Package ‘AgroReg’

January 18, 2023

Type Package
Title Regression Analysis Linear and Nonlinear for Agriculture
Version 1.2.9
Date 2023-01-13
Maintainer Gabriel Danilo Shimizu <shimizu@uel.br>
Description Linear and nonlinear regression analysis common in agricultural science articles (Archontoulis & Miguez (2015), <doi:10.2134/agronj2012.0506>). The package includes polynomial, exponential, gaussian, logistic, logarithmic, segmented, non-parametric models, among others. The functions return the model coefficients and their respective p values, coefficient of determination, root mean square error, AIC, BIC, as well as graphs with the equations automatically.
License GPL (>= 2)
URL https://fisher.uel.br/AgroReg_shiny/,
https://fisher.uel.br/AgroReg_shiny.pt/
Imports drc, ggplot2, boot, minpack.lm, dplyr, rcompanion, broom, egg, purrr
Depends R (>= 3.6)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation no
Author Gabriel Danilo Shimizu [aut, cre]
(https://orcid.org/0000-0001-8524-508X),
Leandro Simoes Azeredo Goncalves [aut, ctb]
(https://orcid.org/0000-0001-9700-9375)
Repository CRAN
Date/Publication 2023-01-18 12:10:17 UTC
R topics documented:

<table>
<thead>
<tr>
<th>R topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjust_scale</td>
<td>3</td>
</tr>
<tr>
<td>adjust_scale_x</td>
<td>4</td>
</tr>
<tr>
<td>adjust_scale_y</td>
<td>5</td>
</tr>
<tr>
<td>AM</td>
<td>5</td>
</tr>
<tr>
<td>aristolochia</td>
<td>8</td>
</tr>
<tr>
<td>asymptotic</td>
<td>8</td>
</tr>
<tr>
<td>asymptotic_i</td>
<td>10</td>
</tr>
<tr>
<td>asymptotic_ineg</td>
<td>12</td>
</tr>
<tr>
<td>asymptotic_neg</td>
<td>15</td>
</tr>
<tr>
<td>BC</td>
<td>17</td>
</tr>
<tr>
<td>beta_reg</td>
<td>19</td>
</tr>
<tr>
<td>biexponential</td>
<td>21</td>
</tr>
<tr>
<td>CD</td>
<td>23</td>
</tr>
<tr>
<td>coloredit_arrange</td>
<td>26</td>
</tr>
<tr>
<td>comparative_model</td>
<td>27</td>
</tr>
<tr>
<td>correlation</td>
<td>27</td>
</tr>
<tr>
<td>extract.model</td>
<td>29</td>
</tr>
<tr>
<td>gaussianreg</td>
<td>29</td>
</tr>
<tr>
<td>GP</td>
<td>32</td>
</tr>
<tr>
<td>granada</td>
<td>34</td>
</tr>
<tr>
<td>hill</td>
<td>35</td>
</tr>
<tr>
<td>interval.confidence</td>
<td>37</td>
</tr>
<tr>
<td>linear.linear</td>
<td>38</td>
</tr>
<tr>
<td>linear.plateau</td>
<td>40</td>
</tr>
<tr>
<td>LL</td>
<td>42</td>
</tr>
<tr>
<td>LM</td>
<td>45</td>
</tr>
<tr>
<td>LM13</td>
<td>47</td>
</tr>
<tr>
<td>LM13i</td>
<td>49</td>
</tr>
<tr>
<td>LM23</td>
<td>51</td>
</tr>
<tr>
<td>LM23i</td>
<td>53</td>
</tr>
<tr>
<td>LM2i3</td>
<td>55</td>
</tr>
<tr>
<td>LM_i</td>
<td>57</td>
</tr>
<tr>
<td>loessreg</td>
<td>59</td>
</tr>
<tr>
<td>LOG</td>
<td>61</td>
</tr>
<tr>
<td>LOG2</td>
<td>63</td>
</tr>
<tr>
<td>logistic</td>
<td>65</td>
</tr>
<tr>
<td>lorentz</td>
<td>68</td>
</tr>
<tr>
<td>midilli</td>
<td>70</td>
</tr>
<tr>
<td>midillim</td>
<td>72</td>
</tr>
<tr>
<td>mitscherlich</td>
<td>74</td>
</tr>
<tr>
<td>MM</td>
<td>76</td>
</tr>
<tr>
<td>newton</td>
<td>79</td>
</tr>
<tr>
<td>Nreg</td>
<td>81</td>
</tr>
<tr>
<td>PAGE</td>
<td>82</td>
</tr>
<tr>
<td>peleg</td>
<td>85</td>
</tr>
<tr>
<td>plateau.linear</td>
<td>87</td>
</tr>
</tbody>
</table>
adjust_scale

Adjust y and x scale for chart or charts

Usage

```r
adjust_scale(
  plots,
  scale.x = "default",
  limits.x = "default",
  scale.y = "default",
  limits.y = "default"
)
```

Arguments

- **plots**: Object of analysis or plot_arrange
- **scale.x**: x-axis scale (use vector)
- **limits.x**: limits in x-axis (use vector)
- **scale.y**: y-axis scale (use vector)
- **limits.y**: limits in y-axis (use vector)

Value

Returns the scaled graph
adjust_scale_x

Utils: Adjust x scale

Description

Adjust x scale for chart or charts

Usage

adjust_scale_x(plots, scale = "default", limits = "default")

Arguments

plots Object of analysis or plot_arrange
scale x-axis scale (use vector)
limits limits in x-axis (use vector)

Value

Returns the scaled graph

Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
a=plot_arrange(list(a,b),gray = TRUE)
adjust_scale_x(a,scale = seq(10,40,5),limits = c(10,40))
```
adjust_scale_y
Utils: Adjust y scale

Description

Adjust y scale for chart or charts

Usage

```r
adjust_scale_y(plots, scale = "default", limits = "default")
```

Arguments

- `plots`: Object of analysis or `plot_arrange`
- `scale`: y-axis scale (use vector)
- `limits`: limits in y-axis (use vector)

Value

Returns the scaled graph

Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
a=plot_arrange(list(a,b),gray = TRUE)
adjust_scale_y(a,scale = seq(0,100,10),limits = c(0,100))
```

AM
Analysis: Avhad and Marchetti

Description

This function performs Avhad and Marchetti regression analysis.
Usage

\[AM(\text{trat}, \text{resp}, \text{initial} = \text{list}(\alpha, k, n), \text{sample.curve} = 1000, \text{ylab} = "Dependent", \text{xlab} = "Independent", \text{theme} = \text{theme_classic}(), \text{legend.position} = "top", \text{error} = "SE", \text{r2} = "all", \text{point} = "all", \text{width.bar} = \text{NA}, \text{scale} = "none", \text{textsize} = 12, \text{pointsize} = 4.5, \text{linesize} = 0.8, \text{linetype} = 1, \text{pointshape} = 21, \text{fillshape} = "gray", \text{colorline} = "black", \text{round} = \text{NA}, \text{xname.formula} = "x", \text{yname.formula} = "y", \text{comment} = \text{NA}, \text{fontfamily} = "sans") \]

Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **initial**: Starting estimates
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Variable response name (Accepts the \text{expression()} function)
- **xlab**: treatments name (Accepts the \text{expression()} function)
- **theme**: ggplot2 theme (default is theme_bw())
- **legend.position**: legend position (default is "top")
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **r2**: coefficient of determination of the mean or all values (default is all)
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details
The Avhad e Marchetti model is defined by:

\[y = \alpha \times e^{kx^n} \]

Value
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples
library(AgroReg)
data("granada")
attach(granada)
AM(time,100-WL,initial=list(alpha = 610.9129, k=-1.1810, n=0.1289))
Dataset: Aristolochia

Description
The data come from an experiment conducted at the Seed Analysis Laboratory of the Agricultural Sciences Center of the State University of Londrina, in which five temperatures (15, 20, 25, 30 and 35°C) were evaluated in the germination of *Aristolochia elegans*. The experiment was conducted in a completely randomized design with four replications of 25 seeds each.

Usage
data("aristolochia")

Format
data.frame containing data set

trat Numeric vector with temperature

resp Numeric vector with response

Author(s)
Hugo Roldi Guariz

Examples
data(aristolochia)

Analysis: Asymptotic, exponential or Logarithmic

Description
This function performs asymptotic regression analysis.

Usage
asymptotic(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
)
Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
The exponential model is defined by:

\[y = \alpha \times e^{-\beta x} + \theta \]

Value

The function returns a list containing the coefficients and their respective values of \(p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
asymptotic(time,100-WL)
```

Description

This function performs asymptotic regression analysis without intercept.

Usage

```r
asymptotic_i(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
```

Analysis: Asymptotic without intercept
Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
The asymptotic model without intercept is defined by:

\[y = \alpha \times e^{-\beta \cdot x} \]

Value

The function returns a list containing the coefficients and their respective values of \(p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
asymptotic_i(time,100-WL)
```

Description

This function performs asymptotic regression analysis without intercept.
Usage

asymptotic_ineg(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 xname.formula = "x",
 yname.formula = "y",
 comment = NA,
 fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
The asymptotic negative model without intercept is defined by:

\[y = \alpha \times e^{-\beta \cdot x} \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
asymptotic_ineg(time,100-WL)
```
Description

This function performs asymptotic regression analysis.

Usage

```r
asymptotic_neg(
    trat, 
    resp, 
    sample.curve = 1000, 
    ylab = "Dependent", 
    xlab = "Independent", 
    theme = theme_classic(), 
    legend.position = "top", 
    error = "SE", 
    r2 = "all", 
    point = "all", 
    width.bar = NA, 
    scale = "none", 
    textsize = 12, 
    pointsize = 4.5, 
    linesize = 0.8, 
    linetype = 1, 
    pointshape = 21, 
    fillshape = "gray", 
    colorline = "black", 
    round = NA, 
    xname.formula = "x", 
    yname.formula = "y", 
    comment = NA, 
    fontfamily = "sans"
)
```

Arguments

- `trat`: Numeric vector with dependent variable.
- `resp`: Numeric vector with independent variable.
- `sample.curve`: Provide the number of observations to simulate curvature (default is 1000).
- `ylab`: Variable response name (Accepts the `expression()` function).
- `xlab`: Treatments name (Accepts the `expression()` function).
- `theme`: ggplot2 theme (`default` is `theme_bw()`).
- `legend.position`: Legend position (`default` is "top").
error Error bar (It can be SE - default, SD or FALSE)
\(r^2 \) coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details

The asymptotic model is defined by:

\[y = -\alpha \times e^{-\beta x} + \theta \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R^2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

library(AgroReg)
data("granada")
attach(granada)
asymptotic_neg(time, WL)
Description

The 'BC.4' and 'BC.5' logistical models provide Brain-Cousens’ modified logistical models to describe u-shaped hormesis. This model was extracted from the 'drc' package.

Usage

```r
BC(
  trat,
  resp,
  npar = "BC.4",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)
```

Arguments

- `trat` Numeric vector with dependent variable.
- `resp` Numeric vector with independent variable.
- `npar` Number of model parameters (default is BC.4)
The model function for the Brain-Cousens model (Brain and Cousens, 1989) is

$$ y = c + \frac{d - c + fx}{1 + \exp(b(\log(x) - \log(e)))} $$

and it is a five-parameter model, obtained by extending the four-parameter log-logistic model (LL.4 to take into account inverse u-shaped hormesis effects. Fixing the lower limit at 0 yields the four-parameter model

$$ y = 0 + \frac{d - 0 + fx}{1 + \exp(b(\log(x) - \log(e)))} $$

used by van Ewijk and Hoekstra (1993).
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

See Also

LL, CD,GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
BC(trat,resp)

beta_reg Analysis: Beta

Description

This function performs beta regression analysis.

Usage

beta_reg(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
)
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab Treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position Legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 Coefficient of determination of the mean or all values (default is all)
point Defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize Shape size
linesize Line size
linetype line type
pointshape Format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family
Details

The beta model is defined by:

\[Y = d \times \left\{ \frac{X - X_b}{X_c - X_b} \right\} \left(\frac{X_c - X}{X_c - X_o} \right)^b \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Andrea Onofri)

Gabriel Danilo Shimizu

Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
X <- c(1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)
Y <- c(0, 0, 0, 7.7, 12.3, 19.7, 22.4, 20.3, 6.6, 0, 0)
beta_reg(X,Y)
```

biexponential

Analysis: Biexponential

Description

This function performs biexponential regression analysis.

Usage

```r
biexponential(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
)```
```r
error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 xname.formula = "x",
 yname.formula = "y",
 comment = NA,
 fontfamily = "sans"
)
```

### Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Variable response name (Accepts the `expression()` function)
- **xlab**: Treatments name (Accepts the `expression()` function)
- **theme**: ggplot2 theme (`default` is `theme_bw()`)
- **legend.position**: Legend position (`default` is "top")
- **error**: Error bar (It can be SE - `default`, SD or FALSE)
- **r2**: Coefficient of determination of the mean or all values (`default` is all)
- **point**: Defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (`default` is none, can be "log")
- **textsize**: Font size
- **pointsize**: Shape size
- **linesize**: Line size
- **linetype**: line type
- **pointshape**: Format point (`default` is 21)
- **fillshape**: Fill shape
- **colorline**: Color lines
- **round**: round equation
- **xname.formula**: Name of x in the equation
The biexponential model is defined by:

\[ y = A_1 \times e^{-e^{lrc_1} \cdot x} + A_2 \times e^{-e^{lrc_2} \cdot x} \]

**Value**

The function returns a list containing the coefficients and their respective values of \( p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

**Author(s)**

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

**References**


**See Also**

asymptotic_neg

**Examples**

```r
library(AgroReg)
data("granada")
attach(granada)
biexponential(time, WL)
```

---

**Analysis: Cedergreen-Ritz-Streibig**

**Description**

The 'CRS.4' and 'CRS.5' logistical models provide Brain-Cousens modified logistical models to describe u-shaped hormesis. This model was extracted from the 'drc' package.
Usage

CD(
  trat,
  resp,
  npar = "CRS.4",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat  Numeric vector with dependent variable.
resp  Numeric vector with independent variable.
npar  Number of model parameters
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab   Variable response name (Accepts the expression() function)
xlab   treatments name (Accepts the expression() function)
theme  ggplot2 theme (default is theme_classic())
legend.position legend position (default is "top")
error  Error bar (It can be SE - default, SD or FALSE)
r2     coefficient of determination of the mean or all values (default is all)
ic  Add interval of confidence
fill.ic  Color interval of confidence
alpha.ic  confidence interval transparency level
point  defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar  Bar width
scale  Sets x scale (default is none, can be "log")
textsize  Font size
pointsize  shape size
linesize  line size
linetype  line type
pointshape  format point (default is 21)
fillshape  Fill shape
colorline  Color lines
round  round equation
xname.formula  Name of x in the equation
yname.formula  Name of y in the equation
comment  Add text after equation
fontfamily  Font family

Details

The four-parameter model is given by the expression:

\[
y = 0 + \frac{d - 0 + f \exp(-1/x)}{1 + \exp(b(\log(x) - \log(e)))}
\]

while the five-parameter is:

\[
y = c + \frac{d - c + f \exp(-1/x)}{1 + \exp(b(\log(x) - \log(e)))}
\]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
References

Ritz, C.; Strebig, J.C.; Ritz, M.C. Package 'drc'. Creative Commons: Mountain View, CA, USA, 2016.

See Also

LL, BC, GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)

CD(trat,resp)

coloredit_arrange(graphs, color = NA)

Description

Change the colors of a graph from the plot_arrange function

Usage

coloredit_arrange(graphs, color = NA)

Arguments

graphs  object from a plot_arrange function
color     color curve and point

Value

The function changes the colors of a graph coming from the plot_arrange function

Author(s)

Gabriel Danilo Shimizu

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)

graph1=LM(trat,resp)
graph2=LL(trat,resp,npar = "LL.3")

graph=plot_arrange(list(graph1,graph2))
coloredit_arrange(graph,color=c("red","blue"))
comparative_model

Analysis: Comparative models

Description

This function allows the construction of a table and/or graph with the statistical parameters to choose the model from the analysis functions.

Usage

comparative_model(models, names_model = NA, plot = FALSE, round.label = 2)

Arguments

- **models**: List with objects of type analysis
- **names_model**: Names of the models
- **plot**: Plot in the parameters
- **round.label**: Round label plot

Value

Returns a table and/or graph with the statistical parameters for choosing the model.

Author(s)

Gabriel Danilo Shimizu

correlation

Graph: Plot correlation

Description

Correlation analysis function (Pearson or Spearman)

Usage

correlation(
  x,
  y,
  method = "pearson",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  textsize = 12,
  pointsize = 5,
pointshape = 21,  
linesize = 0.8,  
fill.ic = "gray70",  
alpha.ic = 0.5,  
ic = TRUE,  
title = NA,  
fontfamily = "sans"
)

Arguments

x Numeric vector with independent variable  
y Numeric vector with dependent variable  
method Method correlation (default is Pearson)  
ylab Variable response name (Accepts the expression() function)  
xlab Treatments name (Accepts the expression() function)  
theme ggplot2 theme (default is theme_classic())  
textsize Axis text size  
pointsize Point size  
pointshape shape format  
linesize line size  
fill.ic Color interval of confidence  
alpha.ic confidence interval transparency level  
ic Add interval of confidence  
title title  
fontfamily Font family

Value

The function returns a graph for correlation

Author(s)

Gabriel Danilo Shimizu, <shimizu@uel.br>  
Leandro Simoes Azeredo Goncalves

Examples

data("aristolochia")  
with(aristolochia, correlation(trat,resp))
extract.model

Analysis: Extract models

Description

This function allows extracting the model (type="model") or residuals (type="resids"). The model class depends on the function and can be (lm, drm or nls). This function also allows you to perform graphical analysis of residuals (type="residplot"), graphical analysis of standardized residuals (type="stdresidplot"), graph of theoretical quantiles (type="qqplot").

Usage

extract.model(model, type = "model")

Arguments

model: Object returned from an analysis function

type: output type

Value

Returns an object of class drm, lm or nls (type="model"), or vector of residuals (type="resids"), or graph of the residuals (type="residplot", type="stdresidplot", type="qqplot").

Examples

data("aristolochia")
attach(aristolochia)
a=linear.linear(trat,resp,point = "mean")
exttract.model(a,type = "qqplot")

gaussianreg

Analysis: Analogous to the Gaussian model/Bragg

Description

Analysis: Analogous to the Gaussian model/Bragg
Usage

```r
gaussianreg(
 trat,
 resp,
 npar = "g3",
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 error = "SE",
 legend.position = "top",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 xname.formula = "x",
 yname.formula = "y",
 comment = NA,
 fontfamily = "sans"
)
```

Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **npar**: number of parameters (g3 or g4)
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Variable response name (Accepts the `expression()` function)
- **xlab**: treatments name (Accepts the `expression()` function)
- **theme**: ggplot2 theme (default is theme_classic())
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **legend.position**: legend position (default is "top")
- **r2**: coefficient of determination of the mean or all values (default is all)
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (default is none, can be "log")
The model analogous to the three-parameter Gaussian is:

\[ y = d \times e^{-b((x-e)^2)} \]

The model analogous to the three-parameter Gaussian is:

\[ y = d \times c + (d - c) \times e^{-b((x-e)^2)} \]

Value

The function returns a list containing the coefficients and their respective values of \( p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
gaussianreg(trat, resp)
Analysis: Gompertz

Description
The logistical models provide Gompertz modified logistical models. This model was extracted from the 'drc' package.

Usage

```r
GP(
 trat, # Numeric vector with dependent variable.
 resp, # Numeric vector with independent variable.
 npar = "g2", # Number of parameters (g2, g3 or g4)
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 r2 = "all",
 ic = FALSE,
 fill.ic = "gray70",
 alpha.ic = 0.5,
 error = "SE",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 xname.formula = "x",
 yname.formula = "y",
 comment = NA,
 fontfamily = "sans"
)
```

Arguments

- `trat`: Numeric vector with dependent variable.
- `resp`: Numeric vector with independent variable.
- `npar`: Number of parameters (g2, g3 or g4)
sample.curve  Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
r2 coefficient of determination of the mean or all values (default is all)
ic Add interval of confidence
fill.ic Color interval of confidence
alpha.ic confidence interval transparency level
error Error bar (It can be SE - default, SD or FALSE)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details

The two-parameter Gompertz model is given by the function:

\[ y = e^{\exp(-\exp(b(x-e)))} \]

The three-parameter Gompertz model is given by the function:

\[ y = d \times \exp(-\exp(b(x-e))) \]

The four-parameter Gompertz model is given by the function:

\[ y = c + (d - c)(\exp(-\exp(b(x-e))) \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References


See Also

LL, CD, BC

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
GP(trat,resp, npar="g3")

granada

Dataset: Granada

Description

The data are part of an experiment that studied the drying kinetics of pomegranate peel over time under an air-circulation oven. Mass loss was assessed.

Usage

data("granada")

Format

data.frame containing data set
time numeric vector with times
WL Numeric vector with response
**hill**

**Author(s)**

Gabriel Danilo Shimizu

**Examples**

```r
data(granada)
```

---

**Analysis: Hill**

**Description**

This function performs regression analysis using the Hill model.

**Usage**

```r
hill(
 trat,
 resp,
 sample.curve = 1000,
 error = "SE",
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 point = "all",
 width.bar = NA,
 r2 = "all",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 xname.formula = "x",
 yname.formula = "y",
 comment = NA,
 fontfamily = "sans"
)
```

**Arguments**

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
sample.curve  Provide the number of observations to simulate curvature (default is 1000)
error       Error bar (It can be SE - default, SD or FALSE)
ylab        Variable response name (Accepts the expression() function)
xlab        treatments name (Accepts the expression() function)
theme       ggplot2 theme (default is theme_bw())
legend.position  legend position (default is "top")
point       defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar   Bar width
r2          coefficient of determination of the mean or all values (default is all)
textsize    Font size
pointsize   shape size
linesize    line size
linetype    line type
pointshape  format point (default is 21)
fillshape   Fill shape
colorline   Color lines
round       round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment     Add text after equation
fontfamily  Font family

Details

The Hill model is defined by:

\[ y = \frac{a \times x^c}{b + x^c} \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Onofri, 2020)

Gabriel Danilo Shimizu

References

Examples

data("granada")
attach(granada)
hill(time, WL)

Description

Interval of confidence in model regression

Usage

interval.confidence(model)

Arguments

model Object analysis

Value

Return in the interval of confidence

Author(s)

Gabriel Danilo Shimizu

Examples

data("granada")
attach(granada)
a=LM(time, WL)
interval.confidence(a)
linear.linear

Analysis: Linear-Linear

Description

This function performs linear linear regression analysis.

Usage

linear.linear(
  trat,
  resp,
  middle = 1,
  CI = FALSE,
  bootstrap.samples = 1000,
  sig.level = 0.05,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  point = "all",
  width.bar = NA,
  legend.position = "top",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
middle A scalar in [0,1]. This represents the range that the change-point can occur in. 0 means the change-point must occur at the middle of the range of x-values. 1 means that the change-point can occur anywhere along the range of the x-values.
CI Whether or not a bootstrap confidence interval should be calculated. Defaults to FALSE because the interval takes a non-trivial amount of time to calculate
bootstrap.samples
   The number of bootstrap samples to take when calculating the CI.

sig.level
   What significance level to use for the confidence intervals.

error
   Error bar (It can be SE - default, SD or FALSE)

ylab
   Variable response name (Accepts the expression() function)

xlab
   treatments name (Accepts the expression() function)

theme
   ggplot2 theme (default is theme_classic())

point
   defines whether you want to plot all points ("all") or only the mean ("mean")

width.bar
   Bar width

legend.position
   legend position (default is "top")

textsize
   Font size

pointsize
   shape size

linesize
   line size

linetype
   line type

pointshape
   format point (default is 21)

fillshape
   Fill shape

colorline
   Color lines

round
   round equation

xname.formula
   Name of x in the equation

yname.formula
   Name of y in the equation

comment
   Add text after equation

fontfamily
   Font family

Details

The linear-linear model is defined by: First curve:

\[ y = \beta_0 + \beta_1 \times x (x < \text{breakpoint}) \]

Second curve:

\[ y = \beta_0 + \beta_1 \times \text{breakpoint} + w \times x (x > \text{breakpoint}) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); breakpoint and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the SiZer package
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
References


See Also

quadratic.plateau, linear.plateau

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
linear.linear(time,WL)
```

Description

This function performs the linear-plateau regression analysis.

Usage

```r
linear.plateau(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
)
linear.plateau

```r
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
```

Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Variable response name (Accepts the `expression()` function)
- **xlab**: treatments name (Accepts the `expression()` function)
- **theme**: ggplot2 theme *(default is theme_bw())*
- **legend.position**: legend position *(default is "top")*
- **error**: Error bar (It can be SE - *default*, SD or FALSE)
- **r2**: coefficient of determination of the mean or all values *(default is all)*
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale *(default is none, can be "log")*
- **textsize**: Font size
- **pointsize**: shape size
- **linesize**: line size
- **linetype**: line type
- **pointshape**: format point (default is 21)
- **fillshape**: Fill shape
- **colorline**: Color lines
- **round**: round equation
- **xname.formula**: Name of x in the equation
- **yname.formula**: Name of y in the equation
- **comment**: Add text after equation
- **fontfamily**: Font family

Details

The linear-plateau model is defined by: First curve:

\[
y = \beta_0 + \beta_1 \times x (x < \text{breakpoint})
\]

Second curve:

\[
y = \beta_0 + \beta_1 \times \text{breakpoint} (x > \text{breakpoint})
\]
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); breakpoint and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

See Also

quadratic.plateau, linear.linear

Examples

library(AgroReg)
data("granada")
attach(granada)
linear.plateau(time, WL)

Analysis: Log-logistic

Logistic models with three (LL.3), four (LL.4) or five (LL.5) continuous data parameters. This model was extracted from the drc package.

Usage

LL(
 trat,
 resp,
 npar = "LL.3",
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
)
error = "SE",
$r2 = "all",
ic = FALSE,
fill.ic = "gray70",
alpha.ic = 0.5,
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
npar Number of model parameters
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
ic Add interval of confidence
fill.ic Color interval of confidence
alpha.ic confidence interval transparency level
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize
linetype
pointshape
fillshape
colorline
round
xname.formula
yname.formula
comment
fontfamily

Details

The three-parameter log-logistic function with lower limit 0 is

\[y = 0 + \frac{d}{1 + \exp(b(\log(x) - \log(e)))} \]

The four-parameter log-logistic function is given by the expression

\[y = c + \frac{d - c}{1 + \exp(b(\log(x) - \log(e)))} \]

The function is symmetric about the inflection point (e).

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
LL(trat,resp)
Analysis: Linear, quadratic, quadratic inverse, cubic and quartic regression.

Usage

```r
LM(
  trat,
  resp,
  degree = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  error = "SE",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  point = "all",
  r2 = "all",
  theme = theme_classic(),
  legend.position = "top",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)
```

Arguments

- `trat`: Numeric vector with dependent variable.
- `resp`: Numeric vector with independent variable.
- `degree`: Degree of the polynomial (0.5, 1, 2, 3 or 4)
- `sample.curve`: Provide the number of observations to simulate curvature (default is 1000)
ylab Dependent variable name (Accepts the expression() function)
xlab Independent variable name (Accepts the expression() function)
error Error bar (It can be SE - default, SD or FALSE)
ic Add interval of confidence
fill.ic Color interval of confidence
alpha.ic confidence interval transparency level
point defines whether you want to plot all points ("all") or only the mean ("mean")
r2 coefficient of determination of the mean or all values (default is all)
theme ggplot2 theme (default is theme_classic())
legend.position legend position (default is "top")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details

The linear model is defined by:
\[y = \beta_0 + \beta_1 \cdot x \]

The quadratic model is defined by:
\[y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 \]

The quadratic inverse model is defined by:
\[y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^{0.5} \]

The cubic model is defined by:
\[y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3 \]

The quartic model is defined by:
\[y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3 + \beta_4 \cdot x^4 \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
LM(trat,resp, degree = 3)

Description

Degree 3 polynomial model without the beta 2 coefficient.

Usage

LM13(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 error = "SE",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Dependent variable name (Accepts the expression() function)
error Error bar (It can be SE - default, SD or FALSE)
xlab Independent variable name (Accepts the expression() function)
theme ggplot2 theme (default is theme_classic())
legend.position legend position (default is "top")
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details

Degree 3 polynomial model without the beta 2 coefficient is defined by:

\[y = \beta_0 + \beta_1 \cdot x + \beta_3 \cdot x^3 \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

```r
library(AgroReg)
data("granada")attach(granada)LM13(time, WL)
```

Analysis: Cubic inverse without beta2

Description

Degree 3 polynomial inverse model without the beta 2 coefficient.

Usage

```r
LM13i(trat, resp, sample.curve = 1000, ylab = "Dependent", error = "SE", xlab = "Independent", theme = theme_classic(), legend.position = "top", r2 = "all", point = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, linetype = 1, pointshape = 21, fillshape = "gray", colorline = "black", round = NA,
```
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Dependent variable name (Accepts the expression() function)
error Error bar (It can be SE - default, SD or FALSE)
xlab Independent variable name (Accepts the expression() function)
theme ggplot2 theme (default is theme_classic())
legend.position legend position (default is "top")
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details

Inverse degree 3 polynomial model without the beta 2 coefficient is defined by:

\[y = \beta_0 + \beta_1 \cdot x + \beta_3 \cdot x^{1/3} \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
LM13i(time, WL)
```

Analysis: Cubic without beta1

Description

Degree 3 polynomial model without the beta 1 coefficient.

Usage

```r
LM23(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
)```
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat             Numeric vector with dependent variable.
resp             Numeric vector with independent variable.
sample.curve    Provide the number of observations to simulate curvature (default is 1000)
ylab             Dependent variable name (Accepts the expression() function)
error            Error bar (It can be SE - default, SD or FALSE)
xlab             Independent variable name (Accepts the expression() function)
theme            ggplot2 theme (default is theme_classic())
legend.position  legend position (default is "top")
r2               coefficient of determination of the mean or all values (default is all)
point            defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar        Bar width
scale            Sets x scale (default is none, can be "log")
textsize         Font size
pointsize        shape size
linesize         line size
linetype         line type
pointshape       format point (default is 21)
fillshape        Fill shape
colorline        Color lines
round            round equation
xname.formula    Name of x in the equation
yname.formula    Name of y in the equation
comment          Add text after equation
fontfamily       Font family

Details

Degree 3 polynomial model without the beta 2 coefficient is defined by:

\[ y = \beta_0 + \beta_2 \cdot x^2 + \beta_3 \cdot x^3 \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM23(time, WL)

Description

Degree 3 polynomial inverse model without the beta 1 coefficient.

Usage

LM23i(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
```r
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)
```

**Arguments**

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Dependent variable name (Accepts the `expression()` function)
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **xlab**: Independent variable name (Accepts the `expression()` function)
- **theme**: ggplot2 theme (default is theme_classic())
- **legend.position**: legend position (default is "top")
- **r2**: coefficient of determination of the mean or all values (default is all)
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (default is none, can be "log")
- **textsize**: Font size
- **pointsize**: shape size
- **linesize**: line size
- **linetype**: line type
- **pointshape**: format point (default is 21)
- **fillshape**: Fill shape
- **colorline**: Color lines
- **round**: round equation
- **xname.formula**: Name of x in the equation
- **yname.formula**: Name of y in the equation
- **comment**: Add text after equation
- **fontfamily**: Font family

**Details**

Inverse degree 3 polynomial model without the beta 1 coefficient is defined by:

\[ y = \beta_0 + \beta_2 \cdot x^{1/2} + \beta_3 \cdot x^{1/3} \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

library(AgroReg)
data("granada")
attach(granada)
LM2i3(time, WL)

---

Analysis: Cubic without beta1, with inverse beta3

Description

Degree 3 polynomial model without the beta 1 coefficient, with inverse beta3.

Usage

LM2i3(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  error = "SE",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Dependent variable name (Accepts the `expression()` function)
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **xlab**: Independent variable name (Accepts the `expression()` function)
- **theme**: ggplot2 theme (`default` is theme_classic())
- **legend.position**: legend position (`default` is "top")
- **r2**: coefficient of determination of the mean or all values (`default` is all)
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (`default` is none, can be "log")
- **textsize**: Font size
- **pointsize**: shape size
- **linesize**: line size
- **linetype**: line type
- **pointshape**: format point (default is 21)
- **fillshape**: Fill shape
- **colorline**: Color lines
- **round**: round equation

- **xname.formula**: Name of x in the equation
- **yname.formula**: Name of y in the equation
- **comment**: Add text after equation
- **fontfamily**: Font family

Details

Inverse degree 3 polynomial model without the beta 2 coefficient is defined by:

\[ y = \beta_0 + \beta_1 \cdot x^2 + \beta_3 \cdot x^{1/3} \]
**Value**

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

**Author(s)**

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

**Examples**

```r
library(AgroReg)
data("granada")
attach(granada)
LM2i3(time, WL)
```

---

**Description**

Linear, quadratic, quadratic inverse, cubic and quartic without intercept

**Usage**

```r
LM_i(trat, resp, sample.curve = 1000, ylab = "Dependent", error = "SE", ic = FALSE, fill.ic = "gray70", alpha.ic = 0.5, xlab = "Independent", degree = NA, theme = theme_classic(), legend.position = "top", point = "all", r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8,
```

linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Dependent variable name (Accepts the expression() function)
error Error bar (It can be SE - default, SD or FALSE)
ic Add interval of confidence
fill.ic Color interval of confidence
alpha.ic confidence interval transparency level
xlab Independent variable name (Accepts the expression() function)
degree degree of the polynomial (0.5, 1, 2, 3 or 4)
theme ggplot2 theme (default is theme_classic())
legend.position legend position (default is "top")
point defines whether you want to plot all points ("all") or only the mean ("mean")
r2 coefficient of determination of the mean or all values (default is all)
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family
Details

The linear model is defined by:

\[ y = \beta_1 \cdot x \]

The quadratic model is defined by:

\[ y = \beta_1 \cdot x + \beta_2 \cdot x^2 \]

The quadratic inverse model is defined by:

\[ y = \beta_1 \cdot x + \beta_2 \cdot x^{0.5} \]

The cubic model is defined by:

\[ y = \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3 \]

The quartic model is defined by:

\[ y = \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3 + \beta_4 \cdot x^4 \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
LM_i(trat, resp, degree = 3)
```

---

**loessreg**

**Analysis: loess regression (degree 0, 1 or 2)**

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.
Usage

loessreg(
  trat,
  resp,
  degree = 2,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  fontfamily = "sans"
)

Arguments

trat        Numeric vector with dependent variable.
resp        Numeric vector with independent variable.
degree      Degree polynomial (0,1 or 2)
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab        Variable response name (Accepts the expression() function)
xlab        treatments name (Accepts the expression() function)
theme       ggplot2 theme (default is theme_bw())
legend.position legend position (default is c(0.3,0.8))
error       Error bar (It can be SE - default, SD or FALSE)
point       defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar   Bar width
scale       Sets x scale (default is none, can be "log")
textsize    Font size
pointsize   shape size
linesize    line size
linetype    line type
LOG

Description

This function performs logarithmic regression analysis.

Usage

```r
LOG(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
)```

Value

The function returns a list containing the loess regression and graph using ggplot2.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

See Also

loess

Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
loessreg(trat,resp)
```
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is c(0.3,0.8))
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family
Details

The logarithmic model is defined by:

\[y = \beta_0 + \beta_1 \ln(x) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
LOG(trat,resp)
```

LOG2

Analysis: Logarithmic quadratic

Description

This function performs logarithmic quadratic regression analysis.

Usage

```r
LOG2(
    trat, 
    resp,
    sample.curve = 1000,
    ylab = "Dependent",
    xlab = "Independent",
    theme = theme_classic(),
    legend.position = "top",
    error = "SE",
    r2 = "all",
    point = "all",
```
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
mlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is c(0.3,0.8))
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family
Details

The logarithmic model is defined by:

\[y = \beta_0 + \beta_1 \ln(x) + \beta_2 \ln(x)^2 \]

Value

The function returns a list containing the coefficients and their respective values of \(p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
LOG2(trat,resp)
```

```
logistic

Analysis: Logistic

Description

Logistic models with three (L.3), four (L.4) or five (L.5) continuous data parameters. This model was extracted from the drc package.

Usage

```r
logistic(
 trat,
 resp,
 npar = "L.3",
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
```
r2 = "all",
ic = FALSE,
fill.ic = "gray70",
alpha.ic = 0.5,
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
xname.formula = "x",
yname.formula = "y",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numerical vector with dependent variable.
resp Numerical vector with independent variable.
npar Number of model parameters
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
ic Add interval of confidence
fill.ic Color interval of confidence
alpha.ic confidence interval transparency level
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
The three-parameter logistic function with lower limit 0 is

\[ y = 0 + \frac{d}{1 + \exp(b(x - e))} \]

The four-parameter logistic function is given by the expression

\[ y = c + \frac{d - c}{1 + \exp(b(x - e))} \]

The five-parameter logistic function is given by the expression

\[ y = c + \frac{d - c}{1 + \exp(b(x - e))^f} \]

The function is symmetric about the inflection point \( e \).

Value

The function returns a list containing the coefficients and their respective values of \( p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
logistic(trat,resp)

Description

Analysis: Lorentz

Usage

lorentz(
  trat,
  resp,
  npar = "lo3",
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  error = "SE",
  legend.position = "top",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat        Numeric vector with dependent variable.
resp        Numeric vector with independent variable.
lorentz

npar number of parameters (lo3 or lo4)
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_classic())
error Error bar (It can be SE - default, SD or FALSE)
legend.position legend position (default is "top")
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
xname.formula Name of x in the equation
yname.formula Name of y in the equation
comment Add text after equation
fontfamily Font family

Details

The model to the three-parameter Lorentz is:

\[ y = \frac{d}{1 + b(x - e)^2} \]

The model to the three-parameter Lorentz is:

\[ y = c + \frac{d}{1 + b(x - e)^2} \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Onofri, 2020)

Gabriel Danilo Shimizu
References


Examples

```r
library(AgroReg)
data("granada")
attach(granada)
x=time[length(time):1]
lorentz(x,WL)
```

midilli

Analysis: Midilli

Description

This function performs Midilli regression analysis.

Usage

```r
midilli(
 trat,
 resp,
 initial = NA,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 yname.formula = "y",
 xname.formula = "x",
 comment = NA,
)```
Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
initial List starting estimates
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
ynname.formula Name of y in the equation
xname.formula Name of x in the equation
comment Add text after equation
fontfamily Font family

details

The exponential model is defined by:

\[y = \alpha \times e^{-\beta \cdot x^n} + \theta \cdot x \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
middil(time,100-WL)
```

midillim

Analysis: Modified Midilli

Description

This function performs modified Midilli regression analysis.

Usage

```r
midillim(
  trat,  
  resp,  
  initial = NA,  
  sample.curve = 1000,  
  ylab = "Dependent",  
  xlab = "Independent",  
  theme = theme_classic(),  
  legend.position = "top",  
  error = "SE",  
  r2 = "all",  
  point = "all",  
  width.bar = NA,  
  scale = "none",  
  textsize = 12,  
  pointsize = 4.5,  
  linesize = 0.8,  
  linetype = 1,  
  pointshape = 21,  
  fillshape = "gray",  
  colorline = "black",  
  round = NA,  
  yname.formula = "y",  
)```
Arguments

trat  Numeric vector with dependent variable.
resp  Numeric vector with independent variable.
initial  List starting estimates
sample.curve  Provide the number of observations to simulate curvature (default is 1000)
ylab  Variable response name (Accepts the expression() function)
xlab  treatments name (Accepts the expression() function)
theme  ggplot2 theme (default is theme_bw())
legend.position  legend position (default is "top")
error  Error bar (It can be SE - default, SD or FALSE)
r2  coefficient of determination of the mean or all values (default is all)
point  defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar  Bar width
scale  Sets x scale (default is none, can be "log")
textsize  Font size
pointsize  shape size
linesize  line size
linetype  line type
pointshape  format point (default is 21)
fillshape  Fill shape
colorline  Color lines
round  round equation
yname.formula  Name of y in the equation
xname.formula  Name of x in the equation
comment  Add text after equation
fontfamily  Font family

details

The exponential model is defined by:

\[ y = \alpha \times e^{-\beta \cdot x} + \theta \cdot x \]
Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References


Examples

library(AgroReg)
data("granada")
attach(granada)
midillim(time,100-WL)

mitscherlich

Analysis: Mitscherlich

Description

This function performs Mitscherlich regression analysis.

Usage

mitscherlich(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)

Arguments

trat            Numeric vector with dependent variable.
resp            Numeric vector with independent variable.
initial         List Initial parameters (A, b, e)
sample.curve    Provide the number of observations to simulate curvature (default is 1000)
ylab            Variable response name (Accepts the expression() function)
xlab            treatments name (Accepts the expression() function)
theme           ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error           Error bar (It can be SE - default, SD or FALSE)
r2              coefficient of determination of the mean or all values (default is all)
point           defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar       Bar width
scale           Sets x scale (default is none, can be "log")
textsize        Font size
pointsize       shape size
linesize        line size
linetype        line type
pointshape      format point (default is 21)
fillshape       Fill shape
colorline       Color lines
round           round equation
yname.formula   Name of y in the equation
xname.formula   Name of x in the equation
comment         Add text after equation
fontfamily      Font family
Details

The Mitscherlich model is defined by:

\[ y = A \times (1 - 10^{-eb-ex}) \]

where "y" is the yield obtained when "b" units of a nutrient are in the soil and "x" units of it are added as fertilizer, "A" is the maximum yield, and "e" is the proportionality factor, has recently received increasing interest.

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

```r
library(AgroReg)
data("granada")
attach(granada)
mitscherlich(time,WL)
```

---

Analysis: Michaelis-Menten

Description

This function performs regression analysis using the Michaelis-Menten model.

Usage

```r
MM(
 trat,
 resp,
 npar = "mm2",
 sample.curve = 1000,
 error = "SE",
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 point = "all",
```
Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **npar**: Number of parameters (mm2 or mm3)
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **ylab**: Variable response name (Accepts the expression() function)
- **xlab**: treatments name (Accepts the expression() function)
- **theme**: ggplot2 theme (default is theme_bw())
- **legend.position**: legend position (default is "top")
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **r2**: coefficient of determination of the mean or all values (default is all)
- **ic**: Add interval of confidence
- **fill.ic**: Color interval of confidence
- **alpha.ic**: confidence interval transparency level
- **texsize**: Font size
- **pointsize**: shape size
- **linesize**: line size
- **linetype**: line type
- **pointshape**: format point (default is 21)
- **fillshape**: Fill shape
The two-parameter Michaelis-Menten model is defined by:

\[ y = \frac{V_m \times x}{k + x} \]

The three-parameter Michaelis-Menten model is defined by:

\[ y = c + \frac{V_m \times x}{k + x} \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu

References


Examples

data(“granada”)
attach(granada)
MM(time,WL)
MM(time,WL,npar="mm3")
**newton**

**Analysis: Newton**

**Description**

This function performs exponential regression analysis. This model was used by Newton.

**Usage**

```r
gewexew(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 yname.formula = "y",
 xname.formula = "x",
 comment = NA,
 fontfamily = "sans"
)
```

**Arguments**

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000).
- **ylab**: Variable response name (Accepts the `expression()` function).
- **xlab**: Treatments name (Accepts the `expression()` function).
- **theme**: ggplot2 theme (`default is theme_bw()`).
- **legend.position**: Legend position (`default is "top"`).
newton

Error bar (It can be SE - default, SD or FALSE)
$r^2$ coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
yname.formula Name of y in the equation
xname.formula Name of x in the equation
comment Add text after equation
fontfamily Font family

Details
The exponential model is defined by:

$$y = e^{-\beta x} \cdot x$$

Value
The function returns a list containing the coefficients and their respective values of $p$; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples
library(AgroReg)
data("aristolochia")
attach(aristolochia)
newton(trat,resp+0.001)
Analysis: Graph for not significant trend

Description

Graph for non-significant trend. Can be used within the multicurve command.

Usage

```r
Nreg(
 trat,
 resp,
 ylab = "Dependent",
 xlab = "Independent",
 error = "SE",
 theme = theme_classic(),
 legend.position = "top",
 legend.text = "not-significant",
 legend.add.mean = TRUE,
 legend.add.mean.name = "hat(y)",
 width.bar = NA,
 point = "all",
 textsize = 12,
 add.line = FALSE,
 add.line.mean = FALSE,
 linesize = 0.8,
 linetype = 1,
 pointsize = 4.5,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 fontfamily = "sans"
)
```

Arguments

- `trat`: Numeric vector with dependent variable.
- `resp`: Numeric vector with independent variable.
- `ylab`: Dependent variable name (Accepts the `expression()` function).
- `xlab`: Independent variable name (Accepts the `expression()` function).
- `error`: Error bar (It can be SE - `default`, SD or FALSE).
- `theme`: ggplot2 theme (`default` is `theme_classic()`).
- `legend.position`: Legend position (`default` is "top").
- `legend.text`: Legend text.
The function returns an exploratory graph of segments.

Author(s)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples
```
library(AgroReg)
data("aristolochia")
attach(aristolochia)
Nreg(trat,resp)
```
Usage

```r
PAGE(
 trat,
 resp,
 initial = NA,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 yname.formula = "y",
 xname.formula = "x",
 comment = NA,
 fontfamily = "sans"
)
```

Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **initial**: Starting estimates
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **ylab**: Variable response name (Accepts the `expression()` function)
- **xlab**: treatments name (Accepts the `expression()` function)
- **theme**: ggplot2 theme (default is theme_bw())
- **legend.position**: legend position (default is "top")
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **r2**: coefficient of determination of the mean or all values (default is all)
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (default is none, can be "log")
The exponential model is defined by:

$$y = e^{-k \cdot x^n}$$

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References


Examples

library(AgroReg)
data("granada")
attach(granada)
PAGE(time, 100-WL)
Description

This function performs Peleg regression analysis.

Usage

peleg(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
initial Starting estimates
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
yname.formula Name of y in the equation
xname.formula Name of x in the equation
comment Add text after equation
fontfamily Font family

Details
The Peleg model is defined by:
\[ y = \frac{(1 - x)}{a + bx} \]

Value
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References
Examples

library(AgroReg)
data("granada")
attach(granada)
peleg(time, WL)

plateau.linear

Analysis: Plateau-Linear

Description

This function performs the plateau-linear regression analysis.

Usage

plateau.linear(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  xname.formula = "x",
  yname.formula = "y",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat  Numeric vector with dependent variable.
resp  Numeric vector with independent variable.
sample.curve: Provide the number of observations to simulate curvature (default is 1000)
ylab: Variable response name (Accepts the expression() function)
xlab: treatments name (Accepts the expression() function)
theme: ggplot2 theme (default is theme_bw())
legend.position: legend position (default is "top")
error: Error bar (It can be SE - default, SD or FALSE)
r2: coefficient of determination of the mean or all values (default is all)
point: defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar: Bar width
scale: Sets x scale (default is none, can be "log")
textsize: Font size
pointsize: shape size
linesize: line size
linetype: line type
pointshape: format point (default is 21)
fillshape: Fill shape
colorline: Color lines
round: round equation
xname.formula: Name of x in the equation
yname.formula: Name of y in the equation
comment: Add text after equation
fontfamily: Font family

Details

The plateau-linear model is defined by: First curve:

\[ y = \beta_0 + \beta_1 \times \text{breakpoint}(x < \text{breakpoint}) \]

Second curve:

\[ y = \beta_0 + \beta_1 \times x(x > \text{breakpoint}) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); breakpoint and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
plateau.quadratic

References


See Also

quadric.quad, liner.linear

Examples

library(AgroReg)
data("granada")
attach(granada)
x=time[length(time):1]
plateau.linear(x,WL)

plateau.quadratic  Analysis: Plateau-quadratic

Description

This function performs the plateau-quadratic regression analysis.

Usage

plateau.quadratic(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
)
plateau.quadratic

```r
round = NA,
yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)

plquadratic(x, a, breakpoint, b, c)
```

### Arguments

- **trat**
  Numeric vector with dependent variable.

- **resp**
  Numeric vector with independent variable.

- **sample.curve**
  Provide the number of observations to simulate curvature (default is 1000)

- **ylab**
  Variable response name (Accepts the `expression()` function)

- **xlab**
  treatments name (Accepts the `expression()` function)

- **theme**
  ggplot2 theme (default is `theme_bw()`)

- **legend.position**
  legend position (default is "top")

- **error**
  Error bar (It can be SE - default, SD or FALSE)

- **r2**
  coefficient of determination of the mean or all values (default is all)

- **point**
  defines whether you want to plot all points ("all") or only the mean ("mean")

- **width.bar**
  Bar width

- **scale**
  Sets x scale (default is none, can be "log")

- **textsize**
  Font size

- **pointsize**
  shape size

- **linesize**
  line size

- **linetype**
  line type

- **pointshape**
  format point (default is 21)

- **fillshape**
  Fill shape

- **colorline**
  Color lines

- **round**
  round equation

- **yname.formula**
  Name of y in the equation

- **xname.formula**
  Name of x in the equation

- **comment**
  Add text after equation

- **fontfamily**
  Font family

- **a**
  Numeric vector with dependent variable.

- **x**
  The plateau value

- **breakpoint**
  breakpoint value

- **b**
  Linear term

- **c**
  Quadratic term
Details

The Plateau-quadratic model is defined by:

First curve:

\[ y = \beta_0 + \beta_1 \cdot \text{breakpoint} + \beta_2 \cdot \text{breakpoint}^2 (x < \text{breakpoint}) \]

Second curve:

\[ y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 (x > \text{breakpoint}) \]

or

\[ y = a + b(x + \text{breakpoint}) + c(x + \text{breakpoint})^2 (x > \text{breakpoint}) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References


See Also

linear.linear, linear.plateau

Examples

library(AgroReg)
data("granada")
attach(granada)
x=time[length(time):1]
plateau.quadratic(x,WL)
plot_arrange

Merge multiple curves into a single graph

Description

Merge multiple curves into a single graph

Usage

plot_arrange(
  plots,
  point = "mean",
  theme = theme_classic(),
  legend.title = NULL,
  legend.position = "top",
  trat = NA,
  gray = FALSE,
  ylab = "Dependent",
  xlab = "Independent",
  widthbar = 0,
  pointsize = 4.5,
  linesize = 0.8,
  textsize = 12,
  legendsize = 12,
  legendtitlesize = 12,
  fontfamily = "sans"
)

Arguments

plots list with objects of type analysis.
point defines whether you want to plot all points ("all") or only the mean ("mean")
theme ggplot2 theme (default is theme_classic())
legend.title caption title
legend.position legend position (default is c(0.3,0.8))
trat name of the curves
gray gray scale (default is FALSE)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
widthbar bar width (default is 0.3)
pointsize shape size
linesize line size
The function returns a graph joining the outputs of the functions LM_model, LL_model, BC_model, CD_model, loess_model, normal_model, piecewise_model and N_model.

Author(s)
Gabriel Danilo Shimizu

Examples

```r
library(AgroReg)
library(ggplot2)
data("aristolochia")
attach(aristolochia)
a=LM(trat,resp)
b=LL(trat,resp,npar = "LL.3")
plot_arrange(list(a,b))

models <- c("LM1", "LL3")
r <- lapply(models, function(x) {
r <- with(granada, regression(time, WL, model = x))
})
plot_arrange(r,trat= models, ylab="WL (%)", xlab="Time (Minutes)")

models = c("asymptotic_neg", "biexponential", "LL4", "BC4", "CD5", "linear.linear", "linear.plateau", "quadratic.plateau", "mitscherlich", "MM2")

m = lapply(models, function(x) {
m = with(granada, regression(time, WL, model = x)))
plot_arrange(m, trat = paste("","models",""))
```

Description

This function performs potencial regression analysis.
Usage

potential(
  trat,
  resp,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  error = "SE",
  r2 = "all",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)

Arguments

trat        Numeric vector with dependent variable.
resp        Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab        Variable response name (Accepts the expression() function)
xlab        treatments name (Accepts the expression() function)
theme       ggplot2 theme (default is theme_bw())
legend.position legend position (default is "top")
error       Error bar (It can be SE - default, SD or FALSE)
r2          coefficient of determination of the mean or all values (default is all)
point       defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar   Bar width
scale       Sets x scale (default is none, can be "log")
textsize    Font size
potential

```r
library(AgroReg)
data("granada")
attach(granada)
potential(time,WL)
```

Details

The exponential model is defined by:

\[ y = \alpha \times trat^\beta \]

Value

The function returns a list containing the coefficients and their respective values of \( p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Analysis: Quadratic-plateau

Description

This function performs the quadratic-plateau regression analysis.

Usage

```r
quadratic.plateau(
 trat,
 resp,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 error = "SE",
 r2 = "all",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 yname.formula = "y",
 xname.formula = "x",
 comment = NA,
 fontfamily = "sans"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trat</td>
<td>Numeric vector with dependent variable.</td>
</tr>
<tr>
<td>resp</td>
<td>Numeric vector with independent variable.</td>
</tr>
<tr>
<td>sample.curve</td>
<td>Provide the number of observations to simulate curvature (default is 1000)</td>
</tr>
<tr>
<td>ylab</td>
<td>Variable response name (Accepts the <code>expression()</code> function)</td>
</tr>
<tr>
<td>xlab</td>
<td>treatments name (Accepts the <code>expression()</code> function)</td>
</tr>
<tr>
<td>theme</td>
<td>ggplot2 theme (default is theme_bw())</td>
</tr>
<tr>
<td>legend.position</td>
<td>legend position (default is &quot;top&quot;)</td>
</tr>
</tbody>
</table>
error Error bar (It can be SE - default, SD or FALSE)
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
yname.formula Name of y in the equation
xname.formula Name of x in the equation
comment Add text after equation
fontfamily Font family

Details

The quadratic-plateau model is defined by:

First curve:
\[ y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 (x < \text{breakpoint}) \]

Second curve:
\[ y = \beta_0 + \beta_1 \cdot \text{breakpoint} + \beta_2 \cdot \text{breakpoint}^2 (x > \text{breakpoint}) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References


See Also

linear.linear, linear.plateau

Examples

library(AgroReg)
data("granada")
attach(granada)
quadratic.plateau(time, WL)

regression (Analysis: Regression linear or nonlinear)

Description

This function is a simplification of all the analysis functions present in the package.

Usage

regression(
  trat,
  resp,
  model = "LM1",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  pointshape = 21,
  round = NA,
  fontfamily = "sans",
  error = "SE",
  width.bar = NA,
  xname.formula = "x",
  yname.formula = "y"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
model model regression (default is LM1)
ylab Variable response name (Accepts the expression() function)
xlab treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_classic())
legend.position legend position (default is c(0.3,0.8))
point defines whether you want to plot all points ("all") or only the mean ("mean")
textsize Font size
pointsize shape size
linesize line size
pointshape format point (default is 21)
round round equation
fontfamily Font family
error Error bar (It can be SE - default, SD or FALSE)
width.bar Bar width
xname.formula Name of x in the equation
ynamer.formula Name of y in the equation

Details
To change the regression model, change the "model" argument to:

1. N: Graph for not significant trend.
2. loess0: Loess non-parametric degree 0
3. loess1: Loess non-parametric degree 1
4. loess2: Loess non-parametric degree 2
5. LM0.5: Quadratic inverse
6. LM1: Linear regression.
7. LM2: Quadratic
8. LM3: Cubic
9. LM4: Quartic
10. LM0.5_i: Quadratic inverse without intercept.
11. LM1_i: Linear without intercept.
12. LM2_i: Quadratic regression without intercept.
13. LM3_i: Cubic without intercept.
14. LM4_i: Quartic without intercept.
15. LM13: Cubic without beta2
16. LM13i: Cubic inverse without beta2
17. LM23: Cubic without beta1
18. LM23i: Cubic inverse without beta2
19. LM23i: Cubic without beta1, with inverse beta3
20. **valcam**: Valcam
21. **L3**: Three-parameter logistics.
22. **L4**: Four-parameter logistics.
23. **L5**: Five-parameter logistics.
24. **LL3**: Three-parameter log-logistics.
25. **LL4**: Four-parameter log-logistics.
26. **LL5**: Five-parameter log-logistics.
27. **BC4**: Brain-Cousens with four parameter.
28. **BC5**: Brain-Cousens with five parameter.
29. **CD4**: Cedergreen-Ritz-Streibig with four parameter.
30. **CD5**: Cedergreen-Ritz-Streibig with five parameter.
31. **weibull3**: Weibull with three parameter.
32. **weibull4**: Weibull with four parameter.
33. **GP2**: Gompertz with two parameter.
34. **GP3**: Gompertz with three parameter.
35. **GP4**: Gompertz with four parameter.
36. **VB**: Von Bertalanffy
37. **lo3**: Lorentz with three parameter
38. **lo4**: Lorentz with four parameter
39. **beta**: Beta
40. **gaussian3**: Analogous to the Gaussian model/Bragg with three parameters.
41. **gaussian4**: Analogous to the Gaussian model/Bragg with four parameters.
42. **linear.linear**: Linear-linear
43. **linear.plateau**: Linear-plateau
44. **quadratic.plateau**: Quadratic-plateau
45. **plateau.linear**: Plateau-linear
46. **plateau.quadratic**: Plateau-Quadratic
47. **log**: Logarithmic
48. **log2**: Logarithmic quadratic
49. **thompson**: Thompson
50. **asymptotic**: Exponential
51. **asymptotic_neg**: Exponential negative
52. **asymptotic_i**: Exponential without intercept.
53. **asymptotic_ineg**: Exponential negative without intercept.
54. **biexponential**: Biexponential
55. **mitscherlich**: Mitscherlich
56. **yieldloss**: Yield-loss
57. **hill**: Hill
58. **MM2**: Michaelis-Menten with two parameter.
59. **MM3**: Michaelis-Menten with three parameter.
60. **SH**: Steinhart-Hart
61. **page**: Page
62. **newton**: Newton
63. **potential**: Potential
64. **midilli**: Midilli
65. **midillim**: Modified Midilli
66. **AM**: Avhad and Marchetti
67. **peleg**: Peleg
68. **VG**: Vega-Galvez

### Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

#### Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
regression(trat, resp)
```

---

**SH**  
*Analysis: Steinhart-Hart*

---

### Description

The Steinhart-Hart model. The Steinhart-Hart equation is a model used to explain the behavior of a semiconductor at different temperatures, however, Zhai et al. (2020) used this model to relate plant density and grain yield.

### Usage

```r
SH(
 trat,
 resp,
 initial = NA,
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
)```
theme = theme_classic(),
legend.position = "top",
r2 = "all",
error = "SE",
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
initial Starting estimates
sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab Treatments name (Accepts the expression() function)
theme ggplot2 theme (default is theme_bw())
legend.position Legend position (default is "top")
r2 Coefficient of determination of the mean or all values (default is all)
error Error bar (It can be SE - default, SD or FALSE)
point Defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize Shape size
linesize Line size
linetype line type
pointshape Format point (default is 21)
fillshape Fill shape
The model function for the Steinhart-Hart model is:

\[y = \frac{1}{A + B \times \ln(x) + C \times \ln(x)^3} \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

See Also

LL, CD, GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
SH(trat,resp)
Description

This function calculates other statistical parameters such as Mean (Bias) Error, Relative Mean (Bias) Error, Mean Absolute Error, Relative Mean Absolute Error, Root Mean Square Error, Relative Root Mean Square Error, Modeling Efficiency, Standard deviation of differences, Coefficient of Residual Mass.

Usage

stat_param(models, names_model = NA, round = 3)

Arguments

models List with objects of type analysis
names_model Names of the models
round Round numbers

Value

Returns a table with the statistical parameters for choosing the model.

Author(s)

Gabriel Danilo Shimizu

Examples

library(AgroReg)
data(granada)
attach(granada)
a=LM(time,WL)
b=LL(time,WL)
c=BC(time,WL)
d=weibull(time,WL)
stat_param(models=list(a,b,c,d))
Analysis: Thompson

This function performs Thompson regression analysis.

Usage

```r
thompson(
  trat, 
  resp, 
  sample.curve = 1000, 
  ylab = "Dependent", 
  xlab = "Independent", 
  theme = theme_classic(), 
  legend.position = "top", 
  error = "SE", 
  r2 = "all", 
  point = "all", 
  width.bar = NA, 
  scale = "none", 
  textsize = 12, 
  pointsize = 4.5, 
  linesize = 0.8, 
  linetype = 1, 
  pointshape = 21, 
  fillshape = "gray", 
  colorline = "black", 
  round = NA, 
  yname.formula = "y", 
  xname.formula = "x", 
  comment = NA, 
  fontfamily = "sans"
)
```

Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000).
- **ylab**: Variable response name (Accepts the `expression()` function).
- **xlab**: Treatments name (Accepts the `expression()` function).
- **theme**: ggplot2 theme (default is `theme_bw()`).
- **legend.position**: Legend position (default is `c(0.3,0.8)`).
error Error bar (It can be SE - default, SD or FALSE)
$\textit{r2}$ coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
$\textit{yname.formula}$ Name of y in the equation
$\textit{xname.formula}$ Name of x in the equation
comment Add text after equation
fontfamily Font family

Details

The logarithmic model is defined by:

\[y = \beta_1 \ln(x) + \beta_2 \ln(x)^2 \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

Examples

```r
library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
thompson(trat,resp)
```

valcam

Analysis: Valcam

Description

This function performs Valcam regression analysis.

Usage

```r
valcam(
  trat,
  resp,
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "mean",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)
```

Arguments

- `trat`: Numeric vector with dependent variable.
- `resp`: Numeric vector with independent variable.
sample.curve Provide the number of observations to simulate curvature (default is 1000)
error Error bar (It can be SE - default, SD or FALSE)
ylab Dependent variable name (Accepts the expression() function)
xlab Independent variable name (Accepts the expression() function)
theme ggplot2 theme (default is theme_classic())
legend.position legend position (default is "top")
r2 coefficient of determination of the mean or all values (default is all)
point defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size
pointsize shape size
linesize line size
linetype line type
pointshape format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation
yname.formula Name of y in the equation
xname.formula Name of x in the equation
comment Add text after equation
fontfamily Font family

Details

The Valcam model is defined by:

\[y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^{1.5} + \beta_3 \cdot x^2 \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
References

Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
valcam(trat,resp)
```

Analysis: Von Bertalanffy

Description

The Von Bertalanffy model. It’s a kind of growth curve for a time series and takes its name from its creator, Ludwig von Bertalanffy. It is a special case of the generalized logistic function. The growth curve (biology) is used to model the average length from age in animals.

Usage

```r
VB(
  trat,
  resp,
  initial = NA,
  sample.curve = 1000,
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  r2 = "all",
  error = "SE",
  point = "all",
  width.bar = NA,
  scale = "none",
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
)```
fontfamily = "sans"
)

Arguments

trat  Numeric vector with dependent variable.
resp  Numeric vector with independent variable.
initial Starting estimates
sample.curve  Provide the number of observations to simulate curvature (default is 1000)
ylab  Variable response name (Accepts the expression() function)
xlab  Treatments name (Accepts the expression() function)
theme  ggplot2 theme (default is theme_bw())
legend.position Legend position (default is "top")
r2  Coefficient of determination of the mean or all values (default is all)
error  Error bar (It can be SE - default, SD or FALSE)
point  Defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar  Bar width
scale  Sets x scale (default is none, can be "log")
textsize  Font size
pointsize  Shape size
linesize  Line size
linetype  line type
pointshape  Format point (default is 21)
fillshape  Fill shape
colorline  Color lines
round  round equation
yname.formula  Name of y in the equation
xname.formula  Name of x in the equation
comment  Add text after equation
fontfamily  Font family

Details

The model function for the von Bertalanffy model is:

\[ y = L (1 - \exp(-k(t - t0))) \]

Value

The function returns a list containing the coefficients and their respective values of \( p \); statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

Examples

```r
library(AgroReg)
x=seq(1,20)
y=c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.91,
 0.92, 0.94, 0.96, 0.98, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
VG(x,y)
```

Analysis: Vega-Galvez

Description

This function performs Vega-Galvez regression analysis.

Usage

```r
VG(
 trat,
 resp,
 sample.curve = 1000,
 error = "SE",
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 r2 = "mean",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
 yname.formula = "y",
 xname.formula = "x",
 comment = NA,
 fontfamily = "sans"
)
```
Arguments

- **trat**: Numeric vector with dependent variable.
- **resp**: Numeric vector with independent variable.
- **sample.curve**: Provide the number of observations to simulate curvature (default is 1000)
- **error**: Error bar (It can be SE - default, SD or FALSE)
- **ylab**: Dependent variable name (Accepts the `expression()` function)
- **xlab**: Independent variable name (Accepts the `expression()` function)
- **theme**: ggplot2 theme (default is theme_classic())
- **legend.position**: legend position (default is "top")
- **r2**: coefficient of determination of the mean or all values (default is all)
- **point**: defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar**: Bar width
- **scale**: Sets x scale (default is none, can be "log")
- **textsize**: Font size
- **pointsizesize**: shape size
- **linesize**: line size
- **linetype**: line type
- **pointshape**: format point (default is 21)
- **fillshape**: Fill shape
- **colorline**: Color lines
- **round**: round equation
- **yname.formula**: Name of y in the equation
- **xname.formula**: Name of x in the equation
- **comment**: Add text after equation
- **fontfamily**: Font family

Details

The Vega-Galvez model is defined by:

\[ y = \beta_0 + \beta_1(\sqrt{x}) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
weibull

References

Examples

```r
library(AgroReg)
data("aristolochia")
attach(aristolochia)
VG(trat, resp)
```

---

### Analysis: Weibull

**Description**
The w3' and 'w4' logistical models provide Weibull. This model was extracted from the `drc` package.

**Usage**
```
weibull(
 trat, resp,
 npar = "w3",
 sample.curve = 1000,
 ylab = "Dependent",
 xlab = "Independent",
 theme = theme_classic(),
 legend.position = "top",
 r2 = "all",
 ic = FALSE,
 fill.ic = "gray70",
 alpha.ic = 0.5,
 error = "SE",
 point = "all",
 width.bar = NA,
 scale = "none",
 textsize = 12,
 pointsize = 4.5,
 linesize = 0.8,
 linetype = 1,
 pointshape = 21,
 fillshape = "gray",
 colorline = "black",
 round = NA,
)```

weibull

yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)

Arguments

trat Numeric vector with dependent variable.
resp Numeric vector with independent variable.
npar Number of model parameters (default is w3)

sample.curve Provide the number of observations to simulate curvature (default is 1000)
ylab Variable response name (Accepts the expression() function)
xlab Treatments name (Accepts the expression() function)

theme ggplot2 theme (default is theme_bw())
legend.position Legend position (default is "top")
r2 Coefficient of determination of the mean or all values (default is all)

ic Add interval of confidence
fill.ic Color interval of confidence
alpha.ic confidence interval transparency level
error Error bar (It can be SE - default, SD or FALSE)
point Defines whether you want to plot all points ("all") or only the mean ("mean")
width.bar Bar width
scale Sets x scale (default is none, can be "log")
textsize Font size

pointsize Shape size
linesize Line size
linetype line type
pointshape Format point (default is 21)
fillshape Fill shape
colorline Color lines
round round equation

ynname.formula Name of y in the equation
xname.formula Name of x in the equation
comment Add text after equation
fontfamily Font family
Details

The three-parameter Weibull model is given by the expression

\[y = d \exp(- \exp(b(\log(x) - e))) \]

Fixing the lower limit at 0 yields the four-parameter model

\[y = c + (d - c)(1 - \exp(- \exp(b(\log(x) - \log(e))))) \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the drc package (Ritz et al., 2016)

Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves

References

See Also

LL, CD,GP

Examples

library(AgroReg)
data("aristolochia")
attach(aristolochia)
weibull(trat,resp)

yieldloss Analysis: Yield-loss

Description

This function performs regression analysis using the Yield loss model.
Usage

```r
yieldloss(
  trat, resp,
  sample.curve = 1000, error = "SE",
  ylab = "Dependent", xlab = "Independent",
  theme = theme_classic(), legend.position = "top",
  point = "all", width.bar = NA, r2 = "all",
  textsize = 12, pointsize = 4.5, linesize = 0.8, linetype = 1,
  pointshape = 21, fillshape = "gray", colorline = "black",
  round = NA, yname.formula = "y", xname.formula = "x",
  comment = NA, scale = "none", fontfamily = "sans"
)
```

Arguments

- **trat** Numeric vector with dependent variable.
- **resp** Numeric vector with independent variable.
- **sample.curve** Provide the number of observations to simulate curvature (default is 1000)
- **error** Error bar (It can be SE - default, SD or FALSE)
- **ylab** Variable response name (Accepts the `expression()` function)
- **xlab** treatments name (Accepts the `expression()` function)
- **theme** ggplot2 theme (`default` is `theme_bw()`)
- **legend.position** legend position (`default` is "top")
- **point** defines whether you want to plot all points ("all") or only the mean ("mean")
- **width.bar** Bar width
- **r2** coefficient of determination of the mean or all values (`default` is all)
- **textsize** Font size
- **pointsize** shape size
The Yield Loss model is defined by:

\[y = \frac{i \times x}{1 + \frac{i}{A} \times x} \]

Value

The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.

Author(s)

Model imported from the aomisc package (Onofri, 2020)

Gabriel Danilo Shimizu

References

Examples

data("granada")
attach(granada)
yieldloss(time, WL)
Index

* datasets
 aristolochia, 8
 granada, 34
* linear
 LM, 45
 LM13, 47
 LM13i, 49
 LM23, 51
 LM23i, 53
 LM2i3, 55
 LM_i, 57
* non-significant
 Nreg, 81
* regression
 LM, 45
 LM13, 47
 LM13i, 49
 LM23, 51
 LM23i, 53
 LM2i3, 55
 LM_i, 57
 adjust_scale, 3
 adjust_scale_x, 4
 adjust_scale_y, 5
 AM, 5
 aristolochia, 8
 asymptotic, 8
 asymptotic_i, 10
 asymptotic_ineg, 12
 asymptotic_neg, 15, 23
 BC, 17, 26, 34
 beta_reg, 19
 biexponential, 21
 CD, 19, 23, 34, 103, 115
 coloredit_arrange, 26
 comparative_model, 27
 correlation, 27
 extract.model, 29
 gaussianreg, 29
 GP, 19, 26, 32, 103, 115
 granada, 34
 hill, 35
 interval.confidence, 37
 linear.linear, 38, 42, 89, 91, 98
 linear.plateau, 40, 40, 91, 98
 LL, 19, 26, 34, 42, 103, 115
 LM, 45
 LM13, 47
 LM13i, 49
 LM23, 51
 LM23i, 53
 LM2i3, 55
 LM_i, 57
 loess, 61
 loessreg, 59
 LOG, 61
 LOG2, 63
 logistic, 65
 lorentz, 68
 midilli, 70
 midillim, 72
 mitscherlich, 74
 MM, 76
 newton, 79
 Nreg, 81
 PAGE, 82
 peleg, 85
 plateau.linear, 87
 plateau.quadratic, 89
 plot_arrange, 92
 plquadratic (plateau.quadratic), 89
potential, 93
quadratic.plateau, 40, 42, 89, 96
regression, 98
SH, 101
stat_param, 104
thompson, 105
valcam, 107
VB, 109
VG, 111
weibull, 113
yieldloss, 115