Package ‘AgreementInterval’

October 12, 2022

Type Package
Title Agreement Interval of Two Measurement Methods
Version 0.1.1
Description A tool for calculating agreement interval of two measurement methods (Jason Liao (2015) <DOI:10.1515/ijb-2014-0030>) and present results in plots with discordance rate and/or clinically meaningful limit to quantify agreement quality.
Depends R (>= 3.5.0), psych
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
Suggests testthat, MASS, Matrix, lme4
NeedsCompilation no
Author Jialin Xu [aut, cre],
 Jason Liao [aut]
Maintainer Jialin Xu <jxx120@gmail.com>
Repository CRAN
Date/Publication 2018-10-25 12:30:08 UTC

R topics documented:

agrInt2alpha .. 2
ai ... 3
aiAdj ... 4
IPIA ... 5
plot.ai .. 6
summary.ai .. 7
tolProb .. 8

Index 9
Description

Function agrInt2alpha calculates discordance rate (alpha) using clinically meaningful limit.

Usage

agrInt2alpha(clin.limit, n, sigmae)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clin.limit</td>
<td>Clinically meaningful lower and upper limit</td>
</tr>
<tr>
<td>n</td>
<td>Sample size</td>
</tr>
<tr>
<td>sigmae</td>
<td>Variance estimate of residual from measurement error model</td>
</tr>
</tbody>
</table>

Details

Function agrInt2alpha calculates discordance rate (alpha) using clinically meaningful limit.

Value

Discordance rate

Author(s)

Jialin Xu, Jason Liao

References

Examples

agrInt2alpha(clin.limit=c(-15, 15), n=52, sigmae=46.09245)
Description

Calculate Agreement Interval of Two Measurement Methods and quantify the agreement

Usage

ai(x, y, lambda = 1, alpha = 0.05, clin.limit = NA)

Arguments

x
A continous numeric vector from measurement method 1

y
A continous numeric vector from measurement method 2, the same length as x.

lambda
Reliability ratio of x vs y. default 1.

alpha
Discordance rate to estimate confidence interval

clin.limit
Clinically meaningful limit (optional)

Details

This is the function to calculate agreement interval (confidence interval) of two continuous numerical vectors from two measurement methods on the same samples. Note that this function only works for scenario with two evaluators, for example, comparing the concordance between two evaluators. We are working on the scenario with more than two evaluators. The two numerical vectors are x and y. It also provides commonly used measures based on index approaches, for example, Pearson’s correlation coefficient, the intraclass correlation coefficient (ICC), the concordance correlation coefficient (Lin’s CCC), and improved CCC (Liao’s ICCC).

Value

Function ai returns an object of class "ai".
An object of class "ai" is a list containing the following components:

alpha: Alpha input for confidence interval estimates

n: Sample size

conf.level: Confidence level calculated from alpha

lambda: Reliability ratio input of x vs y

summaryStat: Summary statistics of input data

sigma.e: Random error estimates

indexEst: Agreement estimates (CI.) based on index approaches

intervalEst: Agreement estimates (CI.) based on interval approaches

biasEst: Bias estimate

intercept: Intercept of linear regression line from measure error model
slope: Slope of linear regression line from measure error model
x.name: x variable name extracted from input, used for plotting
y.name: y variable name extracted from input, used for plotting
tolProb.cl: Tolerance probability calculated based on optional clinically meaningful limit
k.cl: Number of discordance pairs based on optional clinically meaningful limit
alpha.cl: Discordance rate based on clinically meaningful limit

Author(s)
Jialin Xu, Jason Liao

References

Examples
ai(x=1:4, y=c(1, 1, 2, 4))
a <- c(1, 2, 3, 4, 7)
b <- c(1, 3, 2, 5, 3)
ai(x=a, y=b)
ai(x=IPIA$Tomography, y=IPIA$Urography)
ai(x=IPIA$Tomography, y=IPIA$Urography, clin.limit=c(-15, 15))
Arguments

- **object**: ai object from ai function
- **x**: A numeric value or a vector of numeric values to calculate bias-adjusted average interval for

Details

Function `aiAdj` uses proportional bias per x unit, Liao’s average interval, Liao’s average interval adjusted for fixed bias to calculate bias-adjusted and total-adjusted average interval.

Value

bias-adjusted and total-adjusted average interval for each value in x

Author(s)

Jialin Xu, Jason Liao

References

Examples

```r
ans <- ai(x=IPIA$Tomography, y=IPIA$Urography)
aiAdj(object=ans, x=1)
aiAdj(object=ans, x=c(1, 2))
```

<table>
<thead>
<tr>
<th>IPIA</th>
<th>IPIA measures from 52 kidneys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

A dataset containing inferior pelvic infundibular angle (IPIA) dataset measured by urography and tomography on n=52 kidneys. The variables are as follows:

Usage

IPIA

Format

A data frame with 52 rows and 3 variables:

- **id**: sample ids
- **Urography**: IPIA data evaluated by means of computerized urography
- **Tomography**: IPIA data evaluated by means of computerized tomography
References

Description

The plot method for ai objects

Usage

S3 method for class 'ai'
plot(x, clin.limit = NA, which = 1:4, ...)

Arguments

x ai object from ai function
clin.limit Clinically meaningful lower and upper limit
which Index parameter to control which plot to output, by default, all four plots will be outputed.
... Additional arguments to be passed to the round function and to control number of decimals in the display.

Details

The four plots include 1) scatterplot of raw data with regression line from the measurement error model, 2) Difference between two measurement methods with original average interval determined by alpha and clinically meaningful lower and upper limit, 3) Difference between two measurement methods with average interval adjusted for fixed bias, as well as 4) Sorted difference between two measurement methods with average interval adjusted for total bias.

Value

Function plot.ai returns 2 by 2 plots (See details)

Author(s)

Jialin Xu, Jason Liao

References

Examples

```r
a <- c(1, 2, 3, 4, 7)
b <- c(1, 3, 2, 5, 3)
ans <- ai(x=a, y=b)
plot(x=ans)
plot(x=ans, clin.limit=c(-5, 5))
```

Description

The summary method for ai objects

Usage

```r
## S3 method for class 'ai'
summary(object, ...)
```

Arguments

- `object`: ai object from ai function
- `...`: additional arguments affecting the summary produced

Value

Function summary.ai prints out key summaries on screen

Author(s)

Jialin Xu, Jason Liao

References

Examples

```r
a <- c(1, 2, 3, 4, 7)
b <- c(1, 3, 2, 5, 3)
ans <- ai(x=a, y=b)
summary(ans)
```
Description

Function tolProb calculates tolerance probability based on sample size (n), number of discordance pairs (k) and discordance rate (alpha).

Usage

tolProb(n, k, alpha = 0.05)

Arguments

n Sample size
k Number of discordance pairs, discordance pairs are defined as samples with difference greater than average interval
alpha Discordance rate, default 0.05.

Details

Function tolProb calculates tolerance probability based on sample size(n), number of discordance pairs (k) and discordance rate (alpha). Its value is calculated as the largest value such that the following inequality is true:

\[1 - \sum_{i=0}^{k} \binom{n}{i} \times (1 - \alpha)^{n-i} \times \alpha^i \geq \beta \]

Value

tolerance probability

Author(s)

Jialin Xu, Jason Liao

References

Examples

tolProb(n=52, k=5, alpha=0.05)
tolProb(n=52, k=0, alpha=0.05)
Index

* datasets
 IPIA, 5
agriInt2alpha, 2
ai, 3
aiAdj, 4
IPIA, 5
plot.ai, 6
summary.ai, 7
tolProb, 8