Package ‘AnalyzeTS’

December 9, 2019

Type Package
Title Analyze Fuzzy Time Series
Version 2.3
Date 2019-12-08
Author Tran Thi Ngoc Han, Doan Hai Nghi, Mai Thi Hong Diem, Nguyen Thi Diem My, Hong Viet Minh, Vo Van Tai, Pham Minh Truc.
Maintainer Hong Viet Minh <hongvietminh@gmail.com>
Description Analyze fuzzy time series by Chen (1996), Singh (2008), Heuristic (Huarng 2001) and Chen-Hsu (2004) models. The Abbasov - Manedova (2010) and NFTS models is included as well.
License GPL (>= 2.0)
LazyLoad yes
Depends MASS, TSA, TTR, tseries, urca
RoxygenNote 7.0.2
Encoding UTF-8
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-09 01:00:09 UTC

R topics documented:

AnalyzeTS-package .. 2
av.res ... 3
ChenHsu.bin ... 5
CMA ... 6
Compare.Cs .. 7
Descriptives ... 8
Dgroup ... 9
DOC ... 11
enrollment ... 12
Analyze fuzzy time series by Chen (1996), Singh (2008), Heuristic (Huarng 2001) and Chen-Hsu (2004) models. The Abbasov - Manedova (2010) and NFTS models is included as well.

Author(s)
Tran Thi Ngoc Han, Doan Hai Nghi, Mai Thi Hong Diem, Nguyen Thi Diem My, Hong Viet Minh, Vo Van Tai, Pham Minh Truc.
Maintainer: Hong Viet Minh <hongvietminh@gmail.com>

References
Examples

```r
library(AnalyzeTS)
data(enrollment)
# Singh model
fuzzy.ts1(lh,n=5,type="Singh",plot=TRUE)

# Abbasov Mamedova model
fuzzy.ts2(enrollment,n=5,w=5,C=0.01,forecast=5,plot=TRUE,type="Abbasov-Mamedova")

# NFTS model
fuzzy.ts2(enrollment,n=5,w=5,C=0.01,forecast=5,plot=TRUE,type="NFTS")
```

av.res The criterion to evaluate forecasting model

Description

Calculating to return answer which are 7 criterion to evaluate forecasting models, which are ME (Mean error), MAE (Mean absolute error), MPE (Mean percentage error), MAPE (Mean absolute percentage error), MSE (Mean squared error), RMSE (Root of mean square error), and U (Theil’s U statistic).

Usage

```r
av.res(Y = NULL, F = NULL, E = NULL, r = 3)
```

Arguments

- **Y** A data frame of univariate time series.
- **F** A data frame of interpolat time series.
- **E** A data frame of residual time series.
- **r** Display results returned to the specified number of decimal places (default 3). (See `round2str` for details of `r` parameter.)

Details

The Yt is 'observation series'. The Ft is 'Forecasting series'. The et is 'residual series'. The n is size of sample. The accuracies are calculated by theory:

- **ME** = sum(et)/n
- **MAE** = sum(|et|)/n
- **MPE** = sum((et/Yt)*100)/n
- **MAPE** = sum((|et|/Yt)*100)/n
- **MSE** = sum(et*et)/n
- **RMSE** = sqrt(sum(et*et)/n)
- **U** = RMSE of the forecast/RMSE of the naive forecast.
Value

- **ME**: Mean Error.
- **MAE**: Mean Absolute Error.
- **MPE**: Mean Percent Error (unit: %).
- **MAPE**: Mean Absolute Percent Error (unit: %).
- **MSE**: Mean Square Error.
- **RMSE**: Root of Mean Square Error.
- **U**: Number Theil U.
- **min.model**: The best model follow a criterion to evaluate forecasting model.

Note

This function just receive data frame. You must translate your series to data frames before send to function.

Author(s)

- Nguyen Thi Diem My <myntdhg@gmail.com>
- Hong Viet Minh <hongvietminh@gmail.com>

References

Examples

```r
#----------The moving average models-------------------------
library(TTR)
data(enrollment)
sma5<-ts(SMA(enrollment,5), start=1971)
dsma5.5<-ts(SMA(SMA(enrollment)), start=1971)
cma5<-as.ts(CMA(enrollment,5))
es.002<-as.ts(SES(enrollment,0.002))

#Translate series to data frame
actual<-data.frame(enrollment)
forecasted<-data.frame(sma5,dsma5.5,cma5,es.002)

#Comparing forecasting models
av.res(Y=actual,F=forecasted,r=5)

#----------The liner and arima models-------------------------
#Loading data
data(enrollment)

#Liner model
#t<-1:length(enrollment)
```
lm.model<-lm(enrollment~t)

Arima model
arima.model<-arima(enrollment,order=c(1,1,0))

Translate residual series to data frame
actual<-data.frame(enrollment)
residual.models<-data.frame(lm=lm.model$resid,arima=arima.model$resid)

Comparing forecasting models
av.res(Y=actual,E=residual.models)

#----------The fuzzy time series models-------------------------
Following example(fuzzy.ts1)
Comparing fuzzy time series models for lh time series
from example of fuzzy.ts1 function
av.res(Y=data.frame(lh),F=data.frame(chen10,singh10,heuristic10,chenhsu6))

Following example(Gfuzzy.ts1)
Comparing fuzzy time series models for lh time series
from example of Gfuzzy.ts1 function
av.res(Y=data.frame(lh),F=KQ3)

Following example(Gfuzzy.ts2)
Comparing fuzzy time series models for enrollment time series
from example of Gfuzzy.ts2 function
av.res(Y=data.frame(enrollment),F=g.fuzzy1$interpolate)

ChenHsu.bin

Devide point-bin values in Chen-Hsu model

Description

Calculating point-bin values, which deceive divide fuzzy sets in Chen-Hsu model.

Usage

`ChenHsu.bin(table, n.subset)`

Arguments

- `table`: Object table1 from answer of fuzzy.ts1 function.
- `n.subset`: A vector contain fuzzy subset number in every old fuzzy set.

Value

A vector contain point-bin values.
CMA

Author(s)
Hong Viet Minh <hongvietminh@gmail.com>

See Also
GChenHsu.bin for more models at the same time.

Examples
#For examples see example(fuzzy.tsl)

CMA

Center Moving Average

Description
Calculating moving average by method of centered moving average.

Usage
CMA(x, n = 5)

Arguments
x Univariate time series.
n Number of periods to average over.

Value
Observation series after centered moving.

Note
Before, name of this function is TTT.

Author(s)
Doan Hai Nghi <Hainghi1426262609121094@gmail.com>

See Also
SES

Examples
CMA(lh, n=5)
CMA(lh, n=8)
Description

Comparing and sort Abbasov-Mamedova models or NFTS models according a criterion to evaluate forecasting model (ME, MAE, MPE, MAPE, MSE or RMSE) for C values in Cs.

Usage

```r
Compare.Cs(ts, n = 7, w = 7, D1 = 0, D2 = 0, Cs = NULL, type = "Abbasov-Mamedova", complete = NULL)
```

Arguments

- **ts**
 Univariate time series.

- **n**
 Number of fuzzy set.

- **w**
 The w parameter.

- **D1, D2**
 Two proper positive numbers.

- **Cs**
 A vector contain C values.

- **type**
 Model is choosed to predicts time series by fuzziness, type = "Abbasov-Mamedova" or type = "NFTS".

- **complete**
 A parameter help connecting from DOC and GDOC functions to Compare.Cs function. User are not allowed to use parameter 'complete'.

Details

Now, this document are updating.

Value

Table comparing and sort Abbasov-Mamedova models or FVD models.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>

Examples

```r
# Compering Abbasov-Mamedova models
Compare.Cs(1h,n=5,w=7,Cs=seq(0,1,0.01),type="Abbasov-Mamedova")

# Compering NFTS models
Compare.Cs(1h,n=5,w=7,Cs=seq(0,1,0.01),type="NFTS")
```
Description

Calculating to return answer which are descriptive statistics values for a continuously variable or continuously variables in data frame.

Usage

Descriptives(x, plot = FALSE, r = 2, answer = 1, statistic = "ALL")

Arguments

- **x**: A continuously variable or a data frame contain continuously variables.
- **plot**: Parameter 'Plot' are used by 2 form:
 - Let plot=TRUE to paint description graph when x is time series.
 - Let plot=list(a1,a2,...) (a1,a2,...are descriptive statistic values as 'Mean', 'Max',...) to paint comparing graph between variables.
- **r**: Rounds the answer to the specified number of decimal places (default 2). (See round2str for details of r parameter.)
- **answer**: Form of answers are returned. Let answer=1 or answer=2 (default 1)
- **statistic**: A list contain descriptive statistic values that user want R print screen (default ALL).

Details

Statistic descriptive values are calculated by theory of base statistic.

Value

- **N**: Length sample
- **NaN**: Number NA values
- **Min**: Min value
- **1sq QU**: Value in 25% of interval probabilities
- **Median**: Median value
- **Mean**: Mean value
- **3rd QU**: Value in 75% of interval probabilities
- **Max**: Max value
- **VAR**: Variance value
- **SD**: Standard Deviation
- **SE**: Standard Deviation of the Estimated Means
Note
You must not withdraw discrete variables from data frame. When you let a data frame in to this function which will auto withdraw discrete variables and calculate descriptive statistic to continuously variables.

Author(s)
Mai Thi Hong Diem <maidiemks@gmail.com>
Hong Viet Minh <hongvietminh@gmail.com>

References
Theory of base statistic.

See Also
Frequencies, Dgroup

Examples
#Load data
library(MASS)
data(crabs)

#Calculate descriptive statistic to a continuously variable
Descriptives(crabs$FL)

#Calculate descriptive statistic to continuously variables
Descriptives(crabs)
Descriptives(crabs, answer=2)
Descriptives(crabs, answer=2, r=6)

#To just see some descriptive statistic variables
Descriptives(crabs, statistic=list("Min","Mean","Median","Max"))

#Combined paint graph to compare
Descriptives(crabs, plot=list("Mean","SD"))

#Descriptives for time series
Descriptives(lh, plot=TRUE)

Dgroup | Discriptives Follow Groups

Description
Descriptive statistics in group for a continous variable. Usual using to statistic a time series following dates in week or months in year.
Usage
Dgroup(x, follow = NULL, r = 2, answer = 1, statistic = "ALL")

Arguments
x A continuous variable or a time series.
follow A factor or a list factor which contain not too two factors.
r Rounds the answer to the specified number of decimal places (default 2).
answer Form of answers are returned. Let answer=1 or answer=2 (default 1).
statistic A list contain descriptive statistic values that user want R print screen (default ALL).

Details
Data is divided into groups by follow and then every group are calculated by Descriptives function.

Value
N Length sample
NaN Number NA values
Min Min value
1sq QU Value in 25% of interval probabilities
Median Median value
Mean Mean value
3rd QU Value in 75% of interval probabilities
Max Max value
VAR Variance value
SD Standard Deviation
SE Standard Deviation of the Estimated Means

Note
The function just maximum calculated for two factors.

Author(s)
Hong Viet Minh <hongvietminh@gmail.com>

References
Theory of base statistic.

See Also
Descriptives, Frequencies
Examples

```r
#Factor date
date<-as.factor(c("Tue","Wed","Thu","Fri","Mon","Tue","Wed","Thu","Fri","Mon","Tue","Wed","Thu","Fri","Mon","Tue","Wed","Thu","Fri","Mon","Tue","Wed","Thu"))

#Factor hk
hk<-as.factor(c("hk1","hk2","hk3","hk1","hk1","hk2","hk2","hk1","hk1","hk2","hk1","hk1","hk1","hk3","hk1","hk1","hk2","hk3","hk1","hk1","hk1","hk3","hk1","hk1","hk3","hk1","hk1","hk1","hk1","hk3","hk1","hk1"))

#A continous variable
coffee<-c(5,6,8,4,3,7,6,0,3,2,3,4,9,1,3,8,7,8,2,3,8,6,4,4,6,7,6,5,2,3,8,4,4)

#Descriptive statistics in group
Dgroup(coffee,r=4,answer=2)
Dgroup(coffee,follow=list(date),r=4)
Dgroup(coffee,follow=date,r=4,answer=2)
Dgroup(coffee,follow=date,r=4,statistic=list("Mean","Max"))
Dgroup(coffee,r=4,follow=list(date,hk),answer=1)
Dgroup(coffee,r=4,follow=list(date,hk),answer=2)
Dgroup(coffee,r=4,follow=list(hk,date),answer=1)
Dgroup(coffee,r=4,follow=list(hk,date),answer=2)
```

DOC

Finding the best C value

Description

Finding the best C value for Abbasov Mamedova and NFTS models according to DOC algorithm.

Usage

```r
DOC(ts, n = 7, w = 7, D1 = 0, D2 = 0, error = 1e-06, k=500,r=13,
CEF = "MSE",type="Abbasov-Mamedova", show.complete = TRUE, keyword)
```

Arguments

- **ts**
 - Univariate time series.
- **n**
 - Number of fuzzy set.
- **w**
 - The w parameter.
- **D1, D2**
 - Two proper positive numbers.
- **error**
 - Error of C value is finded by DOC algorithm, which compare the best C value really. Default error = 0.000001.
- **k**
 - In each iteration of the algorithm, k+1 (or k or k-1) values of C will be considered. The k must be a integer and greater than 499, default k = 500.
enrollment

r
Display results returned to the specified number of decimal places (default 13).
(See `round2str` for details of r parameter.)

CEF
One of the criterion to evaluate forecasting model, must be one of "ME","MAE",
"MPE", "MAPE", "MSE" (default), or "RMSE".

type
Model is choosed to predicts time series by fuzziness, type = "Abbasov-Manedova"
(default) or type = "NFTS".

show.complete
If TRUE, a graph will appear showing the percentage completed.

keyword
A keyword help connecting from `GDOC` function to `Compare.Cs` function. User
are not allowed to use parameter `keyword`.

Value
The best C value and CEF corresponding value.

Author(s)
Hong Viet Minh <hongvietminh@gmail.com>

Vo Van Tai <vvtai@ctu.edu.vn>

See Also
`GDOC`

Examples

```r
#data(enrollment)
#DOC(enrollment,n=7,w=7,error=0.00001,CEF="MSE",type="Abbasov-Mamedova")
#DOC(enrollment,n=7,w=7,error=0.00001,CEF="MAPE",type="NFTS")
```

enrollment

Time Series of Enrollment

Description

Usage

```r
data("enrollment")
```
Source

Examples

data(enrollment)
ts.plot(enrollment,col="red")
grid.on()

Fitted.arima

Fitted for ARIMA model

Description

Computes the fitted values of an ARIMA model.

Usage

Fitted.arima(object)

Arguments

object A fitted model from the arima function.

Value

Fitted values.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>
Pham Minh Truc <trucm1813014@gstudent.ctu.edu.vn>

See Also

fitted.Arima in TSA package.

Examples

mod<-arima(lh,order=c(0,1,1))
Fitted.arima(mod)
Description

Forecast from models fitted by `Greg.ts`.

Usage

```r
forecast.Greg.ts(object, model = "ALL", n.ahead = 5, plot = FALSE)
```

Arguments

- `object` Resul returned from `Greg.ts` function.
- `model` Names of models want to forecast.
- `n.ahead` The number of steps ahead for which prediction is required.
- `plot` Let plot=TRUE to paint graph of observation series and forecast series in future. Let plot=FALSE (default) to do not paint graph.

Value

A data frame where each column is a time series forecast in future from regression model corresponding.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>
Pham Minh Truc <trucm1813014@gstudent.ctu.edu.vn>

See Also

- `Greg.ts`

Examples

```r
data(enrollment)
mod<-Greg.ts(enrollment)
forecast.Greg.ts(mod)
```
Description

The function gets two objects from 'Arima' class and 'garch' class, and then calculates to return forecasting answers of mean and variance of the next day.

Usage

forecastGARCH(fitARMA, fitGARCH, r = 3, trace = FALSE, newxreg = NULL)

Arguments

fitARMA A object from 'Arima' class.
fitGARCH A object from 'garch' class.
r Rounds the answer to the specified number of decimal places (default 3). (See round2str for details of r parameter.)
trace Logical. Trace optimizer output?
newxreg A covariates value of the next day for ARMAX-GARCH models.

Value

ARCH GARCH coefficients.
ARMA ARMA coefficients.
forecast Forecasting answer:
Point: forecasting time.
res: forecasting residual.
res^2: res square.
SSL.forecast: forecasting mean value.
VAR.forecast: forecasting variance value.

Author(s)

Mai Thi Hong Diem <maidiemks@gmail.com>
Hong Viet Minh <hongvietminh@gmail.com>

Examples

Load data
library(TTR)
data(ttrc)

data(ttrc)

Calculate SSL series
t<-ts(ttrc[,"Close"],start=1,frequency=5)
Frequencies

ln.t<-log(t)
rl<-diff(ln.t)

#Find a ARIMA model
fit1<-arima(r,order=c(4,0,0))

#Find a GARCH model
res1<-resid(fit1)
library(tseries)
fit2<-garch(res1,order=c(2,1),trace=0)

#Forecasting
forecastGARCH(fit1,fit2,r=6,trace=TRUE)
forecastGARCH(fit1,fit2,r=6)

Description

Calculating to return answer which are descriptive statistics values for a discrete variable or discrete variables in data frame.

Usage

Frequencies(x, plot = FALSE, r = 2, answer = 1)

Arguments

- **x**: A discrete variable or a data frame contain discrete variable.
- **plot**: Let plot=TRUE to paint pie graph.
- **r**: Rounds the answer to the specified number of decimal places (default 2).
- **answer**: Form of answers are returned. Let answer=1 or answer=2 (default 1)

Details

Statistic descriptive values are calculated by theory of base statistic.

Value

- **N**: Length sample
- **NaN**: Number NA values
- **xi**: Length of xi

Note

You must not withdraw continuously variables from data frame. When you let a data frame in to this function which will auto withdraw continuously variables and calculate descriptive statistic to discrete variables.
Author(s)
Hong Viet Minh <hongvietminh@gmail.com>

References
Theory of base statistic.

See Also
Descriptives, Dgroup

Examples

Loading data
library(MASS)
attach(quine)

Descriptive for a discrete variable
Frequencies(Age, plot=TRUE)

Descriptive for discrete more variables
Frequencies(quine, answer=2, plot=TRUE)

Description

Usage
fuzzy.ts1(ts, n = 5, D1 = 0, D2 = 0, type = c("Chen", "Singh", "Heuristic", "Chen-Hsu"), bin = NULL, trace = FALSE, plot = FALSE, grid = FALSE)

Arguments

ts Univariate time series.
n Number of fuzzy set.
D1,D2 Two proper positive numbers.
type Type of model.
bin Point-bin values use to divide fuzzy sets for Chen-Hsu model. If bin=NULL (default) then function just inform information about fuzzy sets.
trace Let trace=TRUE to print all of calculation results out to creen. Let trace=FALSE (default) to only print fuzzy series out to creen.
plot Let plot=TRUE to paint graph of observation series and fuzzy series. Let plot=FALSE (default) to do not paint graph.

grid If TRUE, a gray background grid is put on the graph.

Value

When trace = TRUE, results are returned as a list containing the following components.

type Name of fuzzy model.
table1 Information about fuzzy sets.
table2 Information about fuzzy series of Chen, Sing, Heuristic and Chen-Hsu models (in bin!=NUL).

accuracy Information about the criterion to evaluate forecasting model.

When trace = FALSE, results is a time series fitted by fuzzy time series model.

Author(s)

Doan Hai Nghi <Hainghi1426262609121094@gmail.com>
Tran Thi Ngoc Han <tranthingochan01011994@gmail.com>
Hong Viet Minh <hongvietminh@gmail.com>

References

See Also

Gfuzzy.ts1

Examples

#Print all of calculation results out to creen.
#par(mfrow=c(2,2))
#data(enrollment)
#fuzzy.ts1(enrollment,n=7,type="Chen",plot=TRUE,grid=TRUE)
#fuzzy.ts1(enrollment,n=7,type="Singh",plot=TRUE)
#fuzzy.ts1(enrollment,n=7,type="Heuristic",plot=TRUE,grid=TRUE)

#Only print fuzzy series out to creen.
#chen10<-fuzzy.ts1(lh,n=10,type="Chen")
fuzzy.ts2

Abbasov Mamedova model and FVD model

Description

Calculating fuzziness and forecast time series by fuzziness method according to Abbasov - Mamedova (2010) and NFTS models.

Usage

```r
fuzzy.ts2(ts, n = 7, w = 7, D1 = 0, D2 = 0, C = NULL, forecast = 5, 
r = 12, trace = FALSE, plot = FALSE, grid = FALSE, type = "Abbasov-Mamedova")
```

Arguments

- `ts`: Univariate time series.
- `n`: Number of fuzzy set.
- `w`: The w parameter.
- `D1`, `D2`: Two proper positive numbers.
- `C`: A optional constant.
- `forecast`: Number of points to forecast in future.
- `r`: Display results returned to the specified number of decimal places (default 12). (See `round2str` for details of r parameter.)
- `trace`: Let trace=TRUE to print all of calculation results out to screen. Let trace=FALSE (default) to only print forecasting series out to screen.
- `plot`: Let plot=TRUE to paint graph of observation series and fuzzy series. Let plot=FALSE (default) to do not paint graph.
- `grid`: If TRUE, a gray background grid is put on the graph.
- `type`: Model is choosed to predicts time series by fuzziness, type = "Abbasov-Mamedova" or type = "NFTS".

```r
#Singh10<-fuzzy.ts1(lh,n=10,type="Singh")
#heuristic10<-fuzzy.ts1(lh,n=10,type="Heuristic")

#Using ChenHsu.bin function to find divide point fuzzy set values.
#a<-fuzzy.ts1(lh,n=5,type="Chen-Hsu",plot=1)
#b<-ChenHsu.bin(a$table1,n.subset=c(1,2,1,1,1))
#chenhsu6<-fuzzy.ts1(lh,type="Chen-Hsu",bin=b,plot=1,trace=1)
```
Value

When trace = TRUE, results are returned as a list containing the following components.

- **type**: The value of type.
- **table1**: Information about changing fuzzy sets consist four column: set is name of the fuzzy sets, low and up are upper and lower bounds of the fuzzy sets, and mid is middle values corresponding every fuzzy set.
- **table2**: Series - observation consist three column: point is time of observation, ts is the original series, and diff.ts is changing series from original series.
- **table3**: The change fuzzy of original series.
- **table4**: Series - interpolation consist three column: point is time of interpolation, interpolate is the series - interpolation, and diff.interpolate is changing series from series - interpolation.
- **table5**: Forecasting series consist three column: point is time of forecast, forecast is the forecasting series, and diff.forecast is changing series from forecasting series.
- **table6**: The change fuzzy of forecasting series.
- **accuracy**: Information about the criterion to evaluate forecasting model.

When trace = FALSE, results are returned as a list containing two components.

- **interpolate**: Series - interpolation.
- **forecast**: Forecasting series.

Author(s)

Doan Hai Nghi <Hainghi1426262609121094@gmail.com>
Tran Thi Ngoc Han <tranthingochan01011994@gmail.com>
Hong Viet Minh <hongvietminh@gmail.com>

References

See Also

- Gfuzzy.ts2

Examples

```r
#data(enrollment)
#layout(1:2)
#NF.mod<-fuzzy.ts2(enrollment,n=7,w=7,C=0.0001,forecast=11,trace=TRUE,plot=TRUE,type="NFTS")
#AM.mod<-fuzzy.ts2(enrollment,n=5,w=5,C=0.01,forecast=5,plot=TRUE,type="Abbasov-Mamedova")
#NF.mod
#AM.mod
```
Finding the best C value by DOC function
Abbasov-Mamedova model
str.C1<-DOC(enrollment,n=7,w=7,D1=0,D2=0,CEF="MAPE",type="Abbasov-Mamedova")
C1<-as.numeric(str.C1[1])
fuzzy.ts2(enrollment,n=7,w=7,D1=0,D2=0,C=C1,forecast=5,type="Abbasov-Mamedova")

NFTS model
str.C2<-DOC(enrollment,n=7,w=7,D1=0,D2=0,CEF="MAPE",type="NFTS")
C2<-as.numeric(str.C2[1])
fuzzy.ts2(enrollment,n=7,w=7,D1=0,D2=0,C=C1,forecast=5,type="NFTS")

GChenHsu.bin

Devide point-bin values in more Chen-Hsu models at the same time

Description

Calculating point-bin values, which devece divide fuzzy sets in more Chen-Hsu models (the result returned form Gfuzzy.ts1(...,type=c(...,"Chen-Hsu"),bin=NULL) function).

Usage

GChenHsu.bin(list, n.subset)

Arguments

- **list**

 The information of fuzzy sets in Chen-Hsu models form Gfuzzy.ts1(...,type=c(...,"Chen-Hsu"),bin=NULL) function.

- **n.subset**

 A list where each component is a vector containing fuzzy subset number in every old fuzzy set. The each components of n.subset must be compatible with each componets of list.

Details

GChenHsu.bin function use *ChenHsu.bin* function to calculate point-bin values in each Chen-Hsu model compatible each components of list.

Value

A list where each components is a vector contain point-bin values for Chen-Hsu models.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>

Vo Van Tai <vvtai@ctu.edu.vn>
See Also

Using ChenHsu.bin function in case only a Chen-Hsu model.

Examples

#For examples see example(Gfuzzy.ts1)

GDOC

Finding the best C values

Description

Finding the best C values for more Abbasov Mamedova and NFTS models according to DOC algorithm at the same time.

Usage

GDOC(ts, n = 7, w = 7, D1 = 0, D2 = 0, error = 1e-06, k = 500, r = 13, CEF = "MSE", type = "Abbasov-Mamedova", show.complete = TRUE)

Arguments

ts
A univariate time series.

n
A numeric vector where each element is number of fuzzy set.

w
A numeric vector where each element is w parameter.

D1,D2
Two proper positive numbers.

error
Error of C value is finded by DOC algorithm, which compare the best C value really. Default error = 0.000001.

k
In each iteration of the algorithm, k+1 (or k or k-1) values of C will be considered. The k must be a integer and greater than 499, default k = 500.

r
Display results returned to the specified number of decimal places (default 13). (See round2str for details of r paramieter.)

CEF
One of the criterion to evaluate forecasting model, must be one of "ME","MAE", "MPE", "MAPE", "MSE" (default), or "RMSE".

type
A character vector where each element is choosing model to predicts time series by fuzziness, type = "Abbasov-Manedova" (default) or type = "NFTS" or both.

show.complete
If TRUE, a graph will appear showing the percentage completed.

Details

GDOC function consider length(n)*length(w)*length(type) models combining from three parameter n, w and type, and then using DOC function finding the best C values forone by models.
Value

A list contain two components where the first component is the best C values of Abbasov-Mamedova models and the second component is the best C values of NFTS models.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>
Vo Van Tai <vvtai@ctu.edu.vn>

See Also

Using `DOC` function in case only a Abbasov-Mamedova or NFTS model.

Examples

```r
#For examples see example(Gfuzzy.ts2)
```

Description

Calculating fuzziness of time series with Chen (1996), Singh (2008), Heuristic (Huarng 2001) and Chen-Hsu (2004) models at the same time.

Usage

```r
Gfuzzy.ts1(ts, n = 5, D1 = 0, D2 = 0, type = "Chen", bin = NULL, plot = FALSE, grid = FALSE)
```

Arguments

- `ts`: Univariate time series.
- `n`: A numeric vector where each element is number of fuzzy set.
- `D1, D2`: Two proper positive numbers.
- `type`: A character vector where each element is type of models.
- `bin`: A list where each component is point-bin values use to divide fuzzy stes for Chen-Hsu models. If bin=NULL (default) then function just inform information about fuzzy sets compatible with each Chen-Hsu model.
- `plot`: Let plot=TRUE to paint graph of observation series and fuzzy series. Let plot=FALSE (default) to do not paint graph.
- `grid`: If TRUE, a gray background grid is put on the graph.
Details

Gfuzzy.ts1 function consider length(n)*length(type) models combining from two parameter n and type.

Value

A data frame where each column is a time series fitted by fuzzy time series model corresponding.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>
Vo Van Tai <vvtai@ctu.edu.vn>

References

See Also

Using `fuzzy.ts1` function in case only a fuzzy time series model.

Examples

#Step 1: Analyze fuzzy time series actual series of n fuzzy set (n is
#number fuzzy set choosed in the first times, in our case n = 5, 7 and 9)
#to has information about fuzzy sets.
#KQ1<-Gfuzzy.ts1(lh,n=c(5,7,9),type=c("Chen","Singh","Heuristic","Chen-Hsu"))

#Step 2: Finding bin-point values divide fuzzy sets second times.
#v1<-c(1,1,1,1,1)
#v2<-c(1,2,2,1,2,1,1)
#v3<-c(1,1,2,4,1,2,1,1,1)
#KQ2<-GChenHsu.bin(KQ1,n.subset=list(v1,v2,v3))

#Step 3 Analyze fuzzy time series by Chen-Hsu more times with new fuzzy
#sets from step 2.
#KQ3<-Gfuzzy.ts1(lh,n=c(5,7,9),type=c("Chen","Singh","Heuristic",
#"Chen-Hsu"),bin=KQ2,plot=1,grid=1)
#KQ3
Gfuzzy.ts2

Description

Updating

Usage

Gfuzzy.ts2(ts, n = 7, w = 7, D1 = 0, D2 = 0, C = list(C1 = NULL, C2 = NULL),
forecast = 5, plot = FALSE, grid = FALSE, type = "Abbasov-Manedova")

Arguments

ts Univariate time series.
n A numeric vector where each element is number of fuzzy set.
w A numeric vector where each element is w parameter.
D1, D2 Two proper positive numbers.
C A list consisting 2 component C1 and C2 or a result object from GDOC function.
forecast Number of points to forecast in future.
plot Let plot=TRUE to paint graph of observation series and fuzzy series. Let plot=FALSE (default) to do not paint graph.
grid If TRUE, a gray background grid is put on the graph.
type Model is choosed to predicts time series by fuzziness, type = "Abbasov-Manedova" or type = "NFTS" or both.

Details

Gfuzzy.ts2 function consider length(n)*length(w)*length(type) models combining from three parameter n, w and type, and then using fuzzy.ts2 function analyze for each submodel.

Value

A list with three component.

information Explaining for labels in annotation on the graph also as name of columns in interpolate and forecast components.
interpolate, forecast two data frame where each column is a time series interpolate and forecasted in future by fuzzy time series model corresponding.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>
Vo Van Tai <vvta@ctu.edu.vn>
References

See Also
Using `Gfuzzy.ts1` function in case only a fuzzy time series model.

Examples
```r
# data(enrollment)
# g.C <- GDOC(enrollment, n=c(5, 7, 9), w=c(7, 9), D1=0, D2=0,
# CEF="MSE", type=c("Abbasov-Mamedova", "NFTS"))
# g.fuzzy1 <- Gfuzzy.ts2(enrollment, n=c(5, 7, 9), w=c(7, 9), D1=0, D2=0, C=g.C, forecast=5,
# plot=1, grid=0, type=c("Abbasov-Mamedova", "NFTS"))
```

Greg.ts

Group regression models for Time-Series

Description
Building some regression models for time series.

Usage
```r
Greg.ts(ts, p.max = 3, r = 4, plot = FALSE)
```

Arguments
- **ts**: Univariate time series.
- **p.max**: Greatest level of polynomial models.
- **r**: Display results returned to the specified number of decimal places (default 3). (See `round2str` for details of r parameter.)
- **plot**: Let plot=TRUE to paint graph of observation series and interpolate series. Let plot=FALSE (default) to do not paint graph.

Details
- luy thua: \(Y = a \cdot t^b \)
- luong giac: \(Y = a + b \cdot \sin(t) + c \cdot \cos(t) \)
- hyperbol: \(Y = a + b / t \)
- CS cong: ...
- CS nhan
Value

Results are returned as a list containing the following components.

- **Models**: Formula of regression models.
- **Interpolate, Error**: Two data frame where each column is a time series interpolate and error from regression model corresponding.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>
Pham Minh Truc <trucm1813014@gstudent.ctu.edu.vn>

References

See Also

The `forecast.Greg.ts` function using to predict for models fitted by `Greg.ts` function.

Examples

```r
data(enrollment)
Greg.ts(enrollment)
```

grid.on

Grid on

Description

Painting to line graph.

Usage

```r
grid.on(h = TRUE, v = TRUE, col = "gray", nv = 1, nh = 1, lty = 3)
```

Arguments

- **h**: Let h=FALSE to do not paint grid in horizontal.
- **v**: Let v=FALSE to do not paint grid in vertical.
- **col**: The color for grid lines.
- **nv**: The number grid lines between two point in x axis.
- **nh**: The number grid lines between two point in y axis.
- **lty**: The grid line type.
Value

A grid is painted in graph.

Author(s)

Hong Viet Minh <hongvietminh@gmail.com>

Examples

```r
plot(lh)
grid.on(h=TRUE, v=FALSE)
plot(co2)
grid.on(col="red", nv=3)
```

pmax

The lag maximum value

Description

Choose number of lags for endogenous variable to be included for augmented Dickey-Fuller unit root test according Schwert (1989).

Usage

```r
pmax(ts)
```

Arguments

- `ts` Univariate time series.

Details

\[p_{\text{max}} = 12 \times (T/4)^{1/4} \]

where \(T \) is number of observations.

Note: \([1.6] = 1\)

Value

Number of lags for endogenous variable to be included for augmented Dickey-Fuller unit root test according Schwert (1989).

Author(s)

Hong Viet Minh
Examples

data(enrollment)
p<-pmax(enrollment)
library(urca)
summary(ur.df(enrollment,type="trend",lag=p,selectlag="BIC"))

Description

Calculates and outputs AIC value for some models including ARMA, ARIMA, SARIMA, ARMAX, ARIMAX, SARIMAX, ARCH and GARCH. To classify and extracts the best model by AIC values.

Usage

PrintAIC(DataTimeSeries, order = c(p, d = NULL, q = NULL),
seas = list(order = c(P = NULL, D = NULL, Q = NULL), frequency = NULL),
type = NULL,xreg=NULL)

Arguments

DataTimeSeries Univariate time series.
order If type="ARMA" (or ARMAX) then 'order' is a vector contain two positive integer which are order of ARMA model (or ARMAX model).
 If type="ARIMA" (or ARIMAX) then 'order' is a vector contain three positive integer which are order of ARIMA model (or ARIMAX model).
 If type="SARIMA" (or SARIMAX) then 'order' is a vector contain three positive integer which are order of ARIMA model (or ARIMAX model) of the non-seasonal part of the SARIMA model (or SARIMAX model).
 If type="ARCH" then 'order' is a positive integer which are order of ARCH model.
 If type='GARCH' then 'order' is a vector contain two positive integer which are order of GARCH model.
seas A list contain two part which are 'order' and 'frequency'.
 'order' part is a vector contain three positive integer which are order of ARIMA model of the seasonal part of the SARIMA model (or SARIMAX model).
 'frequency' part is frequency of observation series.
type A character string specifying the type of models, must be one of "ARMA", "ARIMA", "SARIMA", "ARCH", "GARCH", "ARMAX", "ARIMAX" or "SARIMAX".
xreg Optionally, a vector or matrix of external regressors, which must have the same number of rows as x.
Details

The first, function identify type of models according to 'type' parameter. The next, test other parameters. All of parameters are reasonable, function will combine orders of models. And then, to calculate AIC value of each model. The last step, performing ranked and extracting the best model.

Value

mohinh Calculation results.
best The best model following AIC value.

Note

You must be careful with 'order' and 'type' parameter of models.

Author(s)

Tran Thi Ngoc Han <tranthingochan01011994@gmail.com>
Mai Thi Hong Diem <maidiemks@gmail.com>
Hong Viet Minh <hongvietminh@gmail.com>

References

Nguyen Thi Diem My va Hong Viet Minh, Phan tich chuoi thoi gian voi su ho tro cua package AnalyzeTS.
Hong Viet Minh, Luan van tot nghiep dai hoc: Phan tich so lieu thong ke voi ngon ngu R.

Examples

#----A time series--------------------------------
sl<-ts(c(180,165,110,126,125,134,163,153,171,171,155,175,248,99,187,173,147,184,108,171,195,192,163))

#----The ARMA models--------------------------------
PrintAIC(sl,order=c(1,4),type="ARMA")

#----The ARIMA models--------------------------------
PrintAIC(sl,order=c(1,1,4),type="ARIMA")

#----The SARIMA models--------------------------------
PrintAIC(sl,order=c(1,1,4),seas=list(order=c(0,0,1), frequency=4),type="SARIMA")

#----The ARCH models--------------------------------
PrintAIC(sl,order=c(4),type="ARCH")

#----The GARCH models--------------------------------
PrintAIC(sl,order=c(1,4),type="GARCH")

#----The ARIMAX models--------------------------------
#A factor
round2str

rounded and converted to string of numbers

description
Rounded and converted to string of numbers to the specified number of decimal places.

usage
round2str(x, r = 12)

arguments
x A numeric, vector, matrix or data frame of numeric.
r A integer indicating the number of decimal places.

details
Unlike round function, round2str function cross-section numbers to the specified number of decimal places and then converted result to string.

author(s)
Hong Viet Minh <hongvietminh@gmail.com>

examples
a<-rnorm(3)
a
round2str(a,r=2)
round2str(a,r=5)
Simple Exponential Smoothing

Description
Calculating simple exponential smoothing for a time series.

Usage
SES(ts, alpha = 0.5, s0 = NULL)

Arguments
ts Univariate time series.
alpha The smoothing parameter, \(0 < \alpha < 1\) (default 0.5).
s0 Original estimate of s0 value.

Details
alpha = \(\frac{2}{n + 1}\) in n is moving periodic.

Value
Observation series after.

Note
Before, name of this function is TM.

Author(s)
Doan Hai Nghi <Hainghi1426262609121094@gmail.com>
Hong Viet Minh <hongvietminh@gmail.com>

References
https://www.otexts.org/fpp/7/1

See Also

CMA

Examples
SES(lh, alpha=0.5)
SES(lh, alpha=0.8)
Index

AnalyzeTS (AnalyzeTS-package), 2
AnalyzeTS-package, 2
av.res, 3
ChenHsu.bin, 5, 21, 22
CMA, 6, 32
Compare.Cs, 7, 7, 12
Descriptives, 8, 10, 17
Dgroup, 9, 9, 17
DOC, 7, 11, 22, 23
enrollment, 12
Fitted.arima, 13
fitted.Arima, 13
forecast.Greg.ts, 14, 27
forecastGARCH, 15
Frequencies, 9, 10, 16
fuzzy.ts1, 17, 24
fuzzy.ts2, 19, 25
GChenHsu.bin, 6, 21
GDOC, 7, 12, 22
Gfuzzy.ts1, 18, 23, 26
Gfuzzy.ts2, 20, 25
Greg.ts, 14, 26
ggrid.on, 27
pmax, 28
PrintAIC, 29
round, 31
round2str, 3, 8, 12, 15, 19, 22, 26, 31
SES, 6, 32