensed medications based on this variable.
- **FORM** character; the galenic form of the prescribed preparation. This is optional and can be used as a separate variable to match between prescription and dispensing events.
- **UNIT** integer; the unit of the prescribed dose. This is optional and can be used as a separate variable to match between prescription and dispensing events.
- **PRESC.DURATION** numeric; the duration (in days) for which the prescription is intended. Can be NA if the prescription is continuous without a fixed end date.
- **DAILY.DOSE** numeric; the daily dose prescribed during this event (e.g., 50 for 1 tablet of 50 mg per day or 25 for 1 tablet of 50 mg every two days).
get.event.plotting.area

Get the actual plotting area.

Description

Returns the actual plotting area rectangle in plotting coordinates.

Usage

```r
get.event.plotting.area(
  plot.type = c("baseR", "SVG")[1],
  suppress.warnings = FALSE
)
```

Arguments

- **plot.type** Can be either "baseR" or "SVG" and specifies to which type of plotting the mapping applies.
- **suppress.warnings** Logical, if TRUE don’t show any warnings.

Details

This is intended for advanced users only.

Value

A numeric vector with components `x.min`, `x.max`, `y.min` and `y.max`, or NULL in case of error.

get.legend.plotting.area

Get the legend plotting area.

Description

Returns the legend plotting area rectangle in plotting coordinates (if any).

Usage

```r
get.legend.plotting.area(
  plot.type = c("baseR", "SVG")[1],
  suppress.warnings = FALSE
)
```
get.plotted.events

Arguments

plot.type Can be either "baseR" or "SVG" and specifies to which type of plotting the
 mapping applies.

suppress.warnings
 Logical, if TRUE don’t show any warnings.

Details

This is intended for advanced users only.

Value

A numeric vector with components \textit{x.min}, \textit{x.max}, \textit{y.min} and \textit{y.max}, or NULL in case of error or no
legend being shown.

Description

Returns a \texttt{data.frame} where each row contains info about one plotted event; the order of the rows
reflects the y-axis (first row on bottom).

Usage

get.plotted.events(plot.type = c("baseR", "SVG")[1], suppress.warnings = FALSE)

Arguments

plot.type Can be either "baseR" or "SVG" and specifies to which type of plotting the
 mapping applies.

suppress.warnings
 Logical, if TRUE don’t show any warnings.

Details

This is intended for advanced users only.

Value

A \texttt{data.frame} that, besides the info about each event, also contains info about:

- the corresponding follow-up and observation windows (and, for CMA8, the "real" observation window), given as the corners of the area \texttt{.X...START}, \texttt{.X...END}, \texttt{.Y...START} and \texttt{.Y...END}
 (where the mid dot stands for FUW, OW and ROW, respectively).
- the area occupied by the graphic representation of the event given by its four corners \texttt{.X.START},
 \texttt{.X.END}, \texttt{.Y.START} and \texttt{.Y.END}, as well as the line width \texttt{.EV.LWD}.
get.plotted.partial.cmas

- the dose text’s (if any) position (\texttt{.X.DOSE, Y.DOSE}) and font size \texttt{.FONT.SIZE.DOSE}.
- if event covered and not covered are plotted, also give their areas as \texttt{.X.EVC.START, .X.EVC.END, .Y.EVC.START, .Y.EVC.END, .X.EVNC.START, .Y.EVNC.END}.
- the continuation lines area as \texttt{.X.CNT.START, .X.CNT.END, .Y.CNT.START} and \texttt{.Y.CNT.END}.
- and the corresponding summary CMA (if any) given as the area \texttt{.X.SCMA.START, .X.SCMA.END, .Y.SCMA.START} and \texttt{.Y.SCMA.END}.

Please note that even if with follow-up and ("real") observation window, and the summary CMA info is repeated for each event, they really make sense at the level of the patient.

Examples

cma7 <- CMA7(data=med.events[med.events$PATIENT_ID %in% c(1,2),],
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 followup.window.start=0,
 followup.window.start.unit="days",
 followup.window.duration=2*365,
 followup.window.duration.unit="days",
 observation.window.start=30,
 observation.window.start.unit="days",
 observation.window.duration=365,
 observation.window.duration.unit="days",
 date.format="%m/%d/%Y",
 summary="Base CMA");

plot(cma7);
tmp <- get.plotted.events();
head(tmp);
 # "Mask" the first event:
 rect(tmp$.X.START[1], tmp$.Y.START[1]-0.5, tmp$.X.END[1], tmp$.Y.END[1]+0.5,
 col=adjustcolor("white",alpha.f=0.75), border="black");
 # "Mask" the first patient's summary CMA:
 rect(tmp$.X.SCMA.START[1], tmp$.Y.SCMA.START[1],
 tmp$.X.SCMA.END[1], tmp$.Y.SCMA.END[1],
 col=adjustcolor("white",alpha.f=0.75), border="black");

get.plotted.partial.cmas

\textit{Get info about the plotted partial CMAs.}

Description

Returns a \texttt{data.frame} where each row contains info about one plotted partial CMA (partial CMAs make sense only for "complex" CMAs, i.e., per episode and sliding windows).
Usage

get.plotted.partial.cmas(
 plot.type = c("baseR", "SVG")[1],
 suppress.warnings = FALSE
)

Arguments

plot.type Can be either "baseR" or "SVG" and specifies to which type of plotting the mapping applies.

suppress.warnings Logical, if TRUE don’t show any warnings.

Details

This is intended for advanced users only.

Value

A data.frame that contains info about:

- the patient ID (pid) to which the partial CMA belongs.
- the type of partial CMA (see the help for plotting "complex" CMAs).
- the corners of the whole area covered by the partial CMA plot given as x.region.start, y.region.start, x.region.end and y.region.end.
- for each element of the partial CMA plot, its area as x.partial.start, y.partial.start, x.partial.end and y.partial.end.

Please note that this contains one row per partial CMA element (e.g., if plotting stacked, one row for each rectangle).

Description

This function returns the full path to where the various wrappers that call AdhereR are installed.

Usage

getCallerWrapperLocation(callig.platform = c("python3")[1], full.path = FALSE)
getCMA

Arguments

 callig.platform
 A string specifying the desired wrapper. Currently it can be "python3".

 full.path
 A logical specifying if the returned path should also include the wrapper’s main
 file name.

Details

 In most cases, these wrappers are one or more files in the calling language that may be directly used
 as such. For more details see the vignette describing the included reference Python 3 wrapper.

Value

 The full path to the requested wrapper or NULL if none exists.

getcMA

Access the actual CMA estimate from a CMA object.

Description

 Retreive the actual CMA estimate(s) encapsulated in a simple, per episode, or sliding window CMA
 object.

Usage

 getCMA(x)

Arguments

 x
 a CMA object.

Value

 a data.frame containing the CMA estimate(s).

Examples

 cma1 <- CMA1(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 followup.window.start=30,
 observation.window.start=30,
 observation.window.duration=365,
 date.format="%m/%d/%Y"
);
 getCMA(cma1);
 ## Not run:
cmaE <- CMA_per_episode(CMA="CMA1",
data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=0,
observation.window.start=0,
observation.window.duration=365,
date.format="%m/%d/%Y"
);

getCMA(cmaE);
End(Not run)

last.plot.get.info
Access last adherence plot info.

Description

Returns the full info the last adherence plot, to be used to modify and/or to add new elements to this plot.

Usage

`last.plot.get.info()`

Details

This is intended for advanced users only. It may return `NULL` if no plotting was generated yet, but if one was, a list containing one named element for each type of plot produced (currently only `baseR` and `SVG` are used). For all types of plots there are a set of *mapping* functions useful for transforming events in plotting coordinates: `.map.event.x(x)` takes a number of days `x`, `.map.event.date(d, adjust.for.earliest.date=TRUE)` takes a `Date` `d` (and implicitly adjusts for the earilerst date plotted), and `.map.event.y(y)` takes a row ("event" number) `y`. Besides the shared elements (see the returned value), there are specific ones as well. For `baseR`, the members `old.par` and `used.par` contain the original (pre-plot) `par()` environment and the one used within `plot()`, respectively, in case these need restoring.

Value

A list (possibly empty) containing one named element for each type of plot produced (currently only `baseR` and `SVG`). Each may contain shared and specific fields concerning:

- the values of the parameters with which `plot()` was invoked.
- actual plot size and other characteristics.
• actual title, axis names and labels and their position and size.
• legend size, position and size and position of its components.
• expanded cmadata containing, for each event, info about its plotting, including the corresponding follow-up and observation windows, event start and end, dose text (if any) and other graphical elements.
• position, size of the partial CMAs (if any) and of their components.
• position, size of the plotted CMAs (if any) and of their components.
• rescaling function(s) useful for mapping events to plotting coordinates.

Examples

cma7 <- CMA7(data=med.events[med.events\$PATIENT_ID %in% c(1,2),],
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 followup.window.start=0,
 followup.window.start.unit="days",
 followup.window.duration=2*365,
 followup.window.duration.unit="days",
 observation.window.start=30,
 observation.window.start.unit="days",
 observation.window.duration=365,
 observation.window.duration.unit="days",
 date.format="%m/%d/%Y",
 summary="Base CMA");

plot(cma7);
tmp <- last.plot.get.info();
names(tmp);

tmp$baseR$legend$box; # legend position and size
head(tmp$baseR$cmadata); # events + plotting info
Add a transparent blue rect between days 270 and 900:
rect(tmp$baseR$.map.event.x(270), tmp$baseR$.map.event.y(1-0.5),
 tmp$baseR$.map.event.x(900), tmp$baseR$.map.event.y(nrow(tmp$baseR$cmadata)+0.5),
 col=adjustcolor("blue",alpha.f=0.5), border="blue");
Add a transparent rect rect between dates 03/15/2036 and 03/15/2037:
rect(tmp$baseR$.map.event.date(as.Date("03/15/2036", format="%m/%d/%Y")),
 tmp$baseR$.map.event.y(1-0.5),
 tmp$baseR$.map.event.date(as.Date("03/15/2037", format="%m/%d/%Y")),
 tmp$baseR$.map.event.y(nrow(tmp$baseR$cmadata)+0.5),
 col=adjustcolor("red",alpha.f=0.5), border="blue";

map.event.coords.to.plot

Map from event to plot coordinates.
Description

Maps the (x,y) coordinates in the event space to the plotting space.

Usage

map.event.coords.to.plot(
 x = NA,
 y = NA,
 x.is.Date = FALSE,
 x.date.format = "%m/%d/%Y",
 adjust.for.earliest.date = TRUE,
 plot.type = c("baseR", "SVG")[1],
 suppress.warnings = FALSE
)

Arguments

x The x coordinate in the event space, either a number giving the number of days since the earliest plotted date, or a Date or a string in the format given by the x.date.format parameter giving the actual calendar date.

y The y coordinate in the event space, thus a number giving the plot row.

x.is.Date A logical, being TRUE if x is a string giving the date in the x.date.format format.

x.date.format A string giving the format of the x date, if x.is.Date id TRUE.

adjust.for.earliest.date A logical which is TRUE if x is a calendar date that must be adjusted for the earliest plotted date (by default TRUE).

plot.type Can be either "baseR" or "SVG" and specifies to which type of plotting the mapping applies.

suppress.warnings Logical, if TRUE don’t show any warnings.

Details

This is intended for advanced users only. In the event space, the x coordinate can be either given as the number of days since the first plotted event, or as an actual calendar date (either as a Date object or a string with a given format; a date may or may not be corrected relative to the first displayed date). On the y coordinate, the plotting is divided in equally spaced rows, each row corresponding to a single event or an element of a partial CMA plot (one can specify in between rows using fractions). Any or both of x and y can be missing.

Value

A numeric vector with x and y components giving the plotting coordinates, or NULL in case of error.
Examples

cma7 <- CMA7(data=med.events[med.events$PATIENT_ID %in% c(1,2),],
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 followup.window.start=0,
 followup.window.start.unit="days",
 followup.window.duration=2*365,
 followup.window.duration.unit="days",
 observation.window.start=30,
 observation.window.start.unit="days",
 observation.window.duration=365,
 observation.window.duration.unit="days",
 date.format="%m/%d/%Y",
 summary="Base CMA");

plot(cma7);
Add a transparent blue rect:
rect(map.event.coords.to.plot(x=270),
 get.event.plotting.area()["y.min"]-1,
 map.event.coords.to.plot(x="03/15/2037", x.is.Date=TRUE, x.date.format="%m/%d/%Y"),
 get.event.plotting.area()["y.max"]+1,
 col=adjustcolor("blue",alpha.f=0.5), border="blue");

Description

An artificial dataset containing medication events (one per row) for 100 patients (1080 events in total). This is the dataset format appropriate for medication adherence analyses performed with the R package AdhereR. Medication events represent individual records of prescribing or dispensing a specific medication for a patient at a given date. Dosage and medication type is optional (only needed if calculation of adherence or persistence takes into account changes in dosage and type of medication).

Usage

med.events

Format

A data frame with 1080 rows and 5 variables:

PATIENT_ID integer here; patient unique identifier. Can also be string.

DATE character; the medication event date, by default in the mm/dd/yyyy format. It may represent a prescribing or dispensing date.
PERDAY integer: the daily dosage prescribed for the medication supplied at this medication event (i.e. how many doses should be taken daily according to the prescription). This column is optional, as it is not considered in all functions but may be relevant for specific research or clinical contexts. All values should be > 0.

CATEGORY character: the medication type, here two placeholder labels, 'medA' and 'medB'. This is a researcher-defined classification depending on study aims (e.g., based on therapeutic use, mechanism of action, chemical molecule, or pharmaceutical formulation). This column is optional, as it is not considered in all functions but may be relevant for specific research or clinical contexts.

DURATION integer: the medication event duration in days (i.e. how many days the medication supplied would last if used as prescribed); may be available in the extraction or computed based on quantity supplied (the number of doses prescribed or dispensed on that occasion) and daily dosage. All values should be > 0.

plot.CMA0

Plot CMA0 objects.

Description

Plots the events (prescribing or dispensing) data encapsulated in a basic CMA0 object.

Usage

```r
## S3 method for class 'CMA0'
plot(
  x, ...

  patients.to.plot = NULL,
  duration = NA,
  align.all.patients = FALSE,
  align.first.event.at.zero = TRUE,
  show.period = c("dates", "days")[2],
  period.in.days = 90,
  show.legend = TRUE,
  legend.x = "right",
  legend.y = "bottom",
  legend.bkg.opacity = 0.5,
  legend.cex = 0.75,
  legend.cex.title = 1,
  legend.medication.truncate = 15,
  legend.medication.truncate.side = c("left", "center", "right")[2],
  cex = 1,
  cex.axis = 0.75,
  cex.lab = 1,
  xlab = c(dates = "Date", days = "Days"),
  ylab = c(withoutCMA = "patient", withCMA = "patient (& CMA)")
)```
Arguments

- `x`: A CMA or derived object, representing the CMA to plot
- `...`: other possible parameters
patients.to.plot
A vector of strings containing the list of patient IDs to plot (a subset of those in the cma object), or NULL for all.

duration
A number, the total duration (in days) of the whole period to plot; in NA it is automatically determined from the event data such that the whole dataset fits.

align.all.patients
Logical, should all patients be aligned (i.e., the actual dates are discarded and all plots are relative to the earliest date)?

align.first.event.at.zero
Logical, should the first event be placed at the origin of the time axis (at 0)?

show.period
A string, if "dates" show the actual dates at the regular grid intervals, while for "days" (the default) shows the days since the beginning; if align.all.patients == TRUE, show.period is taken as "days".

period.in.days
The number of days at which the regular grid is drawn (or 0 for no grid).

show.legend
Logical, should the legend be drawn?

legend.x
The position of the legend on the x axis; can be "left", "right" (default), or a numeric value.

legend.y
The position of the legend on the y axis; can be "bottom" (default), "top", or a numeric value.

legend.bkg.opacity
A number between 0.0 and 1.0 specifying the opacity of the legend background.

legend.medication.truncate
A number specifying the maximum length (in character) of the medication class shown in the legend (or NA for no truncation).

legend.medication.truncate.side
A string specifying how the medication truncation is done (if legend.medication.truncate is not NA); can be "left", "right" or "center".

cex, cex.axis, cex.lab, legend.cex, legend.cex.title
numeric values specifying the cex of the various types of text.

xlab
Named vector of x-axis labels to show for the two types of periods ("days" and "dates"), or a single value for both, or NULL for nothing.

ylab
Named vector of y-axis labels to show without and with CMA estimates, or a single value for both, or NULL for nothing.

title
Named vector of titles to show for and without alignment, or a single value for both, or NULL for nothing.

col.cats
A color or a function that specifies the single colour or the colour palette used to plot the different medication; by default rainbow, but we recommend, whenever possible, a colorblind-friendly palette such as viridis or colorblind_pal.

unspecified.category.label
A string giving the name of the unspecified (generic) medication category.

medication.groups
Optionally, the groups of medications (by default, all are part of the same group).

lty.event, lwd.event, pch.start.event, pch.end.event
The style of the event (line style, width, and start and end symbols).
plot.events.vertically.displaced

Should consecutive events be plotted on separate rows (i.e., separated vertically, the default) or on the same row?

print.dose

*Logical*, should the daily dose be printed as text?

cex.dose

*Numeric*, if daily dose is printed, what text size to use?

print.dose.outline.col

If NA, don’t print dose text with outline, otherwise a color name/code for the outline.

print.dose.centered

*Logical*, print the daily dose centered on the segment or slightly below it?

plot.dose

*Logical*, should the daily dose be indicated through segment width?

lwd.event.max.dose

*Numeric*, the segment width corresponding to the maximum daily dose (must be >= lwd.event but not too big either).

plot.dose.lwd.across.medication.classes

*Logical*, if TRUE, the line width of the even is scaled relative to all medication classes (i.e., relative to the global minimum and maximum doses), otherwise it is scale relative only to its medication class.

col.continuation, lty.continuation, lwd.continuation

The style of the "continuation" lines connecting consecutive events (colour, line style and width).

col.na

The colour used for missing event data.

highlight.followup.window

*Logical*, should the follow-up window be plotted?

followup.window.col

The follow-up window’s colour.

highlight.observation.window

*Logical*, should the observation window be plotted?

observation.window.col, observation.window.density, observation.window.angle, observation.window.opacity

Attributes of the observation window (colour, shading density, angle and opacity).

alternating.bands.cols

The colors of the alternating vertical bands distinguishing the patients; can be NULL = don’t draw the bandes; or a vector of colors.

bw.plot

*Logical*, should the plot use grayscale only (i.e., the gray.colors function)?

Numeric, the minimum size of the plotting surface in characters; horizontally (min.plot.size.in.characters.horiz) refers to the the whole duration of the events to plot; vertically (min.plot.size.in.characters.vert) refers to a single event.

min.plot.size.in.characters.horiz, min.plot.size.in.characters.vert

*Numeric*, the minimum size of the plotting surface in characters; horizontally (min.plot.size.in.characters.horiz) refers to the the whole duration of the events to plot; vertically (min.plot.size.in.characters.vert) refers to a single event.

suppress.warnings

*Logical*: show or hide the warnings?
max.patients.to.plot

*Numeric*, the maximum patients to attempt to plot.

export.formats

What formats should the plot be exported to? It can be any subset of "svg" (an SVG file), "html" (a self-contained HTML document including an embedded SVG image, CSS and the needed JavaScript for some limited user interactions, plus an external placeholder JPEG image for those browsers not supporting SVGs), "jpg", "png", "webp", "ps" and "pdf". Default to NULL (i.e., no plot is exported).

export.formats.fileprefix

The file name prefix for the exported formats (defaults to "AdhereR-plot").

export.formats.height, export.formats.width

The desired dimensions of the exported figure (defaults to sane values).

export.formats.save.svg.placeholder

*Logical*: if TRUE (the default), save a JPG placeholder for the SVG image.

export.formats.directory

If exporting the plot, which directory to export to (if not given, uses a temporary directory).

generate.R.plot

*Logical*: should it generate a standard (base R) plot for plotting within R?

**Details**

The x-axis represents time (either in days since the earliest date or as actual dates), with consecutive events represented as ascending on the y-axis.

Each event is represented as a segment with style `lty.event` and line width `lwd.event` starting with a `pch.start.event` and ending with a `pch.end.event` character, coloured with a unique color as given by `col.cats`, extending from its start date until its end date. Consecutive events are thus represented on consecutive levels of the y-axis and are connected by a "continuation" line with `col.continuation` colour, `lty.continuation` style and `lwd.continuation` width; these continuation lines are purely visual guides helping to perceive the sequence of events, and carry no information about the availability of medication in this interval.

When several patients are displayed on the same plot, they are organized vertically, and alternating bands (white and gray) help distinguish consecutive patients. Implicitly, all patients contained in the cma object will be plotted, but the `patients.to.plot` parameter allows the selection of a subset of patients.

**Examples**

```r
CMA0 <- CMA0(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 event.daily.dose.colname="PERDAY",
 medication.class.colname="CATEGORY",
 followup.window.start=0,
 followup.window.start.unit="days",
 followup.window.duration=2*365,
 followup.window.duration.unit="days",
```
observation.window.start=30,
observation.window.start.unit="days",
observation.window.duration=365,
observation.window.duration.unit="days",
date.format="%m/%d/%Y",
summary="Base CMA";
plot(cma0, patients.to.plot=c("1","2"));

---

**plot.CMA1**

Plot CMA0-derived objects.

**Description**

Plots the event data and estimated CMA encapsulated in objects derived from CMA0.

**Usage**

```r
S3 method for class 'CMA1'
plot(
 x,
 ...,
 patients.to.plot = NULL,
 duration = NA,
 align.all.patients = FALSE,
 align.first.event.at.zero = TRUE,
 show.period = c("dates", "days")[2],
 period.in.days = 90,
 show.legend = TRUE,
 legend.x = "right",
 legend.y = "bottom",
 legend.bkg.opacity = 0.5,
 legend.cex = 0.75,
 legend.cex.title = 1,
 legend.medication.truncate = 15,
 legend.medication.truncate.side = c("left", "center", "right")[2],
 cex = 1,
 cex.axis = 0.75,
 cex.lab = 1,
 show.cma = TRUE,
 col.cats = rainbow,
 unspecified.category.label = "drug",
 lty.event = "solid",
 lwd.event = 2,
 pch.start.event = 15,
 pch.end.event = 16,
 show.event.intervals = TRUE,
 col.na = "lightgray",
```

---
print.CMA = TRUE,
CMA.cex = 0.5,
plot.CMA = TRUE,
CMA.plot.ratio = 0.1,
CMA.plot.col = "lightgreen",
CMA.plot.border = "darkgreen",
CMA.plot.bkg = "aquamarine",
CMA.plot.text = CMA.plot.border,
highlight.followup.window = TRUE,
followup.window.col = "green",
highlight.observation.window = TRUE,
observation.window.col = "yellow",
observation.window.density = 35,
observation.window.angle = -30,
observation.window.opacity = 0.3,
show.real.obs.window.start = TRUE,
real.obs.window.density = 35,
real.obs.window.angle = 30,
print.dose = FALSE,
cex.dose = 0.75,
print.dose.outline.col = "white",
print.dose.centered = FALSE,
plot.dose = FALSE,
lwd.event.max.dose = 8,
plot.dose.lwd.across.medication.classes = FALSE,
bw.plot = FALSE,
min.plot.size.in.characters.horiz = 10,
min.plot.size.in.characters.vert = 0.5,
max.patients.to.plot = 100,
export.formats = NULL,
export.formats.fileprefix = "AdhereR-plot",
export.formats.height = NA,
export.formats.width = NA,
export.formats.save.svg.placeholder = TRUE,
export.formats.directory = NA,
generate.R.plot = TRUE
)

## S3 method for class 'CMA2'

plot(...)

## S3 method for class 'CMA3'

plot(...)

## S3 method for class 'CMA4'

plot(...)

## S3 method for class 'CMA5'

plot(...)

plot.CMA1
plot.CMA1

plot(...)

## S3 method for class 'CMA6'
plot(...)

## S3 method for class 'CMA7'
plot(...)

## S3 method for class 'CMA8'
plot(...)

## S3 method for class 'CMA9'
plot(...)

Arguments

x
A CMA or derived object, representing the CMA to plot

... other possible parameters

patients.to.plot
A vector of strings containing the list of patient IDs to plot (a subset of those in the cma object), or NULL for all

duration
A number, the total duration (in days) of the whole period to plot; in NA it is automatically determined from the event data such that the whole dataset fits.

align.all.patients
Logical, should all patients be aligned (i.e., the actual dates are discarded and all plots are relative to the earliest date)?

align.first.event.at.zero
Logical, should the first event be placed at the origin of the time axis (at 0)?

show.period
A string, if "dates" show the actual dates at the regular grid intervals, while for "days" (the default) shows the days since the beginning; if align.all.patients == TRUE, show.period is taken as "days".

period.in.days
The number of days at which the regular grid is drawn (or 0 for no grid).

show.legend
Logical, should the legend be drawn?

legend.x
The position of the legend on the x axis; can be "left", "right" (default), or a numeric value.

legend.y
The position of the legend on the y axis; can be "bottom" (default), "top", or a numeric value.

legend.bkg.opacity
A number between 0.0 and 1.0 specifying the opacity of the legend background.

legend.medication.truncate
A number specifying the maximum length (in character) of the medication class shown in the legend (or NA for no truncation).

legend.medication.truncate.side
A string specifying how the medication truncation is done (if legend.medication.truncate is not NA); can be "left", "right" or "center".
cex, cex.axis, cex.lab, legend.cex, legend.cex.title, CMA.cex

numeric values specifying the cex of the various types of text.

show.cma Logical, should the CMA type be shown in the title?

col.cats A color or a function that specifies the single colour or the colour palette used to plot the different medication; by default rainbow, but we recommend, whenever possible, a colorblind-friendly palette such as viridis or colorblind_pal.

unspecified.category.label A string giving the name of the unspecified (generic) medication category.

lty.event, lwd.event, pch.start.event, pch.end.event The style of the event (line style, width, and start and end symbols).

show.event.intervals Logical, should the actual event intervals be shown?

col.na The colour used for missing event data.

print.CMA Logical, should the CMA values be printed?

plot.CMA Logical, should the CMA values be represented graphically?

CMA.plot.ratio A number, the proportion of the total horizontal plot space to be allocated to the CMA plot.

CMA.plot.col, CMA.plot.border, CMA.plot.bkg, CMA.plot.text Strings giving the colours of the various components of the CMA plot.

highlight.followup.window Logical, should the follow-up window be plotted?

followup.window.col The follow-up window’s colour.

highlight.observation.window Logical, should the observation window be plotted?

observation.window.col, observation.window.density, observation.window.angle, observation.window.opacity Attributes of the observation window (colour, shading density, angle and opacity).

show.real.obs.window.start, real.obs.window.density, real.obs.window.angle For some CMAs, the observation window might be adjusted, in which case should it be plotted and with that attributes?

print.dose Logical, should the daily dose be printed as text?

cex.dose Numeric, if daily dose is printed, what text size to use?

print.dose.outline.col If NA, don’t print dose text with outline, otherwise a color name/code for the outline.

print.dose.centered Logical, print the daily dose centered on the segment or slightly below it?

plot.dose Logical, should the daily dose be indicated through segment width?

lwd.event.max.dose Numeric, the segment width corresponding to the maximum daily dose (must be >= lwd.event but not too big either).
The `plot.CMA1` function plots objects inheriting from `CMA0` but not objects of type `CMA0` itself (these are plotted by `plot.CMA0`).

The x-axis represents time (either in days since the earliest date or as actual dates), with consecutive events represented as ascending on the y-axis.

Each event is represented as a segment with style `lty.event` and line width `lwd.event` starting with a `pch.start.event` and ending with a `pch.end.event` character, coloured with a unique color as given by `col.cats`, extending from its start date until its end date. Superimposed on these are shown the event intervals and gap days as estimated by the particular CMA method, more precisely plotting the start and end of the available events as solid filled-in rectangles, and the event gaps as shaded rectangles.

The follow-up and the observation windows are plotted as an empty rectangle and as shaded rectangle, respectively (for some CMAs the observation window might be adjusted in which case the adjustment may also be plotted using a different shading).
The CMA estimates can be visually represented as well in the left side of the figure using bars (sometimes the estimates can go above 100%, in which case the maximum possible bar filling is adjusted to reflect this).

When several patients are displayed on the same plot, they are organized vertically, and alternating bands (white and gray) help distinguish consecutive patients. Implicitly, all patients contained in the cma object will be plotted, but the patients.to.plot parameter allows the selection of a subset of patients.

Finally, the y-axis shows the patient ID and possibly the CMA estimate as well.

**Examples**

```r
CMA1 <- CMA1(data=med.events,
 ID.colname="PATIENT_ID",
 event.date.colname="DATE",
 event.duration.colname="DURATION",
 followup.window.start=30,
 observation.window.start=30,
 observation.window.duration=365,
 date.format="%m/%d/%Y"
);
plot(CMA1, patients.to.plot=c("1","2"));
```

---

**plot.CMA_per_episode**

Plot CMA_per_episode and CMA_sliding_window objects.

**Description**

Plots the event data and the estimated CMA per treatment episode and sliding window, respectively.

**Usage**

```r
S3 method for class 'CMA_per_episode'
plot(x,
 patients.to.plot = NULL,
 duration = NA,
 align.all.patients = FALSE,
 align.first.event.at.zero = TRUE,
 show.period = c("dates", "days")[2],
 period.in.days = 90,
 show.legend = TRUE,
 legend.x = "right",
 legend.y = "bottom",
 legend.bkg.opacity = 0.5,
 legend.cex = 0.75,
 legend.cex.title = 1,
 legend.medication.truncate = 15,
)```

legend.medication.truncate.side = c("left", "center", "right")[2],
cex = 1,
cex.axis = 0.75,
cex.lab = 1,
show.cma = TRUE,
xlab = c(dates = "Date", days = "Days"),
ylab = c(withoutCMA = "patient", withCMA = "patient (& CMA)")
title = c(aligned = "Event patterns (all patients aligned)", notaligned =
 "Event patterns"),
col.cats = rainbow,
unspecified.category.label = "drug",
lty.event = "solid",
lwd.event = 2,
pch.start.event = 15,
pch.end.event = 16,
plot.events.vertically.displaced = TRUE,
print.dose = FALSE,
cex.dose = 0.75,
print.dose.outline.col = "white",
print.dose.centered = FALSE,
plot.dose = FALSE,
lwd.event.max.dose = 8,
plot.dose.lwd.across.medication.classes = FALSE,
col.na = "lightgray",
col.continuation = "black",
lty.continuation = "dotted",
lwd.continuation = 1,
print.CMA = TRUE,
CMA.cex = 0.5,
plot.CMA = TRUE,
plot.CMA.as.histogram = TRUE,
plot.partial.CMAs.as = c("stacked", "overlapping", "timeseries")[1],
plot.partial.CMAs.as.stacked.col.bars = "gray90",
plot.partial.CMAs.as.stacked.col.border = "gray30",
plot.partial.CMAs.as.stacked.col.text = "black",
plot.partial.CMAs.as.timeseries.vspace = 7,
plot.partial.CMAs.as.timeseries.start.from.zero = TRUE,
plot.partial.CMAs.as.timeseries.col.dot = "darkblue",
plot.partial.CMAs.as.timeseries.col.interval = "gray70",
plot.partial.CMAs.as.timeseries.col.text = "firebrick",
plot.partial.CMAs.as.timeseries.interval.type = c("none", "segments", "arrows",
 "lines", "rectangles")[2],
plot.partial.CMAs.as.timeseries.lwd.interval = 1,
plot.partial.CMAs.as.timeseries.alpha.interval = 0.25,
plot.partial.CMAs.as.timeseries.show.0perc = TRUE,
plot.partial.CMAs.as.timeseries.show.100perc = FALSE,
plot.partial.CMAs.as.overlapping.alternate = TRUE,
plot.partial.CMAs.as.overlapping.col.interval = "gray70",
plot.CMA_per_episode

plot.partial.CMAs.as.overlapping.col.text = "firebrick",
CMA.plot.ratio = 0.1,
CMA.plot.col = "lightgreen",
CMA.plot.border = "darkgreen",
CMA.plot.bkg = "aquamarine",
CMA.plot.text = CMA.plot.border,
highlight.followup.window = TRUE,
followup.window.col = "green",
highlight.observation.window = TRUE,
observeration.window.col = "yellow",
observeration.window.opacity = 0.3,
alternating.bands.cols = c("white", "gray95"),
bw.plot = FALSE,
min.plot.size.in.characters.horiz = 10,
min.plot.size.in.characters.vert = 0.25,
max.patients.to.plot = 100,
suppress.warnings = FALSE,
export.formats = NULL,
export.formats.fileprefix = "AdhereR-plot",
export.formats.height = NA,
export.formats.width = NA,
export.formats.save.svg.placeholder = TRUE,
export.formats.directory = NA,
generate.R.plot = TRUE,
...

S3 method for class 'CMA_sliding_window'
plot(
 x,
 patients.to.plot = NULL,
 duration = NA,
 align.all.patients = FALSE,
 align.first.event.at.zero = TRUE,
 show.period = c("dates", "days")[2],
 period.in.days = 90,
 show.legend = TRUE,
 legend.x = "right",
 legend.y = "bottom",
 legend.bkg.opacity = 0.5,
 legend.cex = 0.75,
 legend.cex.title = 1,
 legend.medication.truncate = 15,
 legend.medication.truncate.side = c("left", "center", "right")[2],
 cex = 1,
 cex.axis = 0.75,
 cex.lab = 1,
 show.cma = TRUE,
```r
plot.CMA_per_episode

xlab = c(dates = "Date", days = "Days"),
ylab = c(withoutCMA = "patient", withCMA = "patient (& CMA)")
title = c(aligned = "Event patterns (all patients aligned)", notaligned = "Event patterns"),
col.cats = rainbow,
unspecified.category.label = "drug",
lty.event = "solid",
lwd.event = 2,
pch.start.event = 15,
pch.end.event = 16,
plot.events.vertically.displaced = TRUE,
print.dose = FALSE,
cex.dose = 0.75,
print.dose.outline.col = "white",
print.dose.centered = FALSE,
plot.dose = FALSE,
lwd.event.max.dose = 8,
plot.dose.lwd.across.medication.classes = FALSE,
col.na = "lightgray",
col.continuation = "black",
lty.continuation = "dotted",
lwd.continuation = 1,
print.CMA = TRUE,
CMA.cex = 0.5,
plot.CMA = TRUE,
plot.CMA.as.histogram = TRUE,
plot.partial.CMAs.as = c("stacked", "overlapping", "timeseries")[1],
plot.partial.CMAs.as.stacked.col.bars = "gray90",
plot.partial.CMAs.as.stacked.col.border = "gray30",
plot.partial.CMAs.as.stacked.col.text = "black",
plot.partial.CMAs.as.timeseries.vspace = 7,
plot.partial.CMAs.as.timeseries.start.from.zero = TRUE,
plot.partial.CMAs.as.timeseries.col.dot = "darkblue",
plot.partial.CMAs.as.timeseries.col.interval = "gray70",
plot.partial.CMAs.as.timeseries.col.text = "firebrick",
plot.partial.CMAs.as.timeseries.interval.type = c("none", "segments", "arrows",
   "lines", "rectangles")[2],
plot.partial.CMAs.as.timeseries.lwd.interval = 1,
plot.partial.CMAs.as.timeseries.alpha.interval = 0.25,
plot.partial.CMAs.as.timeseries.show.0perc = TRUE,
plot.partial.CMAs.as.timeseries.show.100perc = FALSE,
plot.partial.CMAs.as.overlapping.alternate = TRUE,
plot.partial.CMAs.as.overlapping.col.interval = "gray70",
plot.partial.CMAs.as.overlapping.col.text = "firebrick",
CMA.plot.ratio = 0.1,
CMA.plot.col = "lightgreen",
CMA.plot.border = "darkgreen",
CMA.plot.bkg = "aquamarine",
```

CMA.plot.text = CMA.plot.border,
highlight.followup.window = TRUE,
followup.window.col = "green",
highlight.observation.window = TRUE,
observation.window.col = "yellow",
observation.window.opacity = 0.3,
alternating.bands.cols = c("white", "gray95"),
bw.plot = FALSE,
min.plot.size.in.characters.horiz = 10,
min.plot.size.in.characters.vert = 0.25,
max.patients.to.plot = 100,
suppress.warnings = FALSE,
export.formats = NULL,
export.formats.fileprefix = "AdhereR-plot",
export.formats.height = NA,
export.formats.width = NA,
export.formats.save.svg.placeholder = TRUE,
export.formats.directory = NA,
generate.R.plot = TRUE,
...)

Arguments

x A CMA0 or derived object, representing the CMA to plot

patients.to.plot A vector of strings containing the list of patient IDs to plot (a subset of those in the cma object), or NULL for all

duration A number, the total duration (in days) of the whole period to plot; in NA it is automatically determined from the event data such that the whole dataset fits.

align.all.patients Logical, should all patients be aligned (i.e., the actual dates are discarded and all plots are relative to the earliest date)?

align.first.event.at.zero Logical, should the first event be placed at the origin of the time axis (at 0)?

show.period A string, if "dates" show the actual dates at the regular grid intervals, while for "days" (the default) shows the days since the beginning; if align.all.patients == TRUE, show.period is taken as "days".

period.in.days The number of days at which the regular grid is drawn (or 0 for no grid).

show.legend Logical, should the legend be drawn?

legend.x The position of the legend on the x axis; can be "left", "right" (default), or a numeric value.

legend.y The position of the legend on the y axis; can be "bottom" (default), "top", or a numeric value.

legend.bkg.opacity A number between 0.0 and 1.0 specifying the opacity of the legend background.
legend.cex, legend.cex.title
The legend and legend title font sizes.

legend.medication.truncate
A number specifying the maximum length (in character) of the medication class shown in the legend (or NA for no truncation).

legend.medication.truncate.side
A string specifying how the medication truncation is done (if legend.medication.truncate is not NA); can be "left", "right" or "center".

cex, cex.axis, cex.lab
numeric values specifying the cex of the various types of text.

show.cma
Logical, should the CMA type be shown in the title?

xlab
Named vector of x-axis labels to show for the two types of periods ("days" and "dates"), or a single value for both, or NULL for nothing.

ylab
Named vector of y-axis labels to show without and with CMA estimates, or a single value for both, or NULL for nothing.

title
Named vector of titles to show for and without alignment, or a single value for both, or NULL for nothing.

col.cats
A color or a function that specifies the single colour or the colour palette used to plot the different medication; by default rainbow, but we recommend, whenever possible, a colorblind-friendly palette such as viridis or colorblind_pal.

unspereded.category.label
A string giving the name of the unspecified (generic) medication category.

lty.event, lwd.event, pch.start.event, pch.end.event
The style of the event (line style, width, and start and end symbols).

plot.events.vertically.displaced
Should consecutive events be plotted on separate rows (i.e., separated vertically, the default) or on the same row?

print.dose, cex.dose, print.dose.outline.col, print.dose.centered
Print daily dose as a number and, if so, how (color, size, position...).

plot.dose, lwd.event.max.dose, plot.dose.lwd.across.medication.classes
Show dose through the width of the event lines and, if so, what the maximum width should be, and should this maximum be by medication class or overall.

col.na
The colour used for missing event data.

col.continuation, lty.continuation, lwd.continuation
The color, style and width of the continuation lines connecting consecutive events.

print.CMA
Logical, should the CMA values be printed?

CMA.cex
... and, if printed, what cex (numeric) to use?

plot.CMA
Logical, should the CMA values be represented graphically?

plot.CMA.as.histogram
Logical, should the CMA plot be a histogram or a (truncated) density plot? Please note that it is TRUE by default for CMA_per_episode and FALSE for CMA_sliding_window, because usually there are more sliding windows than episodes. Also, the density estimate cannot be estimated for less than three different values.
plot.CMA_per_episode

plot.partial.CMAs.as
 Plot the partial CMAs at all (NULL), and if so, how (can be "stacked", "overlapping" or "timeseries").

plot.partial.CMAs.as.stacked.col.bars, plot.partial.CMAs.as.stacked.col.border, plot.partial.CMAs.as.stacked.col.text
 If plotting the partial CMAs as stacked bars, define their graphical attributes.

plot.partial.CMAs.as.timeseries.vspace, plot.partial.CMAs.as.timeseries.start.from.zero, plot.partial.CMAs.as.timeseries.show.0perc, plot.partial.CMAs.as.timeseries.show.100perc
 If plotting the partial CMAs as imeseries, these are their graphical attributes.

plot.partial.CMAs.as.overlapping.alternate, plot.partial.CMAs.as.overlapping.col.interval, plot.partial.CMAs.as.overlapping.col.text
 If plotting the partial CMAs as overlapping segments, these are their graphical attributes.

CMA.plot.ratio
 A number, the proportion of the total horizontal plot space to be allocated to the CMA plot.

CMA.plot.col, CMA.plot.border, CMA.plot.bkg, CMA.plot.text
 Strings giving the colours of the various components of the CMA plot.

highlight.followup.window
 Logical, should the follow-up window be plotted?

followup.window.col
 The follow-up window colour.

highlight.observation.window
 Logical, should the observation window be plotted?

observation.window.col, observation.window.opacity
 Attributes of the observation window (colour, transparency).

alternating.bands.cols
 The colors of the alternating vertical bands distinguishing the patients; can be NULL = don’t draw the bands; or a vector of colors.

bw.plot
 Logical, should the plot use grayscale only (i.e., the gray.colors function)?

min.plot.size.in.characters.horiz, min.plot.size.in.characters.vert
 Numeric, the minimum size of the plotting surface in characters; horizontally (min.plot.size.in.characters.horiz) refers to the the whole duration of the events to plot; vertically (min.plot.size.in.characters.vert) refers to a single event.

max.patients.to.plot
 Numeric, the maximum patients to attempt to plot.

suppress.warnings
 Logical, if TRUE don’t show any warnings.

export.formats
 What formats should the plot be exported to? It can be any subset of "svg" (an SVG file), "html" (a self-contained HTML document including an embedded SVG image, CSS and the needed JavaScript for some limited user interactions, plus an external placeholder JPEG image for those browsers not supporting SVGs), "jpg", "png", "webp", "ps" and "pdf". Default to NULL (i.e., no plot is exported).

export.formats.fileprefix
 The file name prefix for the exported formats (defaults to "AdhereR-plot").

export.formats.height, export.formats.width
 The desired dimensions of the exported figure (defaults to sane values).
plot.CMA_per_episode

export.formats.save.svg.placeholder

Logical: if TRUE (the default), save a JPG placeholder for the SVG image.

export.formats.directory

If exporting the plot, which directory to export to (if not given, uses a temporary directory).

generate.R.plot

Logical: should it generate a standard (base R) plot for plotting within R?

... other parameters (to be passed to the estimation and plotting of the simple CMA)

Details

The x-axis represents time (either in days since the earliest date or as actual dates), with consecutive
events represented as ascending on the y-axis.

Each event is represented as a segment with style `lty.event` and line width `lwd.event` starting
with a `pch.start.event` and ending with a `pch.end.event` character, coloured with a unique
color as given by `col.cats`, extending from its start date until its end date. Consecutive events
are thus represented on consecutive levels of the y-axis and are connected by a "continuation" line
with `col.continuation` colour, `lty.continuation` style and `lwd.continuation` width; these
continuation lines are purely visual guides helping to perceive the sequence of events, and carry no
information about the availability of medicine in this interval.

Above these, the treatment episodes or the sliding windows are represented in a stacked manner
from the earlies (left, bottom of the stack) to the latest (right, top of the stack), each showing the
CMA as percent fill (capped at 100% even if CMA values may be higher) and also as text.

The follow-up and the observation windows are plotted as empty an rectangle and as shaded rect-
angle, respectively (for some CMAs the observation window might be adjusted in which case the
adjustment may also be plotted using a different shading).

The kernel density ("smoothed histogram") of the CMA estimates across treatment episodes/sliding
windows (if more than 2) can be visually represented as well in the left side of the figure (NB, their
horizontal scales may be different across patients).

When several patients are displayed on the same plot, they are organized vertically, and alternating
bands (white and gray) help distinguish consecutive patients. Implicitly, all patients contained in
the `cma` object will be plotted, but the `patients.to.plot` parameter allows the selection of a subset
of patients.

Finally, the y-axis shows the patient ID and possibly the CMA estimate as well.

Any not explicitly defined arguments are passed to the simple CMA estimation and plotting func-
tion; therefore, for more info about possible estimation parameters please see the help for the appro-
priate simple CMA, and for possible aesthetic tweaks, please see the help for their plotting.

See Also

See the simple CMA estimation `CMA1` to `CMA9` and plotting `plot.CMA1` functions for extra parame-
ters.

Examples

```r
## Not run:
cmaW <- CMA_sliding_window(CMA=CMA1,
```
plot_interactive_cma

Interactive exploration and CMA computation.

Description

Interactively plot a given patient’s data, allowing the real-time exploration of the various CMAs and their parameters. It can use Rstudio’s manipulate library or Shiny.

Usage

plot_interactive_cma(...)

data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=0,
observation.window.start=0,
observation.window.duration=365,
sliding.window.start=0,
sliding.window.start.unit="days",
sliding.window.duration=90,
sliding.window.duration.unit="days",
sliding.window.step.duration=7,
sliding.window.step.unit="days",
sliding.window.no.steps=NA,
date.format="%m/%d/%Y"
);

plot(cmaW, patients.to.plot=c("1","2"));
cmaE <- CMA_per_episode(CMA=CMA1,
data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
carry.only.for.same.medication=FALSE,
consider.dosage.change=FALSE,
followup.window.start=0,
observation.window.start=0,
observation.window.duration=365,
date.format="%m/%d/%Y"
);

plot(cmaE, patients.to.plot=c("1","2"));
End(Not run)
Arguments

... Parameters to be passed to `plot_interactive_cma()` in package AdhereRViz.

Details

This is merely a stub for the actual implementation in package AdhereRViz: it just checks if this package is installed and functional, in which case it calls the actual implementation, otherwise warns the user that AdhereRViz must be installed.

Value

Nothing

See Also

Function `plot_interactive_cma` in package AdhereRViz.

Examples

```r
## Not run:
plot_interactive_cma(med.events,
  ID.colname="PATIENT_ID",
  event.date.colname="DATE",
  event.duration.colname="DURATION",
  event.daily.dose.colname="PERDAY",
  medication.class.colname="CATEGORY");
## End(Not run)
```

print.CMA0

Print CMA0 (and derived) objects.

Description

Prints and summarizes a basic CMA0, or derived, object.

Usage

```r
## S3 method for class 'CMA0'
print(
  x,
  ..., 
  inline = FALSE,
  format = c("text", "latex", "markdown"),
  print.params = TRUE,
  print.data = TRUE,
  exclude.params = c("event.info"),
  skip.header = FALSE,
  cma.type = class(cma)[1]
)```
Arguments

x A CMA0 or derived object, representing the CMA to print.
... other possible parameters

**inline**  *Logical*, should print inside a line of text or as a separate, extended object?

**format**  *A string*, the type of output: plain text ("text"; default), LaTeX ("latex") or R Markdown ("markdown").

**print.params**  *Logical*, should print the parameters?

**print.data**  *Logical*, should print a summary of the data?

**exclude.params**  *A vector of strings*, the names of the object fields to exclude from printing (usually, internal information irrelevant to the end-user).

**skip.header**  *Logical*, should the header be printed?

**cma.type**  *A string*, used to override the reported object's class.

**Details**

Can produce output for the console (text), R Markdown or LaTeX, showing various types of information.

**Examples**

```r

cma0 <- CMA0(data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
event.daily.dose.colname="PERDAY",
medication.class.colname="CATEGORY",
followup.window.start=0,
followup.window.start.unit="days",
followup.window.duration=2*365,
followup.window.duration.unit="days",
observation.window.start=30,
observation.window.start.unit="days",
observation.window.duration=365,
observation.window.duration.unit="days",
date.format="%m/%d/%Y",
summary="Base CMA");
cma0;
print(cma0, format="markdown");
cma1 <- CMA1(data=med.events,
ID.colname="PATIENT_ID",
event.date.colname="DATE",
event.duration.colname="DURATION",
followup.window.start=30,
observation.window.start=30,
observation.window.duration=365,
date.format="%m/%d/%Y");
cma1;
```
prune_event_durations  

Prune event durations.

Description

Flags or removes leftover supply durations after dosage changes, the end of a special period, or treatment interruption. The function accepts the raw list output of compute_event_durations and additional arguments to specify event durations that need to be removed.

Usage

prune_event_durations(
  data,
  include = c("special periods", "treatment interruptions", "dosage changes"),
  medication.class.colnames = data$medication.class.colnames,
  days.within.out.date.1,
  days.within.out.date.2,
  keep.all = TRUE,
  suppress.warnings = FALSE,
  return.data.table = FALSE,
  ...
)

Arguments

data A list, the output of compute_event_durations.

include A Vector of strings indicating whether to include dosage changes, special periods, and/or treatment interruptions.

medication.class.colnames A Vector of strings, the name(s) of the column(s) in the event_durations element of data to identify medication classes. Defaults to the columns used in compute_event_durations.

days.within.out.date.1 event durations from before the dosage change, special period, or treatment interruptions are removed if there is a new dispensing event within the number of days specified as integer after the dosage change or end of the special period/treatment interruption.

days.within.out.date.2 event durations from before dosage change, special period, or treatment interruption are removed if there is NO new dispensing event within the number of days specified as integer after the dosage change or end of the special period/treatment interruption.

keep.all Logical, should events be kept and marked for removal? If TRUE, a new column .prune.event will be added to event_durations, if FALSE the events will be removed from the output.
prune_event_durations

suppress.warnings
    Logical, if TRUE don’t show any warnings.
return.data.table
    Logical, if TRUE return a data.table object, otherwise a data.frame.
...
    other possible parameters.

Details

Dosage changes, special periods, and treatment interruptions may lead to overestimation of implementa-
tion, e.g. if patients get a refill after discharge from hospital and don’t continue to use their
previous supply. Likewise, it may also lead to overestimation of persistence, e.g. when patients
discontinue treatments after the end of a special period or treatment interruption.

Value

A data.frame or data.table, the pruned event_durations.

Examples

```r
Not run:
select medication class of interest and compute event durations
disp_data <- durcomp.dispensing[ID == 3 & grepl("J01EE01", ATC.CODE)]
presc_data <- durcomp.prescribing[ID == 3 & grepl("J01EE01", ATC.CODE)]

compute event durations
event_durations_list <- compute_event_durations(disp.data = disp_data,
 presc.data = presc_data,
 special.periods.data = durcomp.hospitalisation,
 ID.colname = "ID",
 presc.date.colname = "DATE.PRESC",
 disp.date.colname = "DATE.DISP",
 date.format = "%Y-%m-%d",
 medication.class.colnames = c("ATC.CODE",
 "UNIT",
 "FORM"),
 total.dose.colname = "TOTAL.DOSE",
 presc.daily.dose.colname = "DAILY.DOSE",
 presc.duration.colname = "PRESC.DURATION",
 visit.colname = "VISIT",
 force.init.presc = TRUE,
 force.presc.renew = TRUE,
 split.on.dosage.change = TRUE,
 trt.interruption = "carryover",
 special.periods.method = "carryover",
 suppress.warnings = FALSE,
 return.data.table = TRUE,
 progress.bar = FALSE)

prune event durations
event_durations <- prune_event_durations(event_durations_list,
 include = c("special periods"),
 ...)
```

time_to_initiation

Computation of initiation times.

Description

Computes the time between the start of a prescription episode and the first dispensing event for each medication class.

Usage

time_to_initiation(
    presc.data = NULL,
    disp.data = NULL,
    ID.colname = NA,
    medication.class.colnames = NA,
    presc.start.colname = NA,
    disp.date.colname = NA,
    date.format = "%d.%m.%Y",
    suppress.warnings = FALSE,
    return.data.table = FALSE,
    ...
)

Arguments

presc.data A data.frame or data.table containing the prescription episodes. Must contain, at a minimum, the patient unique ID, one medication identifier, and the start date of the prescription episode, and might also contain additional columns to identify and group medications (the actual column names are defined in the medication.class.colnames parameter).

disp.data A data.frame or data.table containing the dispensing events. Must contain, at a minimum, the patient unique ID, one medication identifier, the dispensing date, and might also contain additional columns to identify and group medications (the actual column names are defined in the medication.class.colnames parameter).

ID.colname A string, the name of the column in presc.data and disp.data containing the unique patient ID, or NA if not defined.

medication.class.colnames A Vector of strings, the name(s) of the column(s) in data containing the classes/types/groups of medication, or NA if not defined.
time_to_initiation

presc.start.colname
A string, the name of the column in presc.data containing the prescription date (in the format given in the date.format parameter), or NA if not defined.

disp.date.colname
A string, the name of the column in disp.data containing the dispensing date (in the format given in the date.format parameter), or NA if not defined.

date.format
A string giving the format of the dates used in the data and the other parameters; see the format parameters of the as.Date function for details (NB, this concerns only the dates given as strings and not as Date objects).

suppress.warnings
Logical, if TRUE don’t show any warnings.

return.data.table
Logical, if TRUE return a data.table object, otherwise a data.frame.

Details
The period between the start of a prescription episode and the first dose administration may impact health outcomes differently than omitting doses once on treatment or interrupting medication for longer periods of time. Primary non-adherence (not acquiring the first prescription) or delayed initiation may have a negative impact on health outcomes. The function time_to_initiation calculates the time between the start of a prescription episode and the first dispensing event, taking into account multiple variables to differentiate between treatments.

Value
A data.frame or data.table with the following columns:

- ID.colname the unique patient ID, as given by the ID.colname parameter.
- medication.class.colnames the column(s) with classes/types/groups of medication, as given by the medication.class.colnames parameter.
- episode.start the date of the first prescription event.
- first.disp the date of the first dispensing event.
- time.to.initiation the difference in days between the first dispensing date and the first prescription date.

Examples

time_init <- time_to_initiation(presc.data = durcomp.prescribing,
disp.data = durcomp.dispensing,
ID.colname = "ID",
medication.class.colnames = c("ATC.CODE", "FORM", "UNIT"),
presc.start.colname = "DATE.PRESC",
disp.date.colname = "DATE.DISP",
date.format = "%Y-%m-%d",
suppress.warnings = FALSE,
return.data.table = TRUE);
Index

∗Topic datasets
  durcomp.dispensing, 70
durcomp.hospitalisation, 71
durcomp.prescribing, 72
med.events, 81

as.Date, 6, 10, 14, 19, 24, 28, 33, 38, 43, 48, 53, 58, 61, 65, 69, 107

callAdhereR, 3
CMA0, 4, 45, 55
CMA1, 7, 15, 45, 55, 99
CMA2, 11, 12, 45, 55
CMA3, 45, 55
CMA4 (CMA2), 7
CMA4, 45, 55
CMA4 (CMA2), 12
CMA5, 17, 45, 55
CMA6, 22, 45, 55
CMA7, 26, 45, 55
CMA8, 31, 45, 55
CMA9, 36, 45, 55, 99
CMA_per_episode, 40, 53, 55
CMA_polypharmacy, 46
CMA_sliding_window, 44, 45, 50
compute.event.int.gaps, 11, 16, 21, 26, 30, 35, 40, 45, 50, 54, 55
compute.treatment.episodes, 44, 59
compute_event_durations, 63
cover_special_periods, 68

durcomp.dispensing, 70
durcomp.hospitalisation, 71
durcomp.prescribing, 72

get.event.plotting.area, 73
get.legend.plotting.area, 73
get.plotted.events, 74
get.plotted.partial.cmas, 75
getCallerWrapperLocation, 76

getcMA, 77
gray.colors, 85, 91, 98

last.plot.get.info, 78

map.event.coords.to.plot, 79
med.events, 81

plot.CMA0, 82, 91
plot.CMA1, 87, 99
plot.CMA2 (plot.CMA1), 87
plot.CMA3 (plot.CMA1), 87
plot.CMA4 (plot.CMA1), 87
plot.CMA5 (plot.CMA1), 87
plot.CMA6 (plot.CMA1), 87
plot.CMA7 (plot.CMA1), 87
plot.CMA8 (plot.CMA1), 87
plot.CMA9 (plot.CMA1), 87
plot.CMA_per_episode, 92
plot.CMA_sliding_window
  (plot.CMA_per_episode), 92
plot_interactive_cma, 100, 101
print.CMA0, 101
print.CMA1 (print.CMA0), 101
print.CMA2 (print.CMA0), 101
print.CMA3 (print.CMA0), 101
print.CMA4 (print.CMA0), 101
print.CMA5 (print.CMA0), 101
print.CMA6 (print.CMA0), 101
print.CMA7 (print.CMA0), 101
print.CMA8 (print.CMA0), 101
print.CMA9 (print.CMA0), 101
print.CMA_per_episode (print.CMA0), 101
print.CMA_sliding_window (print.CMA0), 101
prune_event_durations, 104
time_to_initiation, 106