Package ‘Anthropometry’

February 22, 2023

Type Package
Title Statistical Methods for Anthropometric Data
Version 1.19
Date 2023-02-22
Author Guillermo Vinue, Irene Epifanio, Amelia Simo, M. Victoria Ibanez, Juan Domingo, Guillermo Ayala
Maintainer Guillermo Vinue <Guillermo.Vinue@uv.es>
Description Statistical methodologies especially developed to analyze anthropometric data. These methods are aimed at providing effective solutions to some commons problems related to Ergonomics and Anthropometry. They are based on clustering, the statistical concept of data depth, statistical shape analysis and archetypal analysis. Please see Vinue (2017) <doi:10.18637/jss.v077.i06>.
License GPL (>= 2)
Depends R (>= 3.3.0)
Imports shapes, rgl, archetypes, nnls, ddalpha, FNN, ICGE, cluster, biclust
Suggests knitr, calibrate, mvtnorm, RColorBrewer, plotrix, abind
VignetteBuilder knitr
LazyData yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-02-22 10:20:02 UTC

R topics documented:

Anthropometry-package .. 3
anthrCases ... 5
archetypesBoundary ... 6
archetypoids ... 9
<table>
<thead>
<tr>
<th>R topic documented:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>array3Dlandm</td>
<td>12</td>
</tr>
<tr>
<td>bustSizesStandard</td>
<td>13</td>
</tr>
<tr>
<td>CCbiclustAnthropo</td>
<td>14</td>
</tr>
<tr>
<td>cdfDissWomenPrototypes</td>
<td>17</td>
</tr>
<tr>
<td>checkBranchLocalIMO</td>
<td>19</td>
</tr>
<tr>
<td>checkBranchLocalMO</td>
<td>21</td>
</tr>
<tr>
<td>computSizesHipamAnthropom</td>
<td>23</td>
</tr>
<tr>
<td>computSizesTrimowa</td>
<td>24</td>
</tr>
<tr>
<td>cube3landm</td>
<td>25</td>
</tr>
<tr>
<td>cube8landm</td>
<td>26</td>
</tr>
<tr>
<td>descrDissTrunks</td>
<td>27</td>
</tr>
<tr>
<td>figures8landm</td>
<td>28</td>
</tr>
<tr>
<td>getBestPamsamIMO</td>
<td>29</td>
</tr>
<tr>
<td>getBestPamsamMO</td>
<td>30</td>
</tr>
<tr>
<td>getDistMatrix</td>
<td>32</td>
</tr>
<tr>
<td>HartiganShapes</td>
<td>34</td>
</tr>
<tr>
<td>hipamAnthropom</td>
<td>37</td>
</tr>
<tr>
<td>landmarksSampleSpaSurv</td>
<td>40</td>
</tr>
<tr>
<td>LloydShapes</td>
<td>41</td>
</tr>
<tr>
<td>nearestToArchetypes</td>
<td>43</td>
</tr>
<tr>
<td>optraShapes</td>
<td>44</td>
</tr>
<tr>
<td>overlapBiclustersByRows</td>
<td>46</td>
</tr>
<tr>
<td>parallelep3landm</td>
<td>48</td>
</tr>
<tr>
<td>parallelep8landm</td>
<td>49</td>
</tr>
<tr>
<td>percentilsArchetypoid</td>
<td>49</td>
</tr>
<tr>
<td>plotPrototypes</td>
<td>51</td>
</tr>
<tr>
<td>plotTreeHipamAnthropom</td>
<td>53</td>
</tr>
<tr>
<td>plotTrimOutl</td>
<td>55</td>
</tr>
<tr>
<td>preprocessing</td>
<td>57</td>
</tr>
<tr>
<td>projShapes</td>
<td>58</td>
</tr>
<tr>
<td>qtranShapes</td>
<td>59</td>
</tr>
<tr>
<td>sampleSpanishSurvey</td>
<td>61</td>
</tr>
<tr>
<td>screeArchetypal</td>
<td>62</td>
</tr>
<tr>
<td>shapes3dShapes</td>
<td>66</td>
</tr>
<tr>
<td>skeletonsArchetypal</td>
<td>67</td>
</tr>
<tr>
<td>stepArchetypesRawData</td>
<td>68</td>
</tr>
<tr>
<td>stepArchetypoids</td>
<td>70</td>
</tr>
<tr>
<td>TDDclust</td>
<td>72</td>
</tr>
<tr>
<td>trimmedLloydShapes</td>
<td>74</td>
</tr>
<tr>
<td>trimmedoid</td>
<td>76</td>
</tr>
<tr>
<td>trimOutl</td>
<td>78</td>
</tr>
<tr>
<td>trimowa</td>
<td>80</td>
</tr>
<tr>
<td>USAFSurvey</td>
<td>82</td>
</tr>
<tr>
<td>weightsMixtureUB</td>
<td>83</td>
</tr>
<tr>
<td>xyplotPCAarchetypes</td>
<td>84</td>
</tr>
</tbody>
</table>

Index 86
Description

Statistical methodologies especially developed to analyze anthropometric data. These methods are aimed at providing effective solutions to some commons problems related to Ergonomics and Anthropometry. They are based on clustering, the statistical concept of data depth, statistical shape analysis and archetypal analysis. Please see Vinue (2017) <doi:10.18637/jss.v077.i06>.

Details

Package: Anthropometry
Type: Package
Version: 1.19
Date: 2023-02-22
License: GPL (>=2)
LazyLoad: yes
LazyData: yes

anthrCases: Helper generic function for obtaining the anthropometric cases.
Anthropometry-internalArchetypoids: Several internal functions to compute and represent archetypes and archetypoids.
Anthropometry-internalHipamAnthropom: Several internal functions used by both $HIPAM_MO$ and $SHIPAM_IMO$ algorithms.
Anthropometry-internalPlotTree: Several internal functions used to build the HIPAM plot tree.
Anthropometry-internalTDDclust: Several internal functions to clustering based on the L1 data depth.
archetypesBoundary: Archetypal analysis in multivariate accommodation problem.
archetypoids: Finding archetypoids.
array3Dlandm: Helper function for the 3D landmarks.
bustSizesStandard: Helper function for defining the bust sizes.
CCbiclustAnthropo: Cheng and Church biclustering algorithm applied to anthropometric data.
cdfDissWomenPrototypes: CDF for the dissimilarities between women and computed medoids and standard prototypes.
checkBranchLocalIMO: Evaluation of the candidate clustering partition in $HIPAM_IMO$.
checkBranchLocalMO: Evaluation of the candidate clustering partition in $SHIPAM_MO$.
computSizesTrimowa: Computation of the trimowa elements for a given number of sizes defined by the EN.
computSizesHipamAnthropom: Computation of the hipamAnthropom elements for a given number of sizes defined by the EN.
cube8landm: Cube of 8 landmarks.
cube34landm: Cube of 34 landmarks.
descrDissTrunks: Description of the dissimilarities between women’s trunks.
figures8landm: Figures of 8 landmarks with labelled landmarks.
getBestPamsamIMO: Generation of the candidate clustering partition in HIPAM.IMO.
getBestPamsamMO: Generation of the candidate clustering partition in HIPAM.MO.
getDistMatrix: Dissimilarity matrix between individuals and prototypes.
HartiganShapes: Hartigan-Wong k-means for 3D shapes.
hipamAnthropom: HIPAM algorithm for anthropometric data.
landmarksSampleSpaSurv: Landmarks of the sampled women of the Spanish Survey.
LloydShapes: Lloyd k-means for 3D shapes.
nearestToArchetypes: Nearest individuals to archetypes.
overlapBiclustersByRows: Overlapped biclusters by rows.
parallelep8landm: Parallelepiped of 8 landmarks.
parallelep34landm: Parallelepiped of 34 landmarks.
percentilsArchetypoid: Helper function for computing percentiles of a certain archetypoid.
plotPrototypes: Prototypes representation.
plotTreeHipamAnthropom: HIPAM dendogram.
plotTrimmOutl: Trimmed or outlier observations representation.
preprocessing: Data preprocessing before computing archetypal observations.
projShapes: Helper function for plotting the shapes.
qtranShapes: Auxiliary qtran subroutine of the Hartigan-Wong k-means for 3D shapes.
sampleSpanishSurvey: Sample database of the Spanish anthropometric survey.
screeArchetypal: Screeplot of archetypal individuals.
shapes3dShapes: 3D shapes plot.
skeletonsArchetypal: Skeleton plot of archetypal individuals.
stepArchetypesRawData: Archetype algorithm to raw data.
stepArchetypoids: Run the archetypoid algorithm several times.
TDDclust: Trimmed clustering based on L1 data depth.
trimmedLloydShapes: Trimmed Lloyd k-means for 3D shapes.
trimmedkmedoids: Trimmed k-medoids algorithm.
trimmOutl: Helper generic function for obtaining the trimmed and outlier observations.
trimowa: Trimmed PAM with OWA operators.
weightsMixtureUB: Calculation of the weights for the OWA operators.
xyplotPCArchetypes: PC scores for archetypes.

Author(s)

Guillermo Vinue <Guillermo.Vinue@uv.es>, Irene Epifanio, Amelia Simo, M. Victoria Ibanez, Juan Domingo, Guillermo Ayala

References

anthrCases

Helper generic function for obtaining the anthropometric cases

Description
Because the goal of the methodologies included in this package is always to estimate a number of anthropometric cases given a data set (both central (prototypes) and boundaries (archetypoids)), this auxiliary generic function allows the user to identify the cases computed by each method in an easy way.

Usage
anthrCases(resMethod, nsizes)

S3 method for class 'trimowa'
anthrCases(resMethod, nsizes)

S3 method for class 'hipamAnthropom'
anthrCases(resMethod, nsizes)

Arguments
resMethod This is the object which saves the results obtained by the methodologies and which contains the anthropometric cases to return.
nsizes Number of bust sizes. This argument is needed for the "trimowa" and "hipamAnthropom" methodologies because they can compute the prototypes for any given number of bust sizes.

Value
A vector of class anthrCases with the anthropometric cases.

Author(s)
Guillermo Vinue

References
archetypesBoundary

See Also
trimowa, TDDclust, hipamAnthropom, LloydShapes, HartiganShapes, trimmedLloydShapes, archetypoids, stepArchetypoids

Examples

#kmeansProcrustes:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
[1] 66
As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
[1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
#shapes::plotshapes(array3D[,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)
numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
prototypes <- anthrCases(resLL)

archetypesBoundary Archetypal analysis in multivariate accommodation problem

Description
This function allows us to reproduce the results shown in section 2.2.2 and section 3.1 of Epifanio et al. (2013). In addition, from the results provided by this function, the other results shown in section 3.2 and section 3.3 of the same paper can be also reproduced (see section examples below).

Usage
archetypesBoundary(data,numArch,verbose,numRep)

Arguments

data USAF 1967 database (see USAFSurvey). Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
numArch Number of archetypes (archetypal observations).
verbose Logical value. If TRUE, some details of the execution progress are shown (this is the same argument as that of the stepArchetypes function of the archetypes R package (Eugster (2009))).
numRep For each archetype run archetypes numRep times (this is the same argument as the nrep argument of the stepArchetypes function of archetypes).
Details

Before using this function, the more extreme (100 - percAcomm*100)% observations must be removed by means of the preprocessing function. To that end, it is recommended that you use the Mahalanobis distance. In this case, the depth procedure has the disadvantage that the desired percentage of accommodation is not under control of the analyst and it may not exactly coincide with that one indicated.

Value

A list with numArch elements. Each element is a list of class attribute stepArchetypes with numRep elements.

Note

We would like to note that, some time after publishing the paper Epifanio et al. (2013), we found out that the stepArchetypes function standardizes the data by default (even when the data are already standardized) and this option is not always desired. In order to avoid this way of proceeding, we have created the stepArchetypesRawData function, which is used within archetypesBoundary instead of using stepArchetypes. Therefore, the results provided by archetypesBoundary allows us to reproduce the results of Epifanio et al. (2013) but they are now slightly different.

Author(s)

Irene Epifanio and Guillermo Vinue

References

See Also

archetypes, stepArchetypes, stepArchetypesRawData, USAFSurvey, nearestToArchetypes, preprocessing

Examples

#The following R code allows us to reproduce the results of the paper Epifanio et al. (2013).
#As a toy example, only the first 25 individuals are used.
#First, the USAF 1967 database is read and preprocessed (Zehner et al. (1993)).
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)

Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)

Procedure and results shown in section 2.2.2 and section 3.1:
For reproducing results, seed for randomness:
suppressWarnings(RNGversion("3.5.0"))
set.seed(2010)
res <- archetypesBoundary(USAFSurvey_preproc$data, 15, FALSE, 3)
To understand the warning messages, see the vignette of the
archetypes package.

Results shown in section 3.2 (figure 3):
screeplot(res)

3 archetypes:
a3 <- archetypes::bestModel(res[[3]])
archetypes::parameters(a3)

7 archetypes:
a7 <- archetypes::bestModel(res[[7]])
archetypes::parameters(a7)

Plotting the percentiles of each archetype:
Figure 2 (b):
barplot(a3, USAFSurvey_preproc$data, percentiles = TRUE, which = "beside")
Figure 2 (f):
barplot(a7, USAFSurvey_preproc$data, percentiles = TRUE, which = "beside")

Results shown in section 3.3 related with PCA.
pznueva <- prcomp(USAFSurvey_preproc$data, scale = TRUE, retx = TRUE)
Table 3:
summary(pznueva)
pznueva

PCA scores for 3 archetypes:
p3 <- predict(pznueva, archetypes::parameters(a3))

PCA scores for 7 archetypes:
p7 <- predict(pznueva, archetypes::parameters(a7))

Representing the scores:
Figure 4 (a):
xyplotPCArchetypes(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col = 1,
 atypes.pch = 15)
Figure 4 (b):
xyplotPCArchetypes(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col = 1,
 atypes.pch = 15)

Percentiles for 7 archetypes (table 5):
Fn <- ecdf(USAFSurvey_preproc$data)
round(Fn(archetypes::parameters(a7)) * 100)

Which are the nearest individuals to archetypes?:
Example for three archetypes:
ras <- rbind(archetypes::parameters(a3), USAFSurvey_preproc$data)
dras <- dist(ras, method = "euclidean", diag = FALSE, upper = TRUE, p = 2)
archetypoids <- as.matrix(dras)
diag(mdras) = 1e+11
numArch <- 3
sapply(seq(length=numArch), nearestToArchetypes, numArch, mdras)

In addition, we can turn the standardized values to the original variables.
p <- archetypes::parameters(a7)
m <- sapply(USAFsurvey_inch, mean)
s <- sapply(USAFsurvey_inch, sd)
d <- p
for(i in 1:6){
d[,i] = p[,i] * s[i] + m[i]
}
Table 7:
t(d)

archetypoids

Finding archetypoids

Description

Archetypoid algorithm. It is based on the PAM clustering algorithm. It is made up of two phases (a BUILD phase and a SWAP phase). In the BUILD phase, an initial set of archetypoids is determined. Unlike PAM, this collection is not derived in a stepwise format. Instead, it is suggested you choose the set made up of the nearest individuals returned by the archetypes function of the archetypes R package (Eugster et al. (2009)). This set can be defined in three different ways, see next section arguments. The goal of the SWAP step is the same as that of the SWAP step of PAM, but changing the objective function. The initial vector of archetypoids is attempted to be improved. This is done by exchanging selected individuals for unselected individuals and by checking whether these replacements reduce the objective function of the archetypoid analysis problem. All details are given in Vinue et al. (2015).

Usage

`archetypoids(numArchoid, data, huge=200, step, init, ArchObj, nearest="cand_ns", sequ, aux)`

Arguments

- **numArchoid**: Number of archetypoids (archetypal observations).
- **data**: Data matrix. Each row corresponds to an observation and each column corresponds to an anthropometric variable. All variables are numeric.
- **huge**: This is a penalization added to solve the convex least squares problems regarding the minimization problem to estimate archetypoids, see Eugster et al. (2009). Default value is 200.
- **step**: Logical value. If TRUE, the archetypoid algorithm is executed repeatedly within stepArchetypoids. Therefore, this function requires the next argument `init` (but neither the `ArchObj` nor the `nearest` arguments) that specifies the initial
vector of archetypoids, which has already been computed within \texttt{stepArchetypoids}. If FALSE, the archetypoid algorithm is executed once. In this case, the \texttt{ArchObj} and \texttt{nearest} arguments are required to compute the initial vector of archetypoids.

init

Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm. It is computed within \texttt{stepArchetypoids}. See \texttt{nearest} argument below for an explanation of how this vector is calculated.

ArchObj

The list object returned by the \texttt{stepArchetypesRawData} function. This function is a slight modification of the original \texttt{stepArchetypes} function of \texttt{archetypes} to apply the archetype algorithm to raw data. The \texttt{stepArchetypes} function standardizes the data by default and this option is not always desired. This list is needed to compute the nearest individuals to archetypes. Required when \texttt{step=FALSE}.

nearest

Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm. Required when \texttt{step=FALSE}. This initial vector contain the nearest individuals to the archetypes returned by the \texttt{archetypes} function of \texttt{archetypes} (In Vinue et al. (2015), archetypes are computed after running the archetype algorithm twenty times). This argument is a string vector with three different possibilities. The first and default option is "cand_ns" and allows us to calculate the nearest individuals by computing the Euclidean distance between the archetypes and the individuals and choosing the nearest. It is used in Epifanio et al. (2013). The second option is "cand_alpha" and allows us to calculate the nearest individuals by consecutively identifying the individual with the maximum value of alpha for each archetype, until the defined number of archetypes is reached. It is used in Eugster (2012). The third and final option is "cand_beta" and allows us to calculate the nearest individuals by identifying the individuals with the maximum beta value for each archetype, i.e. the major contributors in the generation of the archetypes.

sequ

Logical value. It indicates whether a sequence of archetypoids (TRUE) or only a single number of them (FALSE) is computed. It is determined by the number of archetypes computed by means of \texttt{stepArchetypesRawData}.

aux

If \texttt{sequ=FALSE}, this value is equal to \texttt{numArchoid}-1 since for a single number of archetypoids, the list associated with the archetype object only has one element.

Details

As mentioned, this algorithm is based on PAM. These types of algorithms aim to find good solutions in a short period of time, although not necessarily the best solution. Otherwise, the global minimum solution may always be obtained using as much time as it would be necessary, but this would be very inefficient computationally.

Value

A list with the following elements:

- **cases**: Anthropometric cases (final vector of \texttt{numArchoid} archetypoids).
- **rss**: Residual sum of squares corresponding to the final vector of \texttt{numArchoid} archetypoids.
archetypoids

archet_ini: Vector of initial archetypoids (cand_ns, cand_alpha or cand_beta).

alphas: Alpha coefficients for the optimal vector of archetypoids.

Note

It may be happen that archetypes does not find results for numArchoid archetypes. In this case, it is not possible to calculate the vector of nearest individuals and consequently, the vector of archetypoids. Therefore, this function will return an error message.

Author(s)

Irene Epifanio and Guillermo Vinue

References

See Also

stepArchetypesRawData, archetypes, stepArchetypoids

Examples

#Note: For a sportive example, see www.uv.es/vivigui/softw/more_examples.R

#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey.First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey.First25_inch <- USAFSurvey.First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey.preproc <- preprocessing(USAFSurvey.First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,
numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.
#
#screeplot(lass)

numArchoid <- 3 #number of archetypoids.
res_ns <- archetypoids(numArchoid, USAFSurvey_preproc$data, huge = 200, step = FALSE,
ArchObj = lass, nearest = "cand_ns", sequ = TRUE)

array3Dlandm

array3Dlandm
Helper function for the 3D landmarks

Description

This is a helper function for obtaining the array with the 3D landmarks of the sample objects

Usage

array3Dlandm(numLandm,numIndiv,matLandm)

Arguments

numLandm Number of landmarks that represent the 3D body of the individuals.
numIndiv Number of individuals to analyze.
matLandm Matrix with the numLandm landmarks for the numIndiv individuals.

Value

Array with the 3D landmarks of the sample objects.

Author(s)

Guillermo Vinue

References

application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

See Also

LloydShapes, HartiganShapes, trimmedLloydShapes
bustSizesStandard

Examples

```r
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
landmarksNoNa_First50 <- landmarksNoNa[1:50, ]
numIndiv <- dim(landmarksNoNa_First50)[1]

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First50)
```

bustSizesStandard Helper function for defining the bust sizes

Description

This is a helper function for defining the twelve bust sizes (from 74 cm to 131 cm) according to the sizes proposed in the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.

Usage

```r
bustSizesStandard(bustCirc_4, bustCirc_6)
```

Arguments

- `bustCirc_4`: Sequence of measurements from 74 to 102 in groups of four.
- `bustCirc_6`: Sequence of measurements from 107 to 131 in groups of six.

Value

A list with the following elements:

- `$bustCirc$`: Vector of the twelve bust sizes.
- `$nsizes$`: Number of bust sizes (twelve).

Author(s)

Guillermo Vinue

References

See Also
trimowa, hipamAnthropom

Examples
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

Description
This function is the implementation in R of the algorithm that uses the Cheng and Church biclustering method (from now on, CC) to find size groups (biclusters) and disaccommodated individuals. Designing lower body garments depends not only on the waist circumference (the principal dimension in this case), but also on other secondary control dimensions (for upper body garments the bust circumference is usually required only). Biclustering identifies groups of observations with a similar pattern in a subset of attributes instead of in the whole of them. Therefore, it seems to be more interesting to use a biclustering algorithm with a set of lower body variables.

In Vinue et al. (2014), the way of proceeding was as follows: first, all the body variables related to the lower body part included in the Spanish anthropometric survey were chosen (there were 36). Second, the data set was divided into twelve segments (classes) using waist circumference values according to the European standard. Part 3: Measurements and intervals. Finally, the CC algorithm was applied to each waist class.

Usage
CCbiclustAnthropo(data, waistVariable, waistCirc, lowerVar, nsizes, nBic, diffRanges, percDisac, dir)

Arguments
data Data matrix. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.
waistVariable Vector containing the waist values of the individuals.
waistCirc data is segmented into twelve waist classes. This vector contains the waist values to define each one of the twelve classes.
lowerVar Lower body dimensions.
nsizes Number of waist sizes.
nBic Maximum number of biclusters to be found in each waist size.
diffRanges List with nsizes elements. Each element is a vector whose extremes indicate the acceptable boundaries for selecting variables with a similar scale. This is needed because CC may be very influenced in case of variables involved in the study are on very different scales.
percDisac Proportion of no accommodated sample.
dir Working directory where to save the results.
Details

Interesting results in terms of apparel design were found: an efficient partition into different biclusters was obtained. All individuals in the same bicluster can wear a garment designed for the particular body dimensions (waist and other variables) which were the most relevant for defining the group. Each group is represented by the median woman. Because the CC algorithm is nonexhaustive, i.e. some rows (and columns) do not belong to any bicluster, this property can be used to fix a proportion of no accommodated sample.

This approach was descriptive and exploratory. It is emphasized that this function cannot be used with sampleSpanishSurvey, because this data file does not contain variables related to the lower body part in addition to waist and hip. However, this function is included in the package in the hope that it could be helpful or useful for other researchers.

Value

A list with the following elements:

res: List with nsizes elements. Each element contains the biclustering results for each waist segment.
dims: List with nsizes elements. Each element contains the number of variables with a similar scale in each waist segment.
delta: List with nsizes elements. Each element contains the delta parameter of the CC algorithm for each waist segment.
disac: List with nsizes elements. Each element contains the number of women who do not belong to any bicluster for each waist segment.
mat: List with nsizes elements. Each element contains the matrix showing which rows belong to each bicluster for each waist segment. This matrix allow us to know whether there are rows that belong to more than one bicluster, that is to say, whether there are overlapping biclusters. This is very important in our application because each individual must be assigned to a single size. See the Note section.
tab_acc: List with nsizes elements. Each element is a list with four elements. The first component indicates how many individuals belong to a single bicluster and how many do not belong to any bicluster. The second component refers to the number of biclusters found in each segment. The third one indicates the number of women that belong to each waist segment. The fourth one coincides with the disac element.
ColBics: List with nsizes elements. Each element contains the variables that belong to each bicluster for each waist segment.

Note

In order to know whether a row belongs to more than one bicluster, we count the number of 0s in each row of the mat matrix returned by this function (see the Value section).

In case of there are res@Number - 1 0s in each row of mat, then each row belongs to only one bicluster. The mat matrix indicates with an 1 the rows that make up of the bicluster 1, with a 2 those rows that make up of the bicluster 2 and so on. In addition, it indicates with a 0 the rows that do not belong to any bicluster. Therefore, in order to check overlapping, every row must have a number of 0s equal to the total number of biclusters minus one. This one will indicate that that row belongs
to a single bicluster. Otherwise, every row must have a number of 0s equal to the total number of biclusters. In this case, that row does not belong to any bicluster.

For instance, if we find two biclusters, there should be one or two 0s in each row in case of no overlapping.

Author(s)

Guillermo Vinue

References

See Also

`overlapBiclustersByRows`

Examples

```r
## Not run:
# Note: package biclust needed.
# This is an example of using this function with a certain database
# made up of body dimensions related to the lower body part.
data <- dataUser[(waist >= 58) & (waist < 115),] # dataUser is the user database.
rownames(data) <- 1:dim(data)[1]
waist <- data[, "WaistCircumference"]
waist_4 <- seq(58, 86, 4)
waist_6 <- seq(91, 115, 6)
waistCirc <- c(waist_4, waist_6)
nsizes <- length(waistCirc)

# Position of the body variables in the database:
lowerVars <- c(14, 17:25, 27, 28, 65:73, 75, 77:81, seq(100, 116, 2))

nBic <- c(2, 2, 4, rep(5, 7), 3, 3)
```
cdfDissWomenPrototypes

(diffRanges <- list(c(14,20), c(24,30), c(24,30), c(29,35), c(29,35),
 c(28,35), c(31,38), c(31,38), c(30,37), c(26,33), c(25,32))

percDisac <- 0.01

dir <- "/home/guillermo/

res_bicl_antropom <- CCbiclustAnthropo(data, waist, waistCirc, lowerVars,
 nsizes, nBic, diffRanges, percDisac, dir)

End(Not run)

cdfDissWomenPrototypes

CDF for the dissimilarities between women and computed medoids
and standard prototypes

Description

This function allows us to calculate the Cumulative Distribution Functions for the dissimilarities
between all the women and the medoids obtained with the trimowa algorithm and for the dissimilarities between all the women and the standard prototypes defined by the European standard. Part 3: Measurements and intervals. In both cases, the dissimilarities have been computed by using the dissimilarity function obtained with getDistMatrix.

These types of plots can also be used to identify the expected range of the dissimilarities, that is to say, the values between the 10 and 90th percentiles.

This function was used to obtain the Fig. 11 of Ibanez et al. (2012).

Usage

cdfDissWomenPrototypes(min_med, min_med_UNE, main, xlab, ylab, leg, cexLeg, ...)

Arguments

- **min_med**: Vector with the dissimilarities between all the women and the prototypes (medoids) obtained with trimowa.
- **min_med_UNE**: Vector with the dissimilarities between all the women and the standard prototypes.
- **main**: A title for the plot.
- **xlab**: A title for the x axis.
- **ylab**: A title for the y axis.
- **leg**: A character vector to appear in the legend.
- **cexLeg**: Character expansion for the legend.
- **...**: Further graphical parameters.

Value

A device with the desired plot.
Author(s)
Guillermo Vinue

References

See Also
sampleSpanishSurvey, weightsMixtureUB, trimowa, getDistMatrix

Examples
#Loading the data to apply the trimowa algorithm:
dataTrimowa <- sampleSpanishSurvey
dim(dataTrimowa)
#[1] 600 5
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
chest <- dataTrimowa$chest
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
#numSizes <- bustSizes$nsizes - 1
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,
weightsTrimowa, numClust, alpha, niter, algSteps, ah, FALSE)

#Prototypes obtained with the trimowa algorithm:
prototypes <- anthrCases(res_trimowa, numSizes)
#length(unlist(prototypes)) is (numSizes - 1) * numClust
meds <- dataTrimowa[unlist(prototypes),]

regr <- lm(chest ~ bust)

#Prototypes defined by the European standard:
hip_UNE <- c(seq(84,112,4), seq(117,132,5)) ; hip <- rep(hip_UNE,3)
waist_UNE <- c(seq(60,88,4), seq(94,112,6)) ; waist <- rep(waist_UNE,3)
bust_UNE <- c(seq(76,104,4), seq(110,128,6)); bust <- rep(bust_UNE,3)
chest_UNE <- predict(regr, list(bust=bust_UNE)); chest <- rep(chest_UNE,3)
necktograd <- c(rep(130,12), rep(134,12), rep(138,12))
medsUNE <- data.frame(chest, necktograd, waist, hip, bust)
dim(medsUNE)
[1] 36 5
dataAll <- rbind(dataTrimowa, meds, medsUNE)
dim(dataAll)
[1] 642 5

bh <- (apply(as.matrix(log(dataAll)),2,range)[2,]
 - apply(as.matrix(log(dataAll)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(28,20,30,25,23)
al <- 3 * ah
num.pers <- dim(dataAll)[1]
dataAllm <- as.matrix(dataAll)
dataAllt <- aperm(dataAllm, c(2,1))
dim(dataAllt) <- c(1, num.pers * numVar)
rm(dataAllm)
D <- getDistMatrix(dataAllt, num.pers, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)

sequen <- (dim(dataTrimowa)[1] + 1) : (dim(dataTrimowa)[1] + length(unlist(prototypes)))
f <- function(i, D){
 r <- min(D[i, sequen])
}
min_med <- sapply(1:dim(dataTrimowa)[1], f, D)

min_med_UNE <- sapply(1:dim(dataTrimowa)[1], f1, D)

#CDF plot:
main <- "Comparison between sizing methods"
xlab <- "Dissimilarity"
ylab <- "Cumulative distribution function"
leg <- c("Dissimilarity between women and computed medoids",
 "Dissimilarity between women and standard prototypes")
cdfDissWomenPrototypes(min_med, min_med_UNE, main, xlab, ylab, leg, cexLeg = 0.7)

Description

In the HIPAM algorithm, each (parent) cluster P is investigated to see if it can be divided further into new (child) clusters, or stop (in this case, P would be a terminal node).
In this version of HIPAM, called HIPAM.IMO, there are three different stopping criteria: First, if \(|P| \leq 2\), then P is a terminal node. If not, the second stopping refers to the INCA (Index Number Clusters Atypical) criterion (Irigoien et al. (2008)): if \(\text{INCA}_k \leq 0.2\) for all \(k\), then P is a terminal node. Finally, the third stopping criteria uses the Mean Split Silhouette. See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

\[
\text{checkBranchLocalIMO}(\text{tree}, \text{data}, i, \text{maxsplit}, \text{asw.tol}, \text{local.const}, \text{orness}, \text{type}, \text{ah}, \text{verbose}, \ldots)
\]

Arguments

- **tree**: The clustering tree being defined.
- **data**: Data to be clustered.
- **i**: A specific cluster of the clustering partition in a certain level of the tree.
- **maxsplit**: The maximum number of clusters that any cluster can be divided when searching for the best clustering.
- **asw.tol**: If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is maintained. See page 154 of Wit et al. (2004) for more details.
- **local.const**: If this value is given (meaningful values are those between -1 and 1), a proposed partition is accepted only if the associated asw is greater than this constant. Default option for this argument is maintained, that is to say, this value is ignored. See page 154 of Wit et al. (2004) for more details.
- **orness**: Quantity to measure the degree to which the aggregation is like a min or max operation. See weightsMixtureUB and getDistMatrix.
- **type**: Option ‘IMO’ for using HIPAM.IMO.
- **ah**: Constants that define the ah slopes of the distance function in getDistMatrix. Given the five variables considered, this vector is \(c(23, 28, 20, 25, 25)\). This vector would be different according to the variables considered.
- **verbose**: Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
- **...**: Other arguments that may be supplied.

Value

The new resulting classification tree.

Note

This function belongs to the HIPAM.IMO algorithm and it is not solely used. That is why there is no section of examples in this help page. See hipamAnthropom.
checkBranchLocalMO

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html. We have adapted it to incorporate the second stopping criterion related to INCA.

References

See Also

hipamAnthropom

checkBranchLocalMO Evaluation of the candidate clustering partition in $HIPAM_MO$

Description

In the HIPAM algorithm, each (parent) cluster P is investigated to see if it can be divided further into new (child) clusters, or stop (in this case, P would be a terminal node).

In this version of HIPAM, called $SHIPAM_MOS$, there are two different stopping criteria: First, if $|P| \leq 2$, then P is a terminal node. If not, the second stopping criteria uses the Mean Split Silhouette. See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

checkBranchLocalMO(tree, data, i, maxsplit, asw.tol, local.const, orness, type, ah, verbose,...)
checkBranchLocalMO

Arguments

- **tree**: The clustering tree being defined.
- **data**: Data to be clustered.
- **i**: A specific cluster of the clustering partition in a certain level of the tree.
- **maxsplit**: The maximum number of clusters that any cluster can be divided when searching for the best clustering.
- **asw.tol**: If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is maintained. See page 154 of Wit et al. (2004) for more details.
- **local.const**: If this value is given (meaningful values are those between -1 and 1), a proposed partition is accepted only if the associated asw is greater than this constant. Default option for this argument is maintained, that is to say, this value is ignored. See page 154 of Wit et al. (2004) for more details.
- **orness**: Quantity to measure the degree to which the aggregation is like a min or max operation. See `weightsMixtureUB` and `getDistMatrix`.
- **type**: Option 'MO' for using $HIPAM_MO$.
- **ah**: Constants that define the ah slopes of the distance function in `getDistMatrix`. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
- **verbose**: Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
- **...**: Other arguments that may be supplied.

Value

The new resulting classification tree.

Note

This function belongs to the $HIPAM_MO$ algorithm and it is not solely used. That is why there is no section of examples in this help page. See `hipamAnthropom`.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html.

References

computSizesHipamAnthropom

See Also

hipamAnthropom

computSizesHipamAnthropom

Computation of the hipamAnthropom elements for a given number of sizes defined by the EN

Description

This is a helper function for computing the hipamAnthropom elements provided by the *hipamAnthropom* algorithm for a number of bust sizes defined by the European Normative (EN). Therefore, the *hipamAnthropom* is used inside this function.

Usage

```r
computSizesHipamAnthropom(dataHip, bust, bustMeasur, nsizes, maxsplit, orness, type, ah, verbose = FALSE)
```

Arguments

- `dataHip`: Data frame.
- `bust`: Bust column of the data frame.
- `bustMeasur`: Sequence vector of bust measurements (bust sizes) provided by the *bustSizesStandard* function.
- `nsizes`: Number of sizes defined by the European Normative to apply the *hipamAnthropom* function.
- `maxsplit, orness, type, ah, verbose`: Same arguments as those of the *hipamAnthropom* function.

Value

A list with the same elements as the *hipamAnthropom* function.

Author(s)

Guillermo Vinue

References

Compute the trimowa elements for a given number of sizes defined by the EN

Description

This is a helper function for computing the trimowa elements provided by the `trimowa` algorithm for a number of bust sizes defined by the European Normative (EN). Therefore, the `trimowa` is used inside this function. The number of sizes must be bigger than one. For a single size use directly `trimowa`.

Usage

```r
computSizesTrimowa(dataTrim, bust, bustMeasur, nsizes, w, numClust, alpha, niter, algSteps, ah, verbose = FALSE)
```

Arguments

- `dataTrim`: Data frame.
- `bust`: Bust column of the data frame.
- `bustMeasur`: Sequence vector of bust measurements (bust sizes) provided by the `bustSizesStandard` function.
- `nsizes`: Number of sizes defined by the European Normative to apply the `trimowa` function.
- `w, numClust, alpha, niter, algSteps, ah, verbose`: Same arguments as those of the `trimowa` function.

See Also

- `hipamAnthropom`, `bustSizesStandard`
Value

A list with the same elements as the trimowa function.

Author(s)

Guillermo Vinue

References

See Also

trimowa, bustSizesStandard

Examples

dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,
 weightsTrimowa, numClust, alpha, niter,
 algSteps, ah, verbose = FALSE)

cube34landm Cube of 34 landmarks

Description

This is a cube made up of 34 landmarks, used as controlled data in the simulation study carried out in the paper referred below.
Usage

cube34landm

Format

An array with one matrix of 34 rows and 3 columns.

Source

Software Rhinoceros.

References

cube8landm

Cube of 8 landmarks

Description

This is a cube made up of 8 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

Usage

cube8landm

Format

An array with one matrix of 8 rows and 3 columns.

Source

Software Rhinoceros.

References

Description of the dissimilarities between women’s trunks

Unlike archetypes, archetypoids can be computed when features are unavailable. Given a dissimilarity matrix, the classical multidimensional scaling (cMDS) can be applied to obtain a description of the dissimilarities.

In Vinue et al. (2015), the dissimilarity matrix represents the dissimilarities between women’s trunks. After applying the cMDS, the database described here is obtained. Then, the archetypoid algorithm can be applied to this database, see section examples.

Usage

descrDissTrunks

Format

A matrix with 470 rows and 4 columns.

Source

Anthropometric survey of the Spanish female population.

References

Examples

#Database:
#As a toy example, only the first 25 individuals are used.
X <- descrDissTrunks[1:25,]
X <- as.matrix(X)

#Computation of archetypes and archetypoids:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; nrep <- 2
lass <- stepArchetypesRawData(data = X, numArch = 1:numArch, numRep = nrep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.
#screeplot(lass)

numArchoid <- 3
res_archoids_ns <- archetypoids(numArchoid, X, huge = 200, step = FALSE, ArchObj = lass,
nearest = "cand_ns", sequ = TRUE)

figures8landm

Figures of 8 landmarks with labelled landmarks

Description

This function allows us to represent the two geometric figures (a cube and a parallelepiped) of 8 landmarks, with the landmark labels. Both appear in the paper Vinue et al. (2016), referred below.

Usage

```r
figures8landm(figure, data)
```

Arguments

- `figure` A character vector, two values are admitted: if `figure="cube"`, the cube is represented. If `figure="paral"`, the parallelepiped is represented.
- `data` The data with the landmarks of the corresponding figure.

Value

A plot of the cube or the parallelepiped with the landmark labels.

Author(s)

Guillermo Vinue

References

Examples

```r
## Not run:
figures8landm("cube", cube8landm)
figures8landm("paral", parallelep8landm)

## End(Not run)
```
getBestPamsamIMO

Description

The HIPAM algorithm starts with one large cluster and, at each level, a given (parent) cluster is partitioned using PAM.

In this version of HIPAM, called $HIPAM_{IMO}$, the number k of (child) clusters is obtained by using the INCA (Index Number Clusters Atypical) criterion (Irigoien et al. (2008)) in the following way: at each node P, if there is k such that $INCA_k > 0.2$, then the k prior to the first largest slope decrease is selected. However, this procedure does not apply either to the top node or to the generation of the new partitions from which the Mean Split Silhouette is calculated. In these cases, even when all $INCA_k < 0.2$, k = 3 is fixed as the number of groups to divide and proceed. See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in *hipamAnthropom*.

Usage

getBestPamsamIMO(data,maxsplit,orness=0.7,type,ah,verbose,...)

Arguments

- **data**: Data to be clustered.
- **maxsplit**: The maximum number of clusters that any cluster can be divided when searching for the best clustering.
- **orness**: Quantity to measure the degree to which the aggregation is like a min or max operation. See *weightsMixtureUB* and *getDistMatrix*.
- **type**: Option ‘IMO’ for using $HIPAM_{IMO}$.
- **ah**: Constants that define the ah slopes of the distance function in *getDistMatrix*. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.
- **verbose**: Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
- **...**: Other arguments that may be supplied.

Value

A list with the following elements:

- **medoids**: The cluster medoids.
- **clustering**: The clustering partition obtained.
- **asw**: The asw of the clustering.
- **num.of.clusters**: Number of clusters in the final clustering.
- **info**: List that informs about the progress of the clustering algorithm.
profiles: List that contains the asw and sesw (standard error of the silhouette widths) profiles at each stage of the search.

metric: Dissimilarity used (called 'McCulloch' because the dissimilarity function used is that explained in McCulloch et al. (1998)).

Note

This function belongs to the $HIPAM_{IMO}$ algorithm and it is not solely used. That is why there is no section of examples in this help page. See `hipamAnthropom`.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html. We have adapted it to incorporate the INCA criterion.

References

See Also

`hipamAnthropom`

bestPamsamMO

Generation of the candidate clustering partition in $HIPAM_{MO}$

Description

The HIPAM algorithm starts with one large cluster and, at each level, a given (parent) cluster is partitioned using PAM.

In this version of HIPAM, called $HIPAM_{MO}$, the number k of (child) clusters is obtained by maximizing the silhouette width (asw). See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in `hipamAnthropom`.
getBestPamsamMO

Usage

getAddress(data,maxsplit,orness=0.7,type,ah,verbose,...)

Arguments

data
 Data to be clustered.
maxsplit
 The maximum number of clusters that any cluster can be divided when searching
 for the best clustering.
orness
 Quantity to measure the degree to which the aggregation is like a min or max
 operation. See weightsMixtureUB and getDistMatrix.
type
 Option 'MO' for using $HIPAM_MO$.
ah
 Constants that define the ah slopes of the distance function in getDistMatrix.
 Given the five variables considered, this vector is c(23,28,20,25,25). This vector
 would be different according to the variables considered.
verbose
 Boolean variable (TRUE or FALSE) to indicate whether to report information
 on progress.
...
 Other arguments that may be supplied.

Value

A list with the following elements:
medoids: The cluster medoids.
clustering: The clustering partition obtained.
aw: The aw of the clustering.
um.of.clusters: Number of clusters in the final clustering.
info: List that informs about the progress of the clustering algorithm.
profiles: List that contains the aw and sesw (standard error of the silhouette widths) profiles at each
 stage of the search.
metric: Dissimilarity used (called 'McCulloch' because the dissimilarity function used is that ex-
 plained in McCulloch et al. (1998)).

Note

This function belongs to the $HIPAM_MO$ algorithm and it is not solely used. That is why there
 is no section of examples in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.
References

See Also

[hipamAnthropom](#)

describe

getDistMatrix

Dissimilarity matrix between individuals and prototypes

Description

In the definition of a sizing system, a distance function allows us to represent mathematically the idea of garment fit and it is a key element to quantify the misfit between an individual and the prototype.

This function computes the dissimilarity defined in McCulloch et al. (1998), which is used in trimowa and hipamAnthropom. For more details, see also Ibanez et al. (2012) and Vinue et al. (2014).

Usage

getDistMatrix(data,np,nv,w,bl,bh,al,ah,verbose)

Arguments

- **data**
 - Data vector.
- **np**
 - Number of observations in the database.
- **nv**
 - Number of variables in the database.
- **w**
 - Weights for the OWA operator computed by means of weightsMixtureUB.
- **bl, bh, al, ah**
 - Constants required to specify the distance function.
- **verbose**
 - Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.
getDistMatrix

Details

At the computational level, it is assumed that all the \(bh \) values are negative, all the \(bl \) values are positive and all the \(al \) and \(ah \) slopes are positive (the sign of \(al \) is changed within the function when computing the dissimilarities).

Value

A symmetric \(np \times np \) matrix of dissimilarities.

Note

This function requires a C code called cast.c. In order to use `getDistMatrix` outside the package, the dynamic-link library is called by means of the sentence `dyn.load("cast.so")` (In Windows, it would be `dyn.load("cast.dll")`).

Author(s)

Juan Domingo

References

See Also

`trimowa`, `hipamAnthropom`

Examples

```r
#Data loading:
dataTrimowa <- sampleSpanishSurvey
bust <- dataTrimowa$bust
#First bust class:
data <- dataTrimowa[(bust >= 74) & (bust < 78), ]
numVar <- dim(dataTrimowa)[2]

#Weights calculation:
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

#Constants required to specify the distance function:
```
numClust <- 3
bh <- (apply(as.matrix(log(data)),2,range)[2,]
 - apply(as.matrix(log(data)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(23,28,20,25,25)
al <- 3 * ah

#Data processing.
num.persons <- dim(data)[1]
num.variables <- dim(data)[2]
datat <- aperm(datam, c(2,1))
dim(datat) <- c(1,num.persons * num.variables)

#Dissimilarity matrix:
D <- getDistMatrix(datat, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)

HartiganShapes

Hartigan-Wong k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)). However, in many texts, the term k-means algorithm is used for certain similar sequential clustering algorithms. Hartigan and Wong (1979) use the term k-means for an algorithm that searches for the locally optimal k-partition by moving points from one cluster to another.

This function allows us to use the Hartigan-Wong version of k-means adapted to deal with 3D shapes. Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

HartiganShapes(array3D,numClust,algSteps=10,niter=10,
 stopCr=0.0001,simul,initLl,initials,verbose)

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).
numClust Number of clusters.
algSteps: Number of steps per initialization. Default value is 10.
niter: Number of random initializations (iterations). Default value is 10.
stopCr: Relative stopping criteria. Default value is 0.0001.
simul: Logical value. If TRUE, this function is used for a simulation study.
initLl: Logical value. If TRUE, see next argument initials. If FALSE, they are new random initial values.
initials: If initLl=TRUE, they are the same random initial values used in each iteration of LloydShapes. If initLl=FALSE this argument must be passed simply as an empty vector.
verbose: A logical specifying whether to provide descriptive output about the running process.

Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010), Georgescu (2009)). In Vinue, G. et al. (2014), it is demonstrated that the Lloyd k-means represents a noticeable reduction in the computation involved when the sample size increases, compared with the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis context only for very small samples.

Value

A list with the following elements:
ic1: Optimal clustering.
cases: Anthropometric cases (optimal centers).
voct: Optimal objective function.

If a simulation study is carried out, the following elements are returned:
ic1: Optimal clustering.
cases: Anthropometric cases (optimal centers).
voct: Optimal objective function.
compTime: Computational time.
AllRate: Allocation rate.

Note

This function is based on the kmns.m file available from https://github.com/johannesgerer/jburkardt-m/tree/master/asa136

Author(s)

Guillermo Vinue
References

See Also

LloydShapes, trimmedLloydShapes, landmarksSampleSpaSurv, cube8landm, parallelep8landm, cube34landm, parallelep34landm, procGPA, optraShapes, qtranShapes

Examples

```r
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
# [1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
# [1] 66
# As a toy example, only the first 20 individuals are used.
landmarksNoNa_First20 <- landmarksNoNa[1:20,]
(numIndiv <- dim(landmarksNoNa_First20)[1])
# [1] 20
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First20)
#array3D <- array3D[1:10,,] # to reduce computational times.
#shapes::plotshapes(array3D[,1,])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 3 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
# For reproducing results, seed for randomness:
# suppressWarnings(RNGversion("3.5.0"))
# set.seed(2013)
# resHA <- HartiganShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE, c(), FALSE)
# initials <- list(c(15,10,1))
resHA <- HartiganShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, TRUE, initials, TRUE)

if (!is.null(resHA)) {
  asig <- resHA$ic1  # table(asig) shows the clustering results.
  prototypes <- anthrCases(resHA)
}
# Note: For a simulation study, see www.uv.es/vivigui/softw/more_examples.R
```
Description

The Hierarchical Partitioning Around Medoids clustering method (HIPAM) was originally created to gene clustering (Wit et al. (2004)). The HIPAM algorithm is a divisive hierarchical clustering method based on the PAM algorithm.

This function is a HIPAM algorithm adapted to deal with anthropometric data. To that end, a different dissimilarity function is incorporated. This function is that explained in McCulloch et al. (1998) and it is implemented in getDistMatrix. We call it \(d_{MO}\). In addition, a different method to obtain a classification tree is also incorporated.

Two HIPAM algorithms are proposed. The first one, called \$HIPAM_MOS\$, is a HIPAM that uses \$d_{MO}\$. The second one, \$HIPAM_IMO\$, is a HIPAM algorithm that uses \$d_{MO}\$ and the INCA (Index Number Clusters Atypical) statistic criterion (Irigoien et al. (2008)) to decide the number of child clusters and as a stopping rule.

See Vinue et al. (2014) for more details.

Usage

hipamAnthropom(data, asw.tol=0, maxsplit=5, local.const=NULL, orness=0.7, type, ah=c(23,28,20,25,25), verbose,...)

Arguments

data
Data frame. In our approach, this is each of the subframes originated after segmenting the whole anthropometric Spanish survey into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.

asw.tol
If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is maintained. See page 154 of Wit et al. (2004) for more details.

maxsplit
The maximum number of clusters that any cluster can be divided into when searching for the best clustering.

local.const
If this value is given (meaningful values are those between -1 and 1), a proposed partition is accepted only if the associated asw is greater than this constant. Default option for this argument is maintained, that is to say, this value is ignored. See page 154 of Wit et al. (2004) for more details.

orness
Quantity to measure the degree to which the aggregation is like a min or max operation. See weightsMixtureUB and getDistMatrix.

type
Type of HIPAM algorithm to be used. The possible options are 'MO' (for \$HIPAM_MOS\$) and 'IMO' (for \$HIPAM_IMO\$).
ah Constants that define the ah slopes of the distance function in `getDistMatrix`. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information on progress.

... Other arguments that may be supplied to the internal functions of the HIPAM algorithms.

Details

The `$HIPAM_MO$ algorithm uses the `getBestPamsamMO` and `checkBranchLocalMO` functions, while the `$HIPAM.IMO$ algorithm uses the `getBestPamsamIMO` and `checkBranchLocalIMO` functions.

For more details of HIPAM, see van der Laan et al. (2003), Wit et al. (2004) and the manual of the `smida` R package.

Value

A list with the following elements:

- `clustering`: Final clustering that corresponds to the last level of the tree.
- `asw`: The asw of the final clustering.
- `n.levels`: Number of levels in the tree.
- `cases`: Anthropometric cases (medoids of all of the clusters in the tree).
- `active`: Activity status of each cluster (FALSE for every cluster of the final partition).
- `development`: Matrix that indicates the ancestors of the final clusters.
- `num.of.clusters`: Number of clusters in the final clustering.
- `metric`: Dissimilarity used (called ‘McCulloch’ because the dissimilarity function used is that explained in McCulloch et al. (1998)).

Note

All the functions related to the HIPAM algorithm were originally created by E. Wit et al., and they are available freely on https://www.math.rug.nl/~ernst/book/smida.html. In order to develop the `$HIPAM_MO$ and `$HIPAM.IMO$ algorithms, we have used and adapted them.

Author(s)

Guillermo Vinue

References

See Also

`getBestPamsamMO, getBestPamsamIMO, checkBranchLocalMO, checkBranchLocalIMO, plotTreeHipamAnthropom`

Examples

```r
#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes,
                                        maxsplit, orness, type, ah, FALSE)

fitmodels <- anthrCases(res_hipam, numSizes)
outliers <- trimmOutl(res_hipam, numSizes)

#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]
```
numVar <- dim(dataComp)[2]

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(28, 25, 25)

dataMat <- as.matrix(dataComp)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res_hipam_One <- list() ; class(res_hipam_One) <- "hipamAnthropom"
res_hipam_One[[1]] <- hipamAnthropom(dataMat, maxsplit = maxsplit, orness = orness,
 type = type, ah = ah, verbose = FALSE)

#plotTreeHipamAnthropom(res_hipam_One, main="Proposed Hierarchical PAM Clustering
"
fitmodels_One <- anthrCases(res_hipam_One,1)
outliers_One <- trimmOutl(res_hipam_One,1)

landmarksSampleSpaSurv

Landmarks of the sampled women of the Spanish Survey

Description

The body shape of the women who belong to sampleSpanishSurvey is represented by a set of anatomical correspondence points, called landmarks.

This database collects the set of landmarks of each woman.

The landmarks considered were placed in three different ways:

- Automatic landmarks: automatically calculated with scanner program algorithms, based on geometrical features of the body.
- Manual landmarks: points which are not reflected on the external body geometry; they were located through palpation by expert personnel and identified by a physical marker.
- Digital landmarks: detected on the computer screen in the 3D scanned image. They are not robust on the automatic calculation but are easy to detect on the screen.

Usage

landmarksSampleSpaSurv

Format

A data frame with 600 observations and 198 variables (66 landmarks times 3 dimensions).

Source

Anthropometric survey of the Spanish female population.
LloydShapes

References

LloydShapes

Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)).

This function allows us to use the Lloyd version of k-means adapted to deal with 3D shapes. Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

LloydShapes(array3D,numClust,algSteps=10,niter=10,stopCr=0.0001,simul,verbose)

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).

numClust Number of clusters.

algSteps Number of steps of the algorithm per initialization. Default value is 10.

niter Number of random initializations (iterations). Default value is 10.

stopCr Relative stopping criteria. Default value is 0.0001.

simul Logical value. If TRUE, this function is used for a simulation study.

verbose A logical specifying whether to provide descriptive output about the running process.
Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010), Georgescu (2009)). In Vinue et al. (2014), it is demonstrated that the Lloyd k-means represents a noticeable reduction in the computation involved when the sample size increases, compared with the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis context only for very small samples.

Value

A list with the following elements:

- `asig`: Optimal clustering.
- `cases`: Anthropometric cases (optimal centers).
- `vopt`: Optimal objective function.
- `initials`: Random initial values used in each iteration. These values are then used by `HartiganShapes`.

If a simulation study is carried out, the following elements are returned:

- `asig`: Optimal clustering.
- `cases`: Anthropometric cases (optimal centers).
- `vopt`: Optimal objective function.
- `compTime`: Computational time.
- `AllRate`: Allocation rate.
- `initials`: Random initial values used in each iteration. These values are then used by `HartiganShapes`.

Author(s)

Amelia Simo

References

See Also

`HartiganShapes`, `trimmedLloydShapes`, `landmarksSampleSpaSurv`, `cube8landm`, `parallelep8landm`, `cube34landm`, `parallelep34landm`, `procGPA`, `optraShapes`, `qtranShapes`
Examples

#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[1,1,1], array3D[2,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
asig <- resLL$asig
table(resLL$asig)
prototypes <- anthrCases(resLL)

#Note: For a simulation study, see www.uv.es/vivigui/softw/more_examples.R

nearestToArchetypes Nearest individuals to archetypes

Description

The nearest individual to each archetype can be obtained by simply computing the distance between the archetypes and the individuals and choosing the nearest. This is the procedure to obtain what is called the cand_ns vector, see Vinue et al. (2015). It is used within archetypoids and stepArchetypoids.

Usage

nearestToArchetypes(indivs, numArch, mdras)

Arguments

indivs Vector from 1 to numArch of individuals nearest to archetypes.
numArch Number of archetypes computed.
mdras Distance matrix between the archetypes and the individuals.

Value

A vector with the nearest individuals to archetypes.
Author(s)

Irene Epifanio

References

See Also

archetypoids, stepArchetypoids, archetypesBoundary

Examples

```r
# COCKPIT DESIGN PROBLEM:
# As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]

# Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)

# Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[, variabl_sel] / (10 * 2.54)

# Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

res <- archetypesBoundary(USAFSurvey_preproc$data, 5, FALSE, 3)

# To understand the warning messages, see the vignette of the archetypes package.

numArch <- 3
a3 <- archetypes::bestModel(res[[numArch]])
ras <- rbind(archetypes::parameters(a3), USAFSurvey_preproc$data)
dras <- dist(ras, method = "euclidean", diag = FALSE, upper = TRUE, p = 2)
mdras <- as.matrix(dras)
diag(mdras) <- 1e+11
sapply(seq(length = numArch), nearestToArchetypes, numArch, mdras)
```

optraShapes

Auxiliary optra subroutine of the Hartigan-Wong k-means for 3D shapes
optraShapes

Description

The Hartigan-Wong version of the k-means algorithm uses two auxiliary algorithms: the optimal transfer stage (ostra) and the quick transfer stage (qtran).

This function is the ostra subroutine adapted to the shape analysis context. It is used within HartiganShapes. See Hartigan and Wong (1979) for details of the original k-means algorithm and Amaral et al. (2010) for details about its adaptation to shape analysis.

Usage

\texttt{optraShapes(array3D,n,c,numClust,ic1,ic2,nc,an1,an2,ncp,d,itr\texttt{a}n,\texttt{l}ive,indx)}

Arguments

- \texttt{array3D} Array with the 3D landmarks of the sample objects.
- \texttt{n} Number of sample objects.
- \texttt{c} Array of centroids.
- \texttt{numClust} Number of clusters.
- \texttt{ic1} The cluster to each object belongs.
- \texttt{ic2} This vector is used to remember the cluster which each object is most likely to be transferred to at each step.
- \texttt{nc} Number of objects in each cluster.
- \texttt{an1} $\text{an1}(l) = \frac{\text{nc}(l)}{\text{nc}(l) - 1}$, \(l=1,\ldots,\text{numClust}\$.
- \texttt{an2} $\text{an2}(l) = \frac{\text{nc}(l)}{\text{nc}(l) + 1}$, \(l=1,\ldots,\text{numClust}\$.
- \texttt{ncp} In the optimal transfer stage, ncp(l) stores the step at which cluster l is last updated, \(l=1,\ldots,\text{numClust}\$.
 In the quick transfer stage, ncp(l) stores the step at which cluster l is last updated plus n, \(l=1,\ldots,\text{numClust}\$.
- \texttt{d} Vector of distances from each object to every centroid.
- \texttt{itr\texttt{a}n} itran(l) = 1 if cluster l is updated in the quick-transfer stage (0 otherwise), \(l=1,\ldots,\text{numClust}\$.
- \texttt{\texttt{l}ive} Vector that indicates whether a cluster is included in the live set or not.
- \texttt{indx} Number of steps since a transfer took place.

Value

A list with the following elements: \(c,ic1,ic2,nc,an1,an2,ncp,d,itr\texttt{a}n,\texttt{l}ive,indx\), updated after the optimal transfer stage.

Note

This function belongs to HartiganShapes and it is not solely used. That is why there is no section of examples in this help page.
overlapBiclustersByRows

Note

This function is based on the optra.m file available from https://github.com/johannesgerer/jburkardt-m/tree/master/asa136.

Author(s)

Guillermo Vinue

References

See Also

HartiganShapes

overlapBiclustersByRows

Overlapped biclusters by rows

Description

This function allows us to check which rows belong to more than one bicluster. It is used within the CCbiclustAnthropo function.

Usage

overlapBiclustersByRows(Bic,resBicluster)

Arguments

Bic Bicluster number.
resBicluster An object of class Biclust.
Details

In order to know how this function works, it is necessary to understand the following commands:

\[res.bicl[\text{RowxNumber}, 1] \]
indicates the rows that belong to the bicluster 1, by assigning a TRUE value to the position of those rows inside the original matrix. By using \[\text{table}(res.bicl[\text{RowxNumber}, 1]) \], we obtain the number of rows belonging to bicluster 1.

\[1 * res.bicl[\text{RowxNumber}, 1] \] makes TRUES into 1s.

\[\text{Bic} * res.bicl[\text{RowxNumber}, \text{Bic}] \] makes TRUES into the corresponding value of Bic.

In short, this function puts a 1 in those rows belonging to bicluster 1, a 2 in those ones of bicluster 2, and so on.

The fact that certain columns of the matrix returned by this function have a value different from 0 at the same row, will indicate that that row belong to both biclusters.

This function cannot be used with the data of the package. This function is included in the package in the hope that it could be helpful or useful for other researchers.

Value

A matrix with as many rows as rows of the original matrix, and as many columns as obtained biclusters.

Author(s)

Guillermo Vinue

References

See Also

CCbiclustAnthropo

Examples

```r
## Not run:
#Note: package biclust needed.
#This is an example of using this function with a certain database
#made up of body dimensions related to the lower body part.
data <- dataUser[(waist >= 58) & (waist < 115),] #dataUser is the user database.
rownames(data) <- 1:dim(data)[1]
waist <- data[,"WaistCircumference"]
waist_4 <- seq(58, 86, 4)
waist_6 <- seq(91, 115, 6)
waistCirc <- c(waist_4,waist_6)
```
nsizes <- length(waistCirc)

#Position of the body variables in the database:
lowerVars <- c(14, 17:25, 27, 28, 65:73, 75, 77:81, seq(100, 116, 2))

nBic <- c(2, 2, 4, rep(5, 7), 3, 3)
diffRanges <- list(c(14,20), c(24,30), c(24,30), c(33,39), c(29,35), c(29,35),
 c(28,35), c(31,38), c(31,38), c(30,37), c(26,33), c(25,32))
percDisac <- 0.01
dir <- "/home/guillermo/

res_bicl_antropom <- CCbiclustAnthropo(data, waist, waistCirc, lowerVars, nsizes, nBic, diffRanges, percDisac, dir)

#For a single size:
size <- 5
res <- res_bicl_antropom[[1]][[size]]
sapply(1 : res@Number, overlapBiclustersByRows, res)

End(Not run)

parallelep34landm
Parallelepiped of 34 landmarks

Description

This is a parallelepiped made up of 34 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

Usage

`parallelep34landm`

Format

An array with one matrix of 34 rows and 3 columns.

Source

Software Rhinoceros.

References

parallelep8landm
Parallelepiped of 8 landmarks

Description

This is a parallelepiped made up of 8 landmarks, used as controlled data in the simulation study carried out in the paper referred below.

Usage

```r
parallelep8landm
```

Format

An array with one matrix of 8 rows and 3 columns.

Source

Software Rhinoceros.

References

percentilsArchetypoid
Helper function for computing percentiles of a certain archetypoid

Description

This helper function computes the percentiles of an archetypoid for a given variable. Once these percentile values have been calculated, they can be represented by means of a barplot.

Usage

```r
percentilsArchetypoid(column, indiv, data, digits)
```

Arguments

- `column`: Numeric variable (column of a data frame).
- `indiv`: A certain archetypoid.
- `data`: Data frame that contains the columns and archetypes to be analyzed.
- `digits`: Argument of the `round` function (it is a integer indicating the number of decimal places to be used).
Value

Numerical vector with the percentile values of an archetypoid.

Author(s)

Guillermo Vinue

References

See Also

archetypoids

Examples

```r
# COCKPIT DESIGN PROBLEM:
# As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25, ]

# Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)

# Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[, variabl_sel] / (10 * 2.54)

# Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

# For reproducing results, seed for randomness:
# suppressWarnings(RNGversion("3.5.0"))
# set.seed(2010)
# Run archetype algorithm repeatedly from 1 to numArch archetypes:
# This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch, numRep = numRep, verbose = FALSE)

# To understand the warning messages, see the vignette of the archetype package.

# screeplot(lass)

# Three archetypoids:
numArchoid <- 3
res_ns <- archetypoids(numArchoid, USAFSurvey_preproc$data, huge = 200, step = FALSE, ArchObj = lass, nearest = "cand_ns", sequ = TRUE)

%percentilsArchetypoid%1, res_ns$archet[1], USAFSurvey_preproc$data, 0)
```
plotPrototypes

Prototypes representation

Description

This function represents the scatter plots of bust circumference against other selected variable (chest, hip, neck to ground or waist) jointly with the prototypes obtained for each bust class provided by either trimowa or hipamAnthropom. In addition, the prototypes defined by the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals can be also displayed.

Usage

```r
plotPrototypes(data, prototypes, nsizes, bustVariable, variable, col, xlim, ylim, main, EN)
```

Arguments

- **data**
 - Data frame. It should contain the chest, neck to ground, waist, hip and bust measurements of the individuals. In order to be able to represent them, the name of the columns of the database must be 'chest', 'necktoground', 'waist', 'hip' and 'bust' respectively, see sampleSpanishSurvey. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.

- **prototypes**
 - Prototypes (medoids) i.e., typical persons within the sample, obtained with trimowa or hipamAnthropom.

- **nsizes**
 - Number of subsets (classes), into the database is segmented. In our approach, the whole anthropometric Spanish survey is segmented into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.

- **bustVariable**
 - Bust variable.

- **variable**
 - Anthropometric variable to be plotted. It can be 'chest', 'necktoground', 'waist' and 'hip'.

- **col**
 - A specification for the medoids color in each bust class.

- **xlim**
 - Axis length of the x axis according to the range of the bust variable.

- **ylim**
 - Axis length of the y axis according to the range of the selected variable among chest, hip, neck to ground and waist.

- **main**
 - Main title of the plot.

- **EN**
 - A logical value. If TRUE, the prototypes defined by the European standard for each variable are represented. See section Details for more details.
Details

In order to check the goodness of \texttt{trimowa}, the sizes defined by the prototypes can be compared with those defined by the European standard to sizing system. This standard establishes 12 sizes according to the combinations of the bust, waist and hip measurements and does not fix neither chest nor height standard measurements. We can approximate the chest measurements through a linear regression analysis, taking the bust measurements detailed in the standard as independent variable. Besides, we take as neck to ground measurements for the standard sizing system, the values 132, 136 and 140 cm because those are the most repeated values and they are those which best cover our data set. See Ibanez et al. (2012) for a complete explanation.

Value

A device with the desired plot.

Note

As mentioned, this function is especially defined for the sizes established by the European standard on sizing systems. Part 3: Measurements and intervals. In order to use this function with other standard, this function must be adapted.

Author(s)

Guillermo Vinue

References

See Also

\texttt{sampleSpanishSurvey}, \texttt{weightsMixtureUB}, \texttt{trimowa}, \texttt{getDistMatrix}, \texttt{trimmedoid}, \texttt{hipamAnthropom}

Examples

```r
#TRIMOWA ALGORITHM:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)
```
numClust <- 3; alpha <- 0.01; niter <- 10; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

For reproducing results, seed for randomness:
suppressWarnings(RNGversion("3.5.0"))
set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,
 weightsTrimowa, numClust, alpha, niter, algSteps,
 ah, FALSE)

prototypes <- anthrCases(res_trimowa, numSizes)

bustVariable <- "bust"
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",
 "deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")

variable <- "chest"
range(dataTrimowa[,variable])
 #[1] 76.7755 135.8580
ylim <- c(70,140)
title <- "Prototypes \n bust vs chest"

plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,
 variable, color, xlim, ylim, title, FALSE)
plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,
 variable, color, xlim, ylim, title, TRUE)

For other plots and an example for the hipam algorithm,
see www.uv.es/vivigui/softw/more_examples.R

plotTreeHipamAnthropom

HIPAM dendogram

Description

This function represents a dendrogram for the clustering results provided by a HIPAM algorithm. It is a small modification of the original plot.tree function of the smida R package, available from https://www.math.rug.nl/~ernst/book/smida.html.

Usage

```r
plotTreeHipamAnthropom(x, main,...)
```

Arguments

- `x` The HIPAM object to be plotted.
- `main` Title of the plot.
- `...` Other arguments that may be supplied.
Value

A device with the desired plot.

Note

This function only represents the 'tree' option of the original `plot.tree` function of `smida`, because we believe that this option displays better the clustering results provided by HIPAM than the option '2d'.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.math.rug.nl/~ernst/book/smida.html. We have slightly modified.

References

See Also

`hipamAnthropom`

Examples

dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

 type <- "IMO"
 maxsplit <- 5; orness <- 0.7
 ah <- c(23, 28, 20, 25, 25)

 #For reproducing results, seed for randomness:
 #suppressWarnings(RNGversion("3.5.0"))
 #set.seed(2013)
 numSizes <- 1
 res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes, maxsplit, orness, type, ah, FALSE)

 plotTreeHipamAnthropom(res_hipam[[1]],
 main=paste("Proposed Hierarchical PAM Clustering \n", "74-78"))
plotTrimmOutl

Trimmed or outlier observations representation

Description

This function represents the scatter plots of bust circumference against other selected variable (chest, hip, neck to ground or waist) jointly with the trimmed individuals discarded in each bust class provided by `trimowa` or with the outlier individuals provided by `hipamAnthropom`.

Usage

`plotTrimmOutl(data, trimmOutl, nsizes, bustVariable, variable, col, xlim, ylim, main)`

Arguments

data
 Data frame. It should contain the chest, neck to ground, waist, hip and bust measurements of the individuals. In order to be able to represent them, the name of the columns of the database must be 'chest', 'necktoground', 'waist', 'hip' and 'bust' respectively, see `sampleSpanishSurvey`. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.

trimmOutl
 Trimmed women (if `trimowa`) or outlier women (if `hipamAnthropom`).

nsizes
 Number of subsets (classes), into the database is segmented. In our approach, the whole anthropometric Spanish survey is segmented into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.

bustVariable
 Bust variable.

variable
 Anthropometric variable to be plotted. It can be 'chest', 'necktoground', 'waist' and 'hip'.

col
 A specification for the trimmed or outlier women color in each bust class.

xlim
 Axis length of the x axis according to the range of the bust variable.

ylim
 Axis length of the y axis according to the range of the selected variable among chest, hip, neck to ground and waist.

main
 Title of the plot.

Value

A device with the desired plot.

Author(s)

Guillermo Vinue
References

See Also

`sampleSpanishSurvey`, `hipamAnthropom`, `trimowa`

Examples

```r
#TRIMOWA ALGORITHM:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3; alpha <- 0.01; niter <- 10; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,
weightsTrimowa, numClust, alpha, niter, algSteps,
ah, FALSE)

prototypes <- anthrCases(res_trimowa, numSizes)
trimmed <- trimmOutl(res_trimowa, numSizes)

bustVariable <- "bust"
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",
"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")

variable <- "chest"
range(dataTrimowa[,variable])
# [1] 76.7755 135.8580
ylim <- c(70,140)
main <- "Trimmed women \n bust vs chest"

plotTrimmOutl(dataTrimowa, trimmed, numSizes, bustVariable, variable, color,
xlim, ylim, main)

#For other plots and an example for the hipam algorithm,
```
Data preprocessing before computing archetypal observations

Description
This function allows us to fix the accommodated data before computing archetypes and archetypoids. First, depending on the problem, it is possible to standardize the data or not. Second, it is possible to use the Mahalanobis distance or a depth procedure to select the accommodated subsample of data.

Usage
preprocessing(data, stand, percAccomm, mahal=TRUE)

Arguments
data
Raw data. It must be a data frame. Each row corresponds to an observation and each column corresponds to an anthropometric variable. All variables are numeric.

stand
A logical value. If TRUE (FALSE) the data are (not) standardized. This option will depend on the problem.

percAccomm
Percentage of the population to accommodate (value between 0 and 1). When this percentage is equal to 1 all the individuals will be accommodated.

mahal
If percAccomm is different from 1, then mahal=TRUE (mahal=FALSE) indicates that the Mahalanobis distance (a depth procedure) will be used to select the accommodated subsample of data.

Details
In some cases, the depth procedure has the disadvantage that the desired percentage of accommodation is not under control of the analyst and it could not coincide exactly with percAccomm.

Value
A list with the following elements if percAccomm is different from 1:
data: Database after preprocessing, with the 1-percAccomm percentage of individuals removed.
indivYes: Individuals who belong to data.
indivNo: Individuals discarded in the accommodation procedure.

A list with the following elements if percAccomm is equals to 1:
data: Initial database with the same number of observations, which has been standardized depending on the value of stand.
projShapes

Author(s)
Irene Epifanio and Guillermo Vinue

References

Examples

```r
# As a toy example, only the first 25 individuals are used.
# Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
# Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)

# Data preprocessing:
preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)
preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, FALSE)
```

Description
Helper function for plotting the projections of the shapes. It displays the projection on the xy plane of the recorded points and mean shape for a given cluster. To that end, first it is needed to carry out a generalized Procrustes analysis in the cluster to obtain the full Procrustes rotated data.

Usage

```r
projShapes(clust, array3D, asig, prototypes)
```

Arguments

- `clust` Cluster for which represent its mean shape together with the recorded points.
- `array3D` Array with the 3D landmarks of the sample points. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).
- `asig` Clustering optimal results.
- `prototypes` Vector of optimal prototypes.

Value
Numerical vector with the percentile values of an archetypoid.
qtranShapes

Author(s)

Guillermo Vinue

References

See Also

LloydShapes, HartiganShapes, trimmedLloydShapes

Examples

landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
[1] 66
As a toy example, only the first 15 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
shapes::plotshapes(array3D[,1])
calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 2; algSteps <- 1; niter <- 1; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
clust_kmeansProc <- resLL$asig

prototypes <- anthrCases(resLL)

projShapes(1, array3D, clust_kmeansProc, prototypes)
legend("topleft", c("Registred data", "Mean shape"), pch = 1, col = 1:2, text.col = 1:2)
title("Procrustes registered data for cluster 1 \n with its mean shape superimposed",
"Plane xy")

qtranShapes

Auxiliary qtran subroutine of the Hartigan-Wong k-means for 3D shapes

Description

The Hartigan-Wong version of the k-means algorithm uses two auxiliary algorithms: the optimal transfer stage (optra) and the quick transfer stage (qtran).

This function is the qtran subroutine adapted to the shape analysis context. It is used within HartiganShapes. See Hartigan and Wong (1979) for details of the original k-means algorithm and Amaral et al. (2010) for details about its adaptation to shape analysis.
Usage

qtranShapes(array3D,n,c,ic1,ic2,nc,an1,an2,ncp,d,itran,indx)

Arguments

array3D Array with the 3D landmarks of the sample objects.
n Number of sample objects.
c Array of centroids.
ic1 The cluster to each object belongs.
ic2 This vector is used to remember the cluster which each object is most likely to be transferred to at each step.
c Number of objects in each cluster.
an1 $an1(l) = nc(l) / (nc(l) - 1), l=1,\ldots,numClust$, where numClust is the number of clusters.
an2 $an2(l) = nc(l) / (nc(l) + 1), l=1,\ldots,numClust$.
c In the optimal transfer stage, ncp(l) stores the step at which cluster l is last updated, $l=1,\ldots,numClust$.
In the quick transfer stage, ncp(l) stores the step at which cluster l is last updated plus n, $l=1,\ldots,numClust$.
d Vector of distances from each object to every centroid.
itran itran(l) = 1 if cluster l is updated in the quick-transfer stage (0 otherwise), $l=1,\ldots,k$.
indx Number of steps since a transfer took place.

Value

A list with the following elements: $c,ic1,ic2,nc,an1,an2,ncp,d,itran,indx$, updated after the optimal transfer stage. Note that $icoun$ counts the steps where a re-allocation took place.

Note

This function belongs to HartiganShapes and it is not solely used. That is why there is no section of examples in this help page.

Note

This function is based on the qtran.m file available from https://github.com/johannesgerer/jburkardt-m/tree/master/asa136.

Author(s)

Guillermo Vinue
References

See Also

HartiganShapes

sampleSpanishSurvey	Sample database of the Spanish anthropometric survey

Description

This a database for academic and training purposes. It is oriented to exemplify the use of trimowa, hipamAnthropom and TDDclust.

It is made up of 600 women selected randomly from the Spanish anthropometric survey and five anthropometric variables: chest circumference, neck to ground length, waist circumference, hip circumference and bust circumference. These variables have been chosen following the recommendations of experts. In addition, they are commonly used in the literature about sizing system design and they appear in the European standard to sizing system.

Usage

sampleSpanishSurvey

Format

A matrix with 600 rows and 5 columns. Each row corresponds to an observation, and each column corresponds to a variable.

Source

Anthropometric survey of the Spanish female population.

References

See Also

trimowa, hipamAnthropom, TDDclust

screeArchetypal

Screeplot of archetypal individuals

Description

This function allows us to represent in the same plot the screeplot of the archetypes and the both *cand_ns*, *cand_alpha* and *cand_beta* archetypoids.

Usage

```r
screeArchetypal(numArch,rss_lass_def,rss_step_ns,rss_step_alpha,rss_step_beta, ylim,main,xlab,ylab,col=c("red","blue","green3"),axis2,seq,leg)
```

Arguments

- `numArch`: Number of archetypal observations (archetypes and archetypoids).
- `rss_lass_def`: Vector of the residual sum of squares (rss) associated with each archetype from 1 to numArch.
- `rss_step_ns`: Vector of the residual sum of squares (rss) associated with each *cand_ns* archetypoid from 1 to numArch.
rss_step_alpha Vector of the residual sum of squares (rss) associated with each *cand_alpha* archetypoid from 1 to numArch.

rss_step_beta Vector of the residual sum of squares (rss) associated with each *cand_beta* archetypoid from 1 to numArch.

ylim The y limits of the plot.

main Title of the plot.

xlab A title for the x axis.

ylab A title for the y axis.

col Color vector for the screeplots of the archetypoids. Default is c("red","blue","green3").

axis2 A logical value. If TRUE, the y axis can be customized to have spaced tick-marks by means of the following argument seq.

seq Vector sequence with the values of the tick-marks to be drawn in the y axis.

leg If TRUE, a legend is shown.

Value

A device with the desired plot.

Author(s)

Guillermo Vinue

References

See Also

archetypoids, stepArchetypoids

Examples

```r
## Not run:
#COCKPIT DESIGN PROBLEM:
#The following R code allows us to obtain a similar plot regarding Figure 5
#of the paper Vinue et al. (2015).
USAFSurvey_First25 <- USAFSurvey[1:25,]
```
Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)

Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[, variabl_sel] / (10 * 2.54)

Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

For reproducing results, seed for randomness:
suppressWarnings(RNGversion("3.5.0"))
set.seed(2010)

Run archetype algorithm repeatedly from 1 to numArch archetypes:
This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 2 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data,
numArch=1:numArch, numRep = numRep,
verbose = FALSE)

To understand the warning messages, see the vignette of the archetype package.
rss_lass <- matrix(0, nrow = numArch, ncol = numRep)
for(i in 1:numArch){
 for(j in 1:numRep){
 rss_lass[i,j] <- lass[[i]][[j]]$rss
 }
}
(rss_lass_def <- apply(rss_lass, 1, min, na.rm = TRUE))

Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){
 temp <- stepArchetypoids(numArchoid, nearest = "cand_ns",
USAFSurvey_preproc$data, lass)
 filename <- paste("res_ns", numArchoid, sep = "")
 assign(filename,temp)
 save(list = c(filename), file = paste(filename, ".RData", sep = ""))
}

Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){
 temp <- stepArchetypoids(numArchoid, nearest = "cand_alpha",
USAFSurvey_preproc$data, lass)
 filename <- paste("res_alpha", numArchoid, sep = "")
 assign(filename,temp)
 save(list = c(filename), file = paste(filename, ".RData", sep = ""))
}

Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){
 temp <- stepArchetypoids(numArchoid, nearest = "cand_beta",
USAFSurvey_preproc$data, lass)
 filename <- paste("res_beta", numArchoid, sep = "")
 assign(filename,temp)
 save(list = c(filename), file = paste(filename, ".RData", sep = ""))
Numerical and graphical results:

Cand_ns:
```r
for(i in 1:numArch){
  load(paste("res_ns", i, ".RData", sep = ""))
}
```
```r
rss_step <- c()
for (i in 1:numArch){
  rss_step[i] <- get(paste("res_ns", i, sep = ""))[2]
}
(rss_step_ns <- as.numeric(rss_step))
```

Cand_alpha:
```r
for(i in 1:numArch){
  load(paste("res_alpha", i, ".RData", sep = ""))
}
```
```r
rss_step_which <- c()
for (i in 1:numArch){
  rss_step_which[i] <- get(paste("res_alpha", i, sep = ""))[2]
}
(rss_step_alpha <- as.numeric(rss_step_which))
```

Cand_beta:
```r
for(i in 1:numArch){
  load(paste("res_beta", i, ".RData", sep = ""))
}
```
```r
rss_step_which <- c()
for (i in 1:numArch){
  rss_step_which[i] <- get(paste("res_beta", i, sep = ""))[2]
}
(rss_step_beta <- as.numeric(rss_step_which))
```

```r
forYlim <- c(rss_lass_def, rss_step_ns, rss_step_alpha, rss_step_beta)
range(forYlim)
#[1] 0.06387125 0.27395811
```

```r
#main <- "Aircraft pilots archetypes and archetypoids"
xlab <- "Archetypes/Archetypoids"
ylab <- "RSS"
screeArchetypal(numArch, rss_lass_def, rss_step_ns, rss_step_alpha, rss_step_beta,
c(0,0.5), main = ", xlab, ylab, col = c("red","blue","green3"),
TRUE, seq(0,0.5,0.1), FALSE)
```

```r
#rm(res_ns1.RData)
#rm(res_ns2.RData)
#rm(res_alpha1.RData)
#rm(res_alpha2.RData)
#rm(res_beta1.RData)
#rm(res_beta2.RData)
```

End(Not run)
shapes3dShapes R package so that the resulting plot has customized title and axes. Specifically, the changing lines regarding the original function are those related to its argument \texttt{axes3} when it is fixed to \texttt{TRUE}.

Usage

\begin{verbatim}
shapes3dShapes(x,loop=0,type="p",color=2,joinline=c(1:1),
 axes3=FALSE,rglopen=TRUE,main=main)
\end{verbatim}

Arguments

- \texttt{x} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{loop} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{type} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{color} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{joinline} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{axes3} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{rglopen} \hspace{1cm} See \texttt{shapes3d}.
- \texttt{main} \hspace{1cm} Allows us to give the plot a title if \texttt{axes3=TRUE}.

Value

A device with the desired plot.

References

See Also

\begin{verbatim}
shapes3d
\end{verbatim}
Description

This function represents the skeleton plots of the archetypical observations (archetypes and archetypoids) of USAFSurvey.

Usage

```
skeletonsArchetypal(measuArch, main)
```

Arguments

- **measuArch**: Vector with the measurements of each archetype.
- **main**: The title of the plot.

Value

A device with the desired plot.
Note
This function allows us to reproduce the archetypes of Figure 5 of Epifanio et al. (2013), see archetypesBoundary.

Author(s)
Guillermo Vinue

References

See Also
archetypesBoundary, USAFSurvey

Examples

List with the measurements of each archetype (Table 7 of Epifanio et al (2013)):
lista_arch <- list()
lista_arch[[1]] <- c(34.18, 25.85, 18.65, 39.66, 35.05, 26.73)
lista_arch[[3]] <- c(35.34, 24.94, 18.79, 36.7, 32.28, 23.41)
lista_arch[[4]] <- c(31.34, 22.27, 16.89, 33.08, 33.08, 25.8)
lista_arch[[5]] <- c(32.33, 25.9, 17.84, 34.46, 29.58, 22.82)
lista_arch[[6]] <- c(29.69, 24.18, 18.22, 38.07, 33.04, 24.56)
lista_arch[[7]] <- c(29.24, 22.97, 14.99, 36.88, 32.28, 24.22)

for(i in 1:length(lista_arch)){
titlePlot <- paste("Archetype", i, sep = " ")
skeletonsArchetypal(lista_arch[[i]],titlePlot)
} # Note: For an example for archetypoids, see www.uv.es/vivigui/softw/more_examples.R

Description
This is a slight modification of the original stepArchetypes function of the archetypes R package to apply the archetype algorithm to raw data. The stepArchetypes function standardizes the data by default and this option is not always desired.

Usage
stepArchetypesRawData(data,numArch,numRep=3,verbose=TRUE)
Arguments

- **data**: Data to obtain archetypes.
- **numArch**: Number of archetypes to compute, from 1 to numArch.
- **numRep**: For each numArch, run archetypes numRep times.
- **verbose**: If TRUE, the progress during execution is shown.

Value

A list with numArch elements. Each element is a list of class attribute `stepArchetypes` with numRep elements.

Author(s)

Guillermo Vinue based on the the original `stepArchetypes` function of `archetypes`.

References

See Also

- `stepArchetypes`

Examples

```r
#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch, numRep = numRep, verbose = FALSE)

#To understand the warning messages, see the vignette of the
#archetypes package.
```
stepArchetypoids
Run the archetypoid algorithm several times

Description

Execute the archetypoid algorithm repeatedly. It is inspired by the `stepArchetypes` function of the `archetypes` R package.

Usage

```r
stepArchetypoids(numArchoid, nearest="cand_ns", data, ArchObj)
```

Arguments

- `numArchoid`
 Number of archetypoids.

- `nearest`
 Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm. This initial vector contain the nearest individuals to the archetypes returned by the `archetypes` function of `archetypes` (In Vinue et al. (2015), archetypes are computed after running the archetype algorithm twenty times). This argument is a string vector with three different possibilities. The first and default option is "cand_ns" and allows us to calculate the nearest individuals by computing the Euclidean distance between the archetypes and the individuals and choosing the nearest. It is used in Epifanio et al. (2013). The second option is "cand_alpha" and allows us to calculate the nearest individuals by consecutively identifying the individual with the maximum value of alpha for each archetype, until the defined number of archetypes is reached. It is used in Eugster (2012). The third and final option is "cand_beta" and allows us to calculate the nearest individuals by identifying the individuals with the maximum beta value for each archetype, i.e. the major contributors in the generation of the archetypes.

- `data`
 Data matrix. Each row corresponds to an observation and each column corresponds to an anthropometric variable. All variables are numeric.

- `ArchObj`
 The list object returned by the `stepArchetypesRawData` function. This function is a slight modification of the original `stepArchetypes` function of `archetypes` to apply the archetype algorithm to raw data. The `stepArchetypes` function standardizes the data by default and this option is not always desired. This list is needed to compute the nearest individuals to archetypes.

Value

A list with the following elements:

- `cases`: Anthropometric cases (final vector of `numArchoid` archetypoids).
- `rss`: Residual sum of squares corresponding to the final vector of `numArchoid` archetypoids.
- `archet_ini`: Vector of initial archetypoids (`cand_ns`, `cand_alpha` or `cand_beta`).
- `alphas`: Alpha coefficients for the optimal vector of archetypoids.
Note

It may be happen that archetypes does not find results for \(k \) archetypes. In this case, it is not possible to calculate the vector of nearest individuals and consequently, the vector of archetypoids. Therefore, this function will return an error message.

Author(s)

Irene Epifanio and Guillermo Vinue

References

See Also

archetypoids, archetypes, stepArchetypes

Examples

```r
# COCKPIT DESIGN PROBLEM:
# As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
# Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
# Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)
# Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)
# For reproducing results, seed for randomness:
# suppressWarnings(RNGversion("3.5.0"))
# set.seed(2010)
# Run archetype algorithm repeatedly from 1 to numArch archetypes:
# This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 2 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,
                              numRep = numRep, verbose = FALSE)
# To understand the warning messages, see the vignette of the archetypes package.
```
#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
#for(numArchoid in 1:numArch){
temp <- stepArchetypoids(numArchoid,nearest="cand_ns",USAFCsurvey_preproc$data,lass)
filename <- paste("res", numArchoid, sep="")
assign(filename,temp)
save(list=c(filename),file=paste(filename, ".RData", sep=""))
#}
temp <- stepArchetypoids(2,nearest="cand_ns",USAFCsurvey_preproc$data,lass)

TDDclust

Trimmed clustering based on L1 data depth

Description

This is the trimmed version of the clustering algorithm based on the L1 depth proposed by Rebecka Jornsten (2004). She segments all the observations in clusters, and assigns to each point \(z \) in the data space, the L1 depth value regarding its cluster. A trimmed procedure is incorporated to remove the more extreme individuals of each cluster (those one with the lowest depth values), in line with `trimowa`.

Usage

`TDDclust(data,numClust,lambda,Th,niter,T0,simAnn,alpha,data1,verbose=TRUE)`

Arguments

- **data**: Data frame. Each row corresponds to an observation, and each column corresponds to a variable. All variables must be numeric.
- **numClust**: Number of clusters.
- **lambda**: Tuning parameter that controls the influence the data depth has over the clustering, see Jornsten (2004).
- **Th**: Threshold for observations to be relocated, usually set to 0.
- **niter**: Number of random initializations (iterations).
- **T0**: Simulated annealing parameter. It is the current temperature in the simulated annealing procedure.
- **simAnn**: Simulated annealing parameter. It is the decay rate, default 0.9.
- **alpha**: Proportion of trimmed sample.
- **data1**: The same data frame as `data`, used to incorporate the trimmed observations into the rest of them for the next iteration.
- **verbose**: A logical specifying whether to provide descriptive output about the running process. Default TRUE.
Value

A list with the following elements:

NN: Cluster assignment, NN[1,] is the final partition.
cases: Anthropometric cases (the multivariate median cluster representatives).
DD: Depth values of the observations (only if there are trimmed observations).
Cost: Final value of the optimal partition.
disarded: Discarded (trimmed) observations.
klBest: Iteration in which the optimal partition was found.

Author(s)

This function has been defined from the original functions developed by Rebecka Jornsten, which were available freely on http://www.stat.rutgers.edu/home/rebecka/DDcl/. However, the link to this page doesn’t currently exist as a result of a website redesign.

References

Examples

#In the interests of simplicity of the computation involved, only 15 points are selected:
dataTDDcl <- sampleSpanishSurvey[1 : 15, c(2, 3, 5)]
dataTDDcl_aux <- sampleSpanishSurvey[1 : 15, c(2, 3, 5)]
numClust <- 3 ; alpha <- 0.01 ; lambda <- 0.5 ; niter <- 2
Th <- 0 ; T0 <- 0 ; simAnn <- 0.9

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
res_TDDcl <- TDDclust(dataTDDcl, numClust, lambda, Th, niter, T0, simAnn,
 alpha, dataTDDcl_aux,FALSE)

prototypes <- anthrCases(res_TDDcl)
table(res_TDDcl$NN[1,])
res_TDDcl$Cost
res_TDDcl$klBest
trimmed <- trimmOutl(res_TDDcl)
trimmedLloydShapes
Trimmed Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer science and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd (1982)).

This function is proposed to incorporate a modification to LloydShapes in order to make the k-means algorithm robust. Robustness is a property very desirable in a lot of applications. As it is well known, the results of the k-means algorithm can be influenced by outliers and extreme data, or bridging points between clusters. Garcia-Escudero et al. (1999) propose a way of making k-means more robust, which combines the k-means idea with an impartial trimming procedure: a proportion alpha (between 0 and 1) of observations are trimmed (the trimmed observations are self-determined by the data). See also trimmedoid.

Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

trimmedLloydShapes(array3D,n,alpha,numClust,algSteps=10,niter=10, stopCr=0.0001, verbose)

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an observation, and each column corresponds to a dimension (x,y,z).

n Number of individuals.

alpha Proportion of trimmed sample.

numClust Number of clusters.

algSteps Number of steps per initialization. Default value is 10.

niter Number of random initializations (iterations). Default value is 10.

stopCr Relative stopping criteria. Default value is 0.0001.

verbose A logical specifying whether to provide descriptive output about the running process.
Value

A list with the following elements:

- **asig**: Optimal clustering.
- **cases**: Anthropometric cases (optimal centers).
- **vopt**: Optimal objective function.
- **trimmWomen**: List to save the trimmed individual of each iteration.
- **trimmsIter**: Vector with the number of iterations where the optimum was reached. The last number different from NA refers to the last iteration where the final optimum was reached.
- **bestNstep**: Nstep of the iteration where the optimum has reached.
- **initials**: Random initial values used in each iteration. These values can be used by **HartiganShapes**.
- **discarded**: Discarded (trimmed) observations.

Note

We note that adding a trimmed procedure to the Lloyd algorithm is very direct and easy, while for the Hartigan-Wong algorithm, more modifications of the algorithm are needed, which makes the implementation of its trimmed version difficult.

Author(s)

Amelia Simo

References

See Also

LloydShapes, trimmedoid

Examples

```r
#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
# [1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
# [1] 66
```
As a toy example, only the first 10 individuals are used.

```r
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
# [1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)

numClust <- 2; alpha <- 0.01; algSteps <- 1; niter <- 1; stopCr <- 0.0001
#for reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust, algSteps, niter, stopCr, FALSE)

#Optimal partition and prototypes:
clust <- res$asig
table(clust)
prototypes <- anthrCases(res)

#Trimmed individuals:
trimmed <- trimmOutl(res)
```

trimmedoid

Trimmed k-medoids algorithm

Description

This is the trimmed k-medoids algorithm. It is used within trimowa. It is analogous to k-medoids but a proportion alpha of observations is discarded by the own procedure (the trimmed observations are self-determined by the data). Furthermore, the trimmed k-medoids is analogous to trimmed k-means. An algorithm for computing trimmed k-means can be found in Garcia-Escudero et al. (2003). See Ibanez et al. (2012) for more details. Note that in the generic name of the k-medoids algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is referred to as numClust, see next section *arguments*.

Usage

```r
trimmedoid(D,numClust,alpha,niter,algSteps=7,verbose)
```

Arguments

- `D`
 Dissimilarity matrix.
- `numClust`
 Number of clusters.
- `alpha`
 Proportion of trimmed sample.
- `niter`
 Number of random initializations (iterations).
- `algSteps`
 Number of steps of the algorithm per initialization. Default value is 7.
- `verbose`
 A logical specifying whether to provide descriptive output about the running process.
Value

A list with the following elements:

- \textit{vopt}: The objective value.
- \textit{c opt}: The trimmed medoids.
- \textit{asig}: The assignation of each observation (asig=0 indicates trimmed individuals).
- \textit{ch}: The goodness index.
- \textit{Dmod}: Modified data with the non-trimmed women.
- \textit{qq}: Vector with the non-trimmed points.

Author(s)

Irene Epifanio

References

See Also

\texttt{sampleSpanishSurvey}, \texttt{weightsMixtureUB}, \texttt{getDistMatrix}, \texttt{trimowa}, \texttt{trimmedLloydShapes}

Examples

```r
#Data loading:
dataTrimowa <- sampleSpanishSurvey
bust <- dataTrimowa$bust
#First bust class:
data <- dataTrimowa[(bust >= 74) & (bust < 78), ]
numVar <- dim(dataTrimowa)[2]

#Weights calculation:
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)

#Constants required to specify the distance function:
numClust <- 3
bh <- (apply(as.matrix(log(data)),2,range)[2,
  - apply(as.matrix(log(data)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(23,28,20,25,25)
al <- 3 * ah
```
Data processing.
num.persons <- dim(data)[1]
num.variables <- dim(data)[2]
datam <- as.matrix(data)
datat <- aperm(datam, c(2,1))
dim(datat) <- c(1, num.persons * num.variables)

Dissimilarity matrix:
D <- getDistMatrix(datat, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)
res_trimm <- trimmedoid(D, numClust, 0.01, 6, 7, FALSE)

trimmOutl Helper generic function for obtaining the trimmed and outlier observations

Description

The methodologies included in this package which are developed to the clothing design problem take into account that a clothing sizing system is intended to cover only what we could call standard population, leaving out those individuals who are extreme respect to a set of measurements. For "trimowa", "TDDClust and "kmeansProcrustes" (which refers to as trimmedLloydShapes in this case) these individuals are called trimmed individuals. For the "hipamAnthropom" methodology these individuals are called outlier individuals.

This auxiliary generic function allows the user to identify the discarded individuals computed by each method in an easy way.

Usage

```r
trimmOutl(resMethod, nsizes)
## S3 method for class 'trimowa'
trimmOutl(resMethod, nsizes)
## S3 method for class 'hipamAnthropom'
trimmOutl(resMethod, nsizes)
```

Arguments

- `resMethod` This is the object which saves the results obtained by the aforementioned methodologies and which contains the discarded individuals to return.
- `nsizes` Number of bust sizes. This argument is needed for the "trimowa" and "hipamAnthropom" methodologies because they can compute the prototypes for any given number of bust sizes.

Value

A vector of class `trimmOutl` with the discarded observations.
Author(s)

Guillermo Vinue

References

See Also

trimowa, TDDclust, hipamAnthropom, LloydShapes, HartiganShapes, trimmedLloydShapes

Examples

```r
# CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
# [1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
# [1] 66
# As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10, ]
(numIndiv <- dim(landmarksNoNa_First10)[1])
# [1] 10
array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)

numClust <- 2; alpha <- 0.01; algSteps <- 1; niter <- 1; stopCr <- 0.0001
# For reproducing results, seed for randomness:
# suppressWarnings(RNGversion("3.5.0"))
# set.seed(2013)
res_kmeansProc <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust,
algSteps, niter, stopCr, FALSE)

trimmed <- trimmOutl(res_kmeansProc)
```
Description

This is the methodology developed in Ibanez et al. (2012) to define an efficient apparel sizing system based on clustering techniques jointly with OWA operators. In our approach, we apply the trimmed k-medoids algorithm (*trimmedoid*) to the first twelve bust classes according to the sizes defined in the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals.

Usage

```
trimowa(data,w,numClust,alpha,niter,algSteps,ah=c(23,28,20,25,25),verbose)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Data frame. In our approach, this is each of the subframes originated after segmenting the whole anthropometric Spanish survey into twelve bust segments, according to the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals. Each row corresponds to an observation, and each column corresponds to a variable. All variables are numeric.</td>
</tr>
<tr>
<td>w</td>
<td>The aggregation weights of the OWA operators. They are computed with the <code>weightsMixtureUB</code>.</td>
</tr>
<tr>
<td>numClust</td>
<td>Number of clusters.</td>
</tr>
<tr>
<td>alpha</td>
<td>Proportion of trimmed sample.</td>
</tr>
<tr>
<td>niter</td>
<td>Number of random initializations (iterations).</td>
</tr>
<tr>
<td>algSteps</td>
<td>Number of steps of the algorithm per initialization. Default value is 7.</td>
</tr>
<tr>
<td>ah</td>
<td>Constants that define the ah slopes of the distance function in <code>getDistMatrix</code>. Given the five variables considered, this vector is c(23,28,20,25,25). This vector would be different according to the variables considered.</td>
</tr>
<tr>
<td>verbose</td>
<td>A logical specifying whether to provide descriptive output about the running process.</td>
</tr>
</tbody>
</table>

Value

A list with the following elements:

- **cases**: Anthropometric cases (medoids of the clusters). They are the prototypes obtained for each bust class.
- **numTrim**: Number of trimmed individuals in each bust class.
- **numClass**: Number of individuals in each bust class.
- **noTrim**: Number of of non-trimmed individuals.
- **C1,C2,C3,C4**: Required constant values to define the distance `getDistMatrix` (*C1* is bh, *C2* is bl, *C3* is ah and *C4* is al).
asig: Vector of the clusters to which each individual belongs.

discarded: Discarded (trimmed) individuals.

Author(s)

Guillermo Vinue

References

See Also

sampleSpanishSurvey, weightsMixtureUB, getDistMatrix, trimmedoid

Examples

#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
suppressWarnings(RNGversion("3.5.0"))
set.seed(2014)
umSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes, weightsTrimowa, numClust, alpha, niter, algSteps, ah, FALSE)
prototypes <- anthrCases(res_trimowa, numSizes)

#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
suppressWarnings(RNGversion("3.5.0"))
set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]
numVar <- dim(dataComp)[2]

orness <- 0.7
USAFSurvey <- weightsMixtureUB(orness, numVar)
numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(28, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
res_trimowa <- trimowa(dataComp, weightsTrimowa, numClust, alpha, niter,
 algSteps, ah, verbose = FALSE)
class(res_trimowa) <- "trimowa"
prototypes <- anthrCases(res_trimowa, 1)

USAFSurvey

Description

This data set comes from the 1967 United States Air Force (USAF) survey. The 1967 USAF survey was conducted during the first three months of 1967 under the direction of the Anthropology Branch of the Aerospace Medical Research Laboratory, located in Ohio. Subjects were measured at 17 Air Force bases across the United States of America. A total of 202 variables (including body dimensions and background variables) were taken on 2420 Air Force personnel between 21 and 50 years of age.

Please find in www.uv.es/vivigui/softw/data_information.zip some files that provide a detailed information about this database. Please note that in this documentation 24 variable names are excluded (Vars 9-11, 28, 76-95).

In Epifanio et al. (2013), the column numbers selected were c(48,40,39,33,32) and correspond to 'Thumb tip reach', 'Buttock-Knee length', 'Popliteal height sitting', 'Sitting height', 'Eye height sitting' and 'Shoulder height sitting'.

Usage

USAFSurvey

Format

A matrix with 2420 rows and 202 columns. Each row corresponds to an observation, and each column corresponds to a variable.

Source

weightsMixtureUB

References

weightsMixtureUB *Calculation of the weights for the OWA operators*

Description

This function calculates the weights of the OWA operators. They can be used to adjust the compromise between the style of garments and the general comfort sensation of wearers. This function is used both in trimowa and hipamAnthropom.

Usage

`weightsMixtureUB(orness, numVar)`

Arguments

- `orness` Quantity to measure the degree to which the aggregation is like a min or max operation.
- `numVar` Number of variables of the database.

Value

Vector with the weights.

Author(s)

Guillermo Ayala

References

See Also

dbinom, getDistMatrix, trimowa, hipamAnthropom
Examples

```r
numVar <- dim(sampleSpanishSurvey)[2]
orness <- 0.7
w <- weightsMixtureUB(orness, numVar)
```

Description

This function is a small modification of the generic `xyplot` function of the `archetypes` R package. It shows the scores for the principal components of all individuals jointly with the scores for the computed archetypes. This function is used to obtain the Figure 4 of the subsection 3.3 of Epifanio et al. (2013).

Value

A device with the desired plot.

Note

There are no usage and arguments sections in this help file because they are the same than those of the page 25 of the reference manual of `archetypes`.

Author(s)

Irene Epifanio

References

See Also

`archetypesBoundary`, `USAFSurvey`

Examples

```r
#First, the USAF 1967 database is read and preprocessed (Zehner et al. (1993)).
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)
#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)
```
#Procedure and results shown in section 2.2.2 and section 3.1:
#For reproducing results, seed for randomness:
suppressWarnings(RNGversion("3.5.0"))
set.seed(2010)

res <- archetypesBoundary(USAFSurvey_preproc$data, 15, FALSE, 3)
#To understand the warning messages, see the vignette of the
#archetypes package.

a3 <- archetypes::bestModel(res[[3]])
a7 <- archetypes::bestModel(res[[7]])

pznueva <- prcomp(USAFSurvey_preproc$data, scale = TRUE, retx = TRUE)
#PCA scores for 3 archetypes:
p3 <- predict(pznueva, archetypes::parameters(a3))
#PCA scores for 7 archetypes:
p7 <- predict(pznueva, archetypes::parameters(a7))

#Representing the scores:
#Figure 4 (a):
xyplotPCArchetypes(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7),
atypes.col = 1, atypes.pch = 15)

#Figure 4 (b):
xyplotPCArchetypes(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7),
atypes.col = 1, atypes.pch = 15)
Index

* **ANTHROP**
 - Anthropometry-package, 3

* **array**
 - archetypesBoundary, 6
 - archetypoids, 9
 - checkBranchLocalIMO, 19
 - checkBranchLocalMO, 21
 - figures8landm, 28
 - getBestPamsamIMO, 29
 - getBestPamsamMO, 30
 - getDistMatrix, 32
 - HartiganShapes, 34
 - hipamAnthropom, 37
 - LloydShapes, 41
 - nearestToArchetypes, 43
 - optraShapes, 44
 - plotTreeHipamAnthropom, 53
 - preprocessing, 57
 - qtranShapes, 59
 - skeletonsArchetypal, 67
 - stepArchetypesRawData, 68
 - stepArchetypoids, 70
 - TDDclust, 72
 - trimmedLloydShapes, 74
 - trimowa, 80
 - xyplotPCArchetypes, 84

* **datasets**
 - cube34landm, 25
 - cube8landm, 26
 - descrDissTrunks, 27
 - landmarksSampleSpaSurv, 40
 - parallelep34landm, 48
 - parallelep8landm, 49
 - sampleSpanishSurvey, 61
 - USAFSurvey, 82

* **dplot**
 - cdfDissWomenPrototypes, 17
 - plotPrototypes, 51
 - plotTrimOutl, 55

* **manip**
 - CCbiclustAnthropo, 14
 - overlapBiclustersByRows, 46

* **math**
 - anthrCases, 5
 - array3Dlandm, 12
 - bustSizesStandard, 13
 - computSizesHipamAnthropom, 23
 - computSizesTrimowa, 24
 - percentilsArchetypoid, 49
 - projShapes, 58
 - screeArchetypal, 62
 - trimmedoid, 76
 - trimmOutl, 78
 - weightsMixtureUB, 83

* **multivariate**
 - shapes3dShapes, 66

 anthrCases, 5
 Anthropometry-package, 3
 archetypes, 6, 7, 9–11, 69–71
 archetypesBoundary, 6, 7, 44, 68, 84
 archetypoids, 6, 9, 43, 44, 50, 63, 71
 array3Dlandm, 12

 bustSizesStandard, 13, 23–25

 CCbiclustAnthropo, 14, 46, 47
 cdfDissWomenPrototypes, 17
 checkBranchLocalIMO, 19, 38, 39
 checkBranchLocalMO, 21, 38, 39
 computSizesHipamAnthropom, 23
 computSizesTrimowa, 24
 cube34landm, 25, 36, 42
 cube8landm, 26, 36, 42
 dbinom, 83
 descrDissTrunks, 27
 figures8landm, 28

86
INDEX

getBestPamsamIMO, 29, 38, 39
getBestPamsamMO, 30, 38, 39
getDistMatrix, 17, 18, 20, 22, 29, 31, 32, 33, 37, 38, 52, 77, 80, 81, 83

HartiganShapes, 6, 12, 34, 42, 45, 46, 59–61, 75, 79
hipamAnthropom, 6, 14, 20–24, 29–33, 37, 51, 52, 54–56, 61, 62, 79, 83

landmarksSampleSpaSurv, 36, 40, 42
LloydShapes, 6, 12, 35, 36, 41, 59, 74, 75, 79

nearestToArchetypes, 7, 43
optraShapes, 36, 42, 44
overlapBiclustersByRows, 16, 46
parallelep34landm, 36, 42, 48
parallelep8landm, 36, 42, 49
percentilsArchetypoid, 49
plotPrototypes, 51
plotTreeHipamAnthropom, 39, 53
plotTrimmOutl, 55
preprocessing, 7, 57
procGPA, 36, 42
projShapes, 58
qtranShapes, 36, 42, 59

round, 49

sampleSpanishSurvey, 15, 18, 40, 51, 52, 55, 56, 61, 77, 81
screeArchetypal, 62
shapes3d, 66
shapes3dShapes, 66
skeletonsArchetypal, 67
stepArchetypes, 6, 7, 10, 68–71
stepArchetypesRawData, 7, 10, 11, 68, 70
stepArchetypoids, 6, 9–11, 43, 44, 63, 70
TDDclust, 6, 61, 62, 72, 79
trimmedLloydShapes, 6, 12, 36, 42, 59, 74, 77–79
trimmedoid, 52, 74, 75, 76, 80, 81
trimmOutl, 78
trimowa, 6, 14, 17, 18, 24, 25, 32, 33, 51, 52, 55, 56, 61, 62, 72, 76, 77, 79, 80, 83

USAFSurvey, 6, 7, 67, 68, 82, 84

weightsMixtureUB, 18, 20, 22, 29, 31, 32, 37, 52, 77, 80, 81, 83
xyplotPCArchetypes, 84