Package ‘Anaconda’
October 14, 2022

Type Package

Title Targeted Differential and Global Enrichment Analysis of Taxonomic Rank by Shared Asvs

Version 0.1.5

Author Pierre-Louis Stenger [cre, aut]
Maintainer Pierre-Louis Stenger <Pierrelouis.stenger@gmail.com>

Description
Targeted differential and global enrichment analysis of taxonomic rank by shared ASVs (Ampli-con Sequence Variant), for high-throughput eDNA sequencing of fungi, bacteria, and metazoan. Actually works in two steps: I) Targeted differential analysis from QIIME2 data and II) Global analysis by Taxon Mann-Whitney U test analysis from targeted analysis (I)
(I) Estimate variance-mean dependence in count/abundance ASVs data from high-throughput sequencing assays and test for differential represented ASVs based on a model using the negative binomial distribution.
(II) NCBI_Taxon_MWU uses continuous measure of significance (such as fold-change or -log(p-value)) to identify NCBI_Taxon that are significantly enriches with either up- or down-represented ASVs. If the measure is binary (0 or 1) the script will perform a typical 'NCBI_Taxon enrichment' analysis based Fisher's exact test: it will show NCBI_Taxon over-represented among the ASVs that have 1 as their measure. On the plot, different fonts are used to indicate significance and color indicates enrichment with either up (red) or down (blue) regulated ASVs. No colors are shown for binary measure analysis. The tree on the plot is hierarchical clustering of NCBI_Taxon based on shared ASVs. Categories with no branch length between them are subsets of each other. The fraction next to the category name indicates the fraction of 'good' ASVs in it; 'good' ASVs are the ones exceeding the arbitrary absValue cutoff (option in taxon_mwuPlot()). For Fisher's based test, specify absValue=0.5. This value does not affect statistics and is used for plotting only. The original idea was for genes differential expression analysis from Wright et al (2015) <doi:10.1186/s12864-015-1540-2>; adapted here for taxonomic analysis.
The ‘Anaconda’ package makes it possible to carry out these analyses by automatically creating several graphs and tables and storing them in specially created subfolders. You will need your QIIME2 pipeline output for each kingdom (eg; Fungi and/or Bacteria and/or Metazoan): i) taxonomy.tsv, ii) taxonomy_RepSeq.tsv, iii) ASV.tsv and iv) SampleSheet_comparison.txt (the latter being created by you).
License GPL (>= 2)
URL https://github.com/PLStenger/Anaconda
BugReports https://github.com/PLStenger/Anaconda/issues
Imports ggrepel, pheatmap, lookup, plyr, data.table, rafalib, RColorBrewer, methods, graphics
Depends ape, DESeq2, ggplot2
Encoding UTF-8
RoxygenNote 7.2.1
NeedsCompilation no
Repository CRAN
Date/Publication 2022-10-14 08:55:29 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>3</td>
</tr>
<tr>
<td>clusteringGOs</td>
<td>4</td>
</tr>
<tr>
<td>dasva_raw_input</td>
<td>4</td>
</tr>
<tr>
<td>database_bacteria_creation</td>
<td>5</td>
</tr>
<tr>
<td>database_fungi_creation</td>
<td>6</td>
</tr>
<tr>
<td>database_fungi_creation_RepSeq</td>
<td>6</td>
</tr>
<tr>
<td>database_metazoan_creation</td>
<td>7</td>
</tr>
<tr>
<td>fisherTest</td>
<td>8</td>
</tr>
<tr>
<td>format_input</td>
<td>8</td>
</tr>
<tr>
<td>Fungi</td>
<td>9</td>
</tr>
<tr>
<td>funguild_input_targeted</td>
<td>9</td>
</tr>
<tr>
<td>get_bactotraits_targeted</td>
<td>10</td>
</tr>
<tr>
<td>get_dasva</td>
<td>10</td>
</tr>
<tr>
<td>get_funguilds</td>
<td>11</td>
</tr>
<tr>
<td>get_funguilds_targeted</td>
<td>12</td>
</tr>
<tr>
<td>get_input_files</td>
<td>12</td>
</tr>
<tr>
<td>get_link_guilds</td>
<td>13</td>
</tr>
<tr>
<td>get_taxon_list_drawer</td>
<td>13</td>
</tr>
<tr>
<td>heatmap_condition</td>
<td>14</td>
</tr>
<tr>
<td>heatmap_data_dasva</td>
<td>14</td>
</tr>
<tr>
<td>heatmap_samples_hclust</td>
<td>15</td>
</tr>
<tr>
<td>heatmap_samples_matrix</td>
<td>15</td>
</tr>
<tr>
<td>heatmap_taxo</td>
<td>16</td>
</tr>
<tr>
<td>input_global_analysis</td>
<td>16</td>
</tr>
<tr>
<td>Metazoan</td>
<td>17</td>
</tr>
<tr>
<td>move_files</td>
<td>17</td>
</tr>
<tr>
<td>mwuTest</td>
<td>18</td>
</tr>
<tr>
<td>PCA_data_dasva</td>
<td>18</td>
</tr>
<tr>
<td>plotDispASVs</td>
<td>19</td>
</tr>
<tr>
<td>plotMA.dasva</td>
<td>20</td>
</tr>
</tbody>
</table>
Bacteria

This function creates a new folder named Bacteria and sets your working directory into this folder. Please, run `setwd("Bacteria")` after this function.

Usage

Bacteria(nothing)

Arguments

nothing

It's important not to write anything between the brackets, a new folder named Bacteria will be created and your working directory will be set into this folder, depending on the selected Kingdom.

Value

A new folder named Bacteria will be created and your working directory will be set into this folder, depending on the selected Kingdom.

Examples

Not run: Bacteria()
Please, run `setwd("Bacteria")` after this function.
Description

clusteringGOs from DESeq2 analysis pipeline

Usage

clusteringGOs(gen2go, div, cutHeight)

Arguments

- `gen2go` from DESeq2 analysis pipeline
- `div`
- `cutHeight`

Value

a clustering GO

Examples

```r
## Not run: clusteringGOs()
```

description

Used in heatmap_samples_hclust(), heatmap_samples_matrix(), PCA_data_dasva() and get_dasva() functions.

Usage

dasva_raw_input(sampleTable, directory = ".", design, ignoreRank = FALSE, ...)

Arguments

- `sampleTable` Depending of the heatmap_samples_hclust(), heatmap_samples_matrix(), PCA_data_dasva() and get_dasva() functions.
- `directory`
- `design`
- `ignoreRank`
- `...`
database_bacteria_creation

Value

object

Examples

```r
## Not run: dasva_raw <- dasva_raw_input(sampleTable = sampleTable,
directory = targeted_analysis_dir,
design= ~ condition)
## End(Not run)
```

database_bacteria_creation

Description

Create a Database for Bacteria kingdom for Global analysis by Taxon_MWU analysis from targeted analysis. Please, run setwd("02_Global_analysis") after this function.

Usage

database_bacteria_creation(nothing)

Arguments

nothing It's important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_bacteria_package_all.tab created from the taxonomy_all_bacteria_QIIME2_and_NCBI_format.txt file and your own taxonomy_RepSeq.tsv file. database_bacteria_creation()

Examples

```r
# It is important not to write anything between the brackets, the database will create itself.
## Not run: database_bacteria_creation()
# Please, run setwd("02_Global_analysis") after this function.
```
database_fungi_creation

Description

Create a Database for Fungi kingdom for Global analysis by Taxon_MWU analysis from targeted analysis only from rarefied ASVs. Please, run setwd("02_Global_analysis") after this function.

Usage

database_fungi_creation(nothing)

Arguments

nothing It’s important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_fungi_package_all.tab created from the taxonomy_all_bacteria_QIIME2_and_NCBI_format.txt file and your own taxonomy.tsv file.

Examples

```r
# It is important not to write anything between the brackets, the database will create itself.
## Not run: database_fungi_creation()
# Please, run setwd("02_Global_analysis") after this function.
```

database_fungi_creation_RepSeq

Description

Create a Database for Fungi kingdom for Global analysis by Taxon_MWU analysis from targeted analysis. Please, run setwd("02_Global_analysis") after this function.

Usage

database_fungi_creation_RepSeq(nothing)

Arguments

nothing It’s important not to write anything between the brackets, the database will create itself.
database_metazoan_creation

Value

A data frame file named database_fungi_package_all.tab created from the taxonomy_all_bacteria_QIIME2_and_NCBI_format.txt file and your own taxonomy_RepSeq.tsv file.

Examples

It is important not to write anything between the brackets, the database will create itself.
Not run: database_fungi_creation_RepSeq()
Please, run setwd("02_Global_analysis") after this function.

database_metazoan_creation

database_metazoan_creation

description

Create a Database for metazoan kingdom for Global analysis by Taxon_MWU analysis from targeted analysis. Please, run setwd("02_Global_analysis") after this function.

Usage

database_metazoan_creation(nothing)

Arguments

nothing It’s important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_metazoan_package_all.tab created from the taxonomy_all_metazoan_QIIME2_and_NCBI_format.txt file and your own taxonomy_RepSeq.tsv file. database_metazoan_creation()

Examples

It is important not to write anything between the brackets, the database will create itself.
Not run: database_metazoan_creation()
Please, run setwd("02_Global_analysis") after this function.
fischerTest

Description
Ficher Test from RBGOA

Usage
fischerTest(gotable)

Arguments
gotable from gomwuStats from RBGOA

Value
fischerTest

Examples
Not run: fischerTest()

format_input

Description
Apply logP on both positive and negative ASVs FC

Usage
format_input(x)

Arguments
x Object from the Differential ASV abundance (DASVA) analysis

Value
an input for the input_global_analysis() function

Examples
Not run: format_input(x)
Fungi

This function creates a new folder named Fungi and sets your working directory into this folder. Please, run `setwd("Fungi")` after this function.

Usage

Fungi(nothing)

Arguments

nothing It's important not to write anything between the brackets, a new folder named Fungi will be created and your working directory will be set into this folder, depending on the selected Kingdom.

Value

A new folder named Fungi will be created and your working directory will be set into this folder, depending on the selected Kingdom.

Examples

```R
## Not run: Fungi()
# please, run setwd("Fungi") after this function.
```

funguild_input_targeted

Prepare Object for Fungi Guilds for Fungi kingdom for targeted analysis

Usage

funguild_input_targeted(x)

Arguments

x Object from the Differential ASV abundance (DASVA) analysis
get_dasva

Value
An Object used for Fungi Guilds informations for Fungi kingdom for targeted analysis from the Differential ASV abundance (DASVA) analysis

Examples
Not run: get_funguilds_targeted(res_forest_vs_long_fallow_guilds)

get_bactotraits_targeted

Description
Obtain Bacterial Traits for Bacteria kingdom for targeted analysis

Usage
get_bactotraits_targeted(x)

Arguments
x Object from the Differential ASV abundance (DASVA) analysis

Value
A data frame file with Bacterial Traits informations for Bacteria kingdom for targeted analysis from the Differential ASV abundance (DASVA) analysis

Examples
Not run: get_bactotraits_targeted(res_forest_vs_long_fallow)

get_dasva

Description
Creates the DASVA object. Fit a Gamma-Poisson Generalized Linear Model, dispersion estimates for Negative Binomial distributed data, "parametric", local" or "mean"

Usage
get_dasva(fitType = "")
get_funguilds

Arguments

fitType

Fit a Gamma-Poisson Generalized Linear Model, dispersion estimates for Negative Binomial distributed data, "parametric", local" or "mean"

Value

DASVA object

Examples

Not run: dasva <- get_dasva(fitType="parametric")
dasva <- get_dasva(fitType="local")
dasva <- get_dasva(fitType="mean")
End(Not run)

get_funguilds

Description

get Fungi Guilds from taxon_list_drawer Object

Usage

get_funguilds(taxon_list_drawer)

Arguments

taxon_list_drawer

object from get_taxon_list_drawer() function

Value

funguilds Object

Examples

Not run: funguilds <- get_funguilds(taxon_list_drawer)
get_funguilds_targeted

get_funguilds_targeted

Description
Obtain Fungi Guilds for Fungi kingdom for targeted analysis

Usage
get_funguilds_targeted(x)

Arguments
x Object from the funguild_input_targeted() output.

Value
A data frame file with Fungi Guilds informations for Fungi kingdom for targeted analysis from the Differential ASV abundance (DASVA) analysis

Examples
Not run: get_funguilds_targeted(res_forest_vs_long_fallow_guilds)

get_input_files

Description
Created sub directory “Targeted_analysis” if not already exist. Then, create one file by condition into it, and then upload the taxonomy file. Please, run setwd("01_Targeted_analysis") after this function.

Usage
get_input_files(nothing)

Arguments
nothing It’s important not to write anything between the brackets, all inputs will be adapted automatically.

Value
taxo
get_link_guilds

Examples

```r
## Not run: taxo <- get_input_files()
# please, run setwd("01_Targeted_analysis") after this function.
```

Description

get link guilds from taxon_list and funguilds Objects

Usage

```r
get_link_guilds(taxon_list, funguilds)
```

Arguments

- `taxon_list`: object from taxon_mwu_list() function
- `funguilds`: object from get_funguilds() function

Value

- `link_guilds` Object

Examples

```r
## Not run: link_guilds <- get_link_guilds(taxon_list, funguilds)
```

get_taxon_list_drawer

Description

get taxonomic list drawer

Usage

```r
get_taxon_list_drawer(taxon_list)
```

Arguments

- `taxon_list`: object from taxon_mwu_list() function

Value

- `taxon_list_drawer` Object and "taxon_list_drawer_input.txt" file
Examples

```r
## Not run: taxon_list_drawer <- get_taxon_list_drawer(taxon_list)
```

Description
For Clustering step. Fill directly the annotation_col variable of the pheatmap() function

Usage

```r
heatmap_condition()
```

Arguments

- `nothing`: It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

Fill directly the annotation_col variable of the pheatmap() function

Description
For Clustering step. Create the log2.norm.counts object.

Usage

```r
heatmap_data_dasva()
```

Arguments

- `nothing`: It’s important not to write anything between the brackets, all inputs will be adapted automatically.

Value

Create the log2.norm.counts object.
heatmap_samples_hclust

Description
Adapt hclust for heatmap sample to sample analysis

Usage
heatmap_samples_hclust(nothing)

Arguments

nothing It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value
hclust object for the heatmap.2() function

Examples

```r
## Not run: hc <- heatmap_samples_hclust()
```

heatmap_samples_matrix

Description
Adapt samples matrix for heatmap sample to sample analysis

Usage
heatmap_samples_matrix(nothing)

Arguments

nothing It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value
samples matrix object for the heatmap.2() function
Examples

Not run: mat <- heatmap_samples_matrix()

```
heatmap_taxo
```

Description

Adding taxonomy in the heatmap plot, instead of ASVs codes

Usage

```
heatmap_taxo(nothing)
```

Arguments

nothing

It’s important not to write anything between the brackets, all inputs will be adapted automatically.

Value

log2.norm.counts_taxo used for adding taxonomy in the heatmap plot, instead of ASVs codes

Examples

Not run: log2.norm.counts_taxo <- heatmap_taxo()

```
input_global_analysis
```

Description

Input files creation for each condition for Global analysis by Taxon_MWU analysis from targeted analysis (I)

Usage

```
input_global_analysis(x)
```

Arguments

x

Object from the Differential ASV abundance (DASVA) analysis

Value

Input Object for Global analysis by Taxon_MWU analysis from targeted analysis (I)
Metazoan

Examples

Not run: input_global_analysis(res_forest_vs_long_fallow)

Metazoan Metazoan

Description

This function create a new folder named Metazoan and set your working directory into this folder. Please, run setwd("Metazoan") after this function.

Usage

Metazoan(nothing)

Arguments

nothing It's important not to write anything between the brackets, a new folder named Metazoan will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Value

A new folder named Metazoan will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Examples

Not run: Metazoan()

please, run setwd("Metazoan") after this function.

move_files move_files

Description

Move the file in the good folders. Depending on the previous Kingdom selection (e.g., Fungi 'Fungi()', Bacteria 'Bacteria()', etc.)

Usage

move_files(nothing)

Arguments

nothing It's important not to write anything between the brackets, files will move in the good folders, depending of the selected Kingdom before.
Value
Move the file in the good folders.

Examples
Not run: move_files()

```r
# Not run: move_files()
```

Description
Mann-Whitney U Test from RBGOA

Usage
```r
mwuTest(gotable, Alternative)
```

Arguments
- `gotable` from `gomwuStats` from RBGOA
- `Alternative` from `gomwuStats` from RBGOA

Value
`mwuTest`

Examples
Not run: mwuTest()

```r
# Not run: mwuTest()
```

Description
Compute the PCA (Principal Component Analysis) data.

Usage
```r
PCA_data_dasva(nothing)
```

Arguments
- `nothing` It’s important not to write anything between the brackets, all inputs will be adapted automatically.
plotDispASVs

Value

data. The PCA (Principal Component Analysis) data.

Description

Create a plot of Dispersion ASV

Usage

plotDispASVs(
 object,
 ymin,
 CV = FALSE,
 genecol = "black",
 fitcol = "red",
 finalcol = "dodgerblue",
 legend = TRUE,
 xlab,
 ylab,
 log = "xy",
 cex = 0.45,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>Corresponding to the DASVA (Differential ASV abundance) object</th>
</tr>
</thead>
<tbody>
<tr>
<td>ymin</td>
<td>ymin</td>
</tr>
<tr>
<td>CV</td>
<td>CV</td>
</tr>
<tr>
<td>genecol</td>
<td>genecol</td>
</tr>
<tr>
<td>fitcol</td>
<td>fitcol</td>
</tr>
<tr>
<td>finalcol</td>
<td>finalcol</td>
</tr>
<tr>
<td>legend</td>
<td>legend</td>
</tr>
<tr>
<td>xlab</td>
<td>xlab</td>
</tr>
<tr>
<td>ylab</td>
<td>ylab</td>
</tr>
<tr>
<td>log</td>
<td>log</td>
</tr>
<tr>
<td>cex</td>
<td>cex</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Value
A plot of Dispersion ASV

Examples

Not run: plotDispASVs(dasva)

Description
Custom MA plots for the Differential ASV abundance (DASV) analysis. Defining a new function to plot all ASVs and not only log2FoldChange > 2

Usage

```r
plotMA.dasva(
  object,
  alpha,
  main = "",
  xlab = "mean of normalized counts",
  ylim,
  MLE = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

- `object` Object from the Differential ASV abundance (DASV) analysis
- `alpha` alpha
- `main` main
- `xlab` xlab
- `ylim` ylim
- `MLE` MLE
- `verbose` verbose
- `...` ...

Value
A MA plot

Examples

Not run: plotMA.dasva(rXXX, main="XXX", ylim=c(-20,20))
plotPCA.san

Description

Custom plotPCA function to plot PC1 et PC3

Usage

plotPCA.san(object, intgroup = "condition", ntop = 500, returnData = FALSE)

Arguments

- `object`: An object used for the PCA
- `intgroup`: intgroup
- `ntop`: ntop
- `returnData`: returnData

Value

A PCA

Examples

Not run: plotPCA.san(object)

plotSparsityASV

Description

Create a plot of Sparsity ASV

Usage

plotSparsityASV(x, normalized = TRUE, ...)

Arguments

- `x`: Corresponding to the DASVA (Differential ASV abundance) object
- `normalized`: normalized
- `...`: ...
Value

A plot of Sparsity ASV

Examples

```r
## Not run: plotSparsityASV(dasva)
```

--

samplesInfo

samplesInfo

Description

Imports conditions information from your SampleSheet_comparison.txt file, with focus on samplesInfo.

Usage

```r
samplesInfo(nothing)
```

Arguments

- **nothing**: It's important not to write anything between the brackets, comparisons will create themselves.

Value

A data.frame with conditions information from your SampleSheet_comparison.txt file, with focus on samplesInfo.

Examples

```r
## Not run: samplesInfo <- samplesInfo()
```

--

target_file

target_file

Description

Imports conditions information from your SampleSheet_comparison.txt file, with focus on input files.

Usage

```r
target_file(nothing)
```
Arguments

nothing

It’s important not to write anything between the brackets, comparisons will create themselves.

Value

a data.frame with conditions information from your SampleSheet_comparison.txt file

Examples

Not run: target_file <- target_file()

taxon_mwuPlot
taxon_mwuPlot

taxon mwuPlot for taxonomic analysis

Usage

taxon_mwuPlot(
inFile,
goAnnotations,
goDivision,
level1 = 0.1,
level2 = 0.05,
level3 = 0.01,
absValue = -log(0.05, 10),
adjusted = TRUE,
txtsize = 1,
font.family = "sans",
treeHeight = 0.5,
colors = NULL,
verbose = TRUE
)

Arguments

inFile - results object from the DASVA analysis

goAnnotations parallel to goAnnotations from gomwuStats from RBGOA. Here, "database_bacteria_package_all.tab" if Bacteria, "database_fungi_package_all.tab" if Fungi

goDivision parallel to goAnnotations from gomwuStats from RBGOA. Here, "TR" = taxonomic Rank, don’t change this

level1 level1
level2 level2
value

taxon mwuPlot and goods "Table_02_taxon_mwuPlot.txt"

Examples

Not run: taxon_mwuPlot(input,...)

```r

```
Arguments

inFile - results object from the DASVA analysis

Arguments

goAnnotations parallel to goAnnotations from gomwuStats from RBGOA. Here, "database_bacteria_package_all.tab" if Bacteria, "database_fungi_package_all.tab" if Fungi

goDivision parallel to goAnnotations from gomwuStats from RBGOA. Here, "TR" = taxonomic Rank, don’t change this

level1
level2
level3

absValue
adjusted

ttxtsize

font.family
treeHeight
colors
verbose

Value

List for the statistical analysis for taxonomic rank

Examples

Not run: taxon_mwuPlot_guilds(input, ...)

taxon_mwuStats

taxon_mwuStats

description

mwuStats from RBGOA adapted for taxonomic analysis

Usage

taxon_mwuStats(
 input,
 goDatabase,
 goAnnotations,
 goDivision,
 Alternative = "t",
 adjust.multcomp = "BH",
 clusterCutHeight = 0.25,
 largest = 0.1,
taxon_mwu_list

smallest = 5,
perlPath = "perl",
verbose = TRUE
)

Arguments

input input
goDatabase goDatabase
goAnnotations goAnnotations
goDivision goDivision
Alternative Alternative
adjust.multcomp adjust.multcomp
clusterCutHeight clusterCutHeight
largest largest
smallest smallest
perlPath perlPath
verbose verbose

Value

Statistical analysis for taxonomic rank

Examples

Not run: taxon_mwuStats(input, ...)

taxon_mwu_list
taxon_mwu_list

Description

taxon Mann-Whitney U list for taxonomic analysis

Usage

taxon_mwu_list(
inFile,
goAnnotations,
goDivision,
level1 = 0.1,
level2 = 0.05,
level3 = 0.01,
Arguments

inFile
- results object from the DASVA analysis

goAnnotations
- parallel to goAnnotations from gomwuStats from RBGOA. Here, "database_bacteria_package_all.tab" if Bacteria, "database_fungi_package_all.tab" if Fungi

goDivision
- parallel to goAnnotations from gomwuStats from RBGOA. Here, "TR" = taxonomic Rank, don’t change this

level1

level2

level3

absValue

adjusted

txtsize

font.family

treeHeight

colors

Value

List for the statistical analysis for taxonomic rank

Examples

Not run: taxon_list <- taxon_mwu_list(input, ...)
Index

Bacteria, 3
coclusteringGOs, 4
dasva_raw_input, 4
database_bacteria_creation, 5
database_fungi_creation, 6
database_fungi_creation_RepSeq, 6
database_metazoan_creation, 7
fisherTest, 8
format_input, 8
Fungi, 9
funguild_input_targeted, 9
get_bactotraits_targeted, 10
get_dasva, 10
get_funguilds, 11
get_funguilds_targeted, 12
get_input_files, 12
get_link_guilds, 13
get_taxon_list_drawer, 13
heatmap_condition, 14
heatmap_data_dasva, 14
heatmap_samples_hclust, 15
heatmap_samples_matrix, 15
heatmap_taxo, 16
input_global_analysis, 16
Metazoan, 17
move_files, 17
mwuTest, 18
PCA_data_dasva, 18
plotDispASVs, 19
plotMA.dasva, 20
plotPCA.san, 21
plotSparsityASV, 21
samplesInfo, 22
target_file, 22
taxon_mwu_list, 26
taxon_mwuPlot, 23
taxon_mwuPlot_guilds, 24
taxon_mwuStats, 25