Package 'ArchaeoPhases' December 1, 2020 ``` Type Package Title Post-Processing of the Markov Chain Simulated by 'ChronoModel', 'Oxcal' or 'BCal' Version 1.5 Date 2020-11-26 Author Anne Philippe [aut, cre], Marie-Anne Vibet [aut], Thomas S. Dye [ctb] Maintainer Anne Philippe <anne.philippe@univ-nantes.fr> Description Provides a list of functions for the statistical analysis of archaeologi- cal dates and groups of dates. It is based on the post-processing of the Markov Chains whose sta- tionary distribution is the posterior distribution of a series of dates. Such output can be simu- lated by different applications as for in- stance 'ChronoModel' (see https://chronomodel.com/">https://chronomodel.com/), 'Ox- cal' (see https://c14.arch.ox.ac.uk/oxcal.html) or 'BCal' (see https://bcal.shef.ac.uk/). The only re- quirement is to have a csv file containing a sample from the posterior distribu- tion. Note that this package interacts with data available through the 'Ar- chaeoPhases.dataset' package which is available in a separate repository. The size of the 'Ar- chaeoPhases.dataset' package is approximately 4 MB. License GPL-3 Depends R (>= 3.5.0), coda, hdrcde Imports stats, utils, graphics, grDevices, shiny, shinythemes, DT, readr, ggthemes, toOrdinal, ggplot2, ggalt, reshape2, dplyr, digest, gplots, magrittr, tibble Suggests knitr, rmarkdown, testthat (>= 2.1.0), ArchaeoPhases.dataset (>=0.1.0) VignetteBuilder knitr BugReports https://github.com/ArchaeoStat/ArchaeoPhases/issues RoxygenNote 7.1.1 NeedsCompilation no Encoding UTF-8 ``` LazyData true Repository CRAN Date/Publication 2020-12-01 13:10:03 UTC # ${\sf R}$ topics documented: | app_ArchaeoPhases | |----------------------------------| | ArchaeoPhases | | coda.mcmc | | CreateMinMaxGroup | | CredibleInterval | | credible_interval | | DatesHiatus | | dates_hiatus | | estimate_range | | Events | | ImportCSV | | ImportCSV.BCal | | MarginalPlot | | MarginalProba | | MarginalStatistics | | marginal_plot | | marginal_statistics | | MultiCredibleInterval | | MultiDatesPlot | | MultiHPD | | MultiMarginalPlot | | MultiPhasePlot | | MultiPhasesGap | | MultiPhasesTransition | | MultiPhaseTimeRange | | MultiSuccessionPlot | | multi_credible_interval | | multi_dates_plot | | multi_hpd | | multi_marginal_plot | | multi_marginal_statistics | | new_archaeophases_mcmc | | new_archaeophases_plot | | OccurrencePlot | | occurrence_plot | | original_file | | original_file.archaeophases_mcmc | | original_file.archaeophases_plot | | PhaseDurationPlot | | PhasePlot | | Phases 53 | | app_ArchaeoPhases | 2 | |--------------------|---| | app_Aichaeof hases | 3 | | PhasesGap | 5 3 | |--|------------| | PhaseStatistics | | | PhasesTransition | 56 | | phases_gap | 57 | | PhaseTimeRange | | | phase_statistics | | | plot.archaeophases_plot | 60 | | read_bcal | | | read_chronomodel | | | read_oxcal | | | reproduce.archaeophases_mcmc | | | reproduce.archaeophases_plot | | | SuccessionPlot | | | TempoActivityPlot | | | TempoPlot | | | tempo_activity_plot | | | tempo_plot | | | Index | 77 | | | | | app_ArchaeoPhases Run ArchaeoPhases shiny apps | | # Description Run ArchaeoPhases shiny apps # Usage app_ArchaeoPhases() ArchaeoPhases: Post-Processing of the Markov Chain Simulated by 'Chronomodel', 'OxCal', or 'BCal'. # Description Provides a list of functions for the statistical analysis of archaeological dates and groups of dates. It is based on the post-processing of the Markov Chains whose stationary distribution is the posterior distribution of a series of dates. Such output can be simulated by different applications, as for instance ChronoModel, OxCal, or BCal. The only requirement is to have a csv file containing a sample from the posterior distribution. 4 coda.mcmc coda.mcmc Create an mcmc.list object for coda users # Description This wrapper function extracts parallel chains from a data frame to create an mcmc.list object for use with **coda** diagnostic tools ## Usage ``` coda.mcmc(data, numberChains = 1, iterationColumn = NULL) ``` ## **Arguments** data Data frame containing the output of the MCMC algorithm. numberChains Number of parallel chains, default = 1. iterationColumn Column number corresponding to the iteration values, default = NULL. #### Value ``` An mcmc.list object. ``` # Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ## See Also ``` mcmc mcmc.list ``` ``` data(Events) mcmcList = coda.mcmc(data = Events, numberChains = 3, iterationColumn = 1) plot(mcmcList) gelman.diag(mcmcList) # The multivariate criterion can not be evaluated when a phase # contains only one date. This induces colinearity problems. gelman.diag(mcmcList, multivariate = FALSE) ``` CreateMinMaxGroup 5 CreateMinMaxGroup Construct the minimum and maximum for a group of events (phase) #### **Description** Constructs a data frame containing the output of the MCMC algorithm corresponding to the minimum and maximum of a group of events #### Usage ``` CreateMinMaxGroup(data, position, name = "Phase", add = NULL, exportFile = NULL) ``` #### **Arguments** data Data frame containing the output of the MCMC algorithm. position Numeric vector containing the position of the column corresponding to the MCMC chains of all dates included in the phase of interest. name Name of the current group of dates or phase. Name of the data frame in which the current minimum and maximum should be added, default = NULL. exportFile Name of the final file that will be saved if chosen, default = NULL. #### Value A data frame containing the minimum and maximum of the group of dates included in the phase of interest. These values may be appended to a data frame add if given. ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Events) Temp = CreateMinMaxGroup(Events, c(2,4), name = "Phase2") ## Not run: #To do for saving the new variables in csv file Temp = CreateMinMaxGroup(Events, c(3,5), name = "Phase1", add=Temp, ## End(Not run) exportFile = "MinMaxPhases.csv") ``` 6 credible_interval CredibleInterval Bayesian credible interval #### **Description** Computes the shortest credible interval of the output of the MCMC algorithm for a single parameter ## Usage ``` CredibleInterval(a_chain, level = 0.95, roundingOfValue = 0) ``` ## **Arguments** a_chain Numeric vector containing the output of the MCMC algorithm for the parameter. level Probability corresponding to the level of confidence used for the credible inter- val, default = 0.95. roundingOfValue Integer indicating the number of decimal places to be used, default = 0. #### **Details** ``` A (100 * level)\ elements of the sample outside the interval. The (100 * level)\ ``` #### Value A named vector of values containing the confidence level and the endpoints of the shortest credible interval in calendar years (BC/AD). ## **Examples** ``` data(Events); attach(Events) CredibleInterval(Event.1) CredibleInterval(Event.12, 0.50) ``` credible_interval Bayesian credible interval #### **Description** Computes the shortest credible interval for a single parameter. #### Usage ``` credible_interval(data, level = 0.95, round_to = 0) ``` DatesHiatus 7 ## **Arguments** | data | Numeric vector containing the output of the MCMC algorithm for the parameter. | |-------|--| | level | Probability corresponding to the level of confidence used for the credible interval, default = 0.95. | round_to Integer indicating the number of decimal places to be used, default = 0. #### **Details** A (100 * level)\ that keeps N * (1 - level) elements of the sample outside the interval. The (100 * level)\ of those intervals. #### Value A list with the following components: **ci** Named vector of length 2, with inf the lower endpoint of the shortest credible interval as a calendar year; and sup the upper endpoint of the shortest credible interval as a calendar year; level Confidence level for the credible intervals; and call Function call. #### **Examples** ``` data(Events); attach(Events) credible_interval(Event.1) credible_interval(Event.12, 0.50) ``` DatesHiatus *Test for the existence of a hiatus between two parameters* # **Description** Finds if a gap exists between two dates and returns the longest interval that satisfies: $P(a_chain < IntervalInf < IntervalSup < b_chain|M) = level$ #### Usage ``` DatesHiatus(a_chain, b_chain, level = 0.95) ``` ## Arguments a_chain : Numeric vector containing the output of the MCMC algorithm for the first parameter. b_chain : Numeric vector containing the output of the MCMC algorithm for the second parameter. level Probability corresponding to the confidence level of the interval. 8 dates_hiatus #### Value A named vector with the level and the endpoints of the gap in calendar years (AD/BC) #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` #### **Examples** ``` data(Events); attach(Events) DatesHiatus(Event.1, Event.12) DatesHiatus(Event.1, Event.12, level = 0.5) ``` dates_hiatus Test for the existence of a hiatus between two MCMC chains. ## **Description** Determines whether there is a hiatus between two MCMC chains and returns the longest interval that satisfies: $P(a_chain < IntervalInf < IntervalSup < b_chain | M) = level$ #### Usage ``` dates_hiatus(a_chain, b_chain, level = 0.95) ``` #### **Arguments** a_chain : Numeric vector containing the output of the MCMC algorithm for the first parameter. b_chain : Numeric vector containing the output of the MCMC algorithm for the second parameter. level Probability corresponding to the confidence level of the interval. #### Value A list with
the following components: **hiatus** A named vector where inf is the lower endpoint of the hiatus as a calendar year (AD/BC) or NA if there is no hiatus at level, and sup is the upper endpoint of the gap as a calendar year (AD/BC), or NA if there is no hiatus at level. **duration** The duration of the hiatus at level. level Probability corresponding to the confidence level of the interval. call The function call. estimate_range 9 #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online> ``` ## **Examples** ``` data(Events); attach(Events) dates_hiatus(Event.1, Event.12) dates_hiatus(Event.1, Event.12, level = 0.5) ``` estimate_range Estimate ranges from two or more calibrations # Description Calculates the ranges of summary statistics from the output of two or more runs of the MCMC algorithm. Results are given in calendar years for statistics that estimate them. ## Usage ``` estimate_range(mcmc, position, app = "bcal", estimates = c("mean", "q1", "median", "q3", "ci.inf", "ci.sup"), quiet = "partial", bin_width = 1, decimal = ".", separator = ",") ``` # **Arguments** | mcmc | A vector of path names to the MCMC files. | |-----------|---| | position | Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names. | | арр | Name of the application that created the MCMC files, one of bcal, oxcal, chronomodel. | | estimates | Numeric vector containing the positions of the columns corresponding to the statistics of interest returned by the multi_marginal_statistics() function, or a vector of column names. | | quiet | One of no (default) to allow messages and warnings, partial to suppress messages and allow warnings, or yes to suppress messages and warnings. | 10 estimate_range | bin_width | If app is set to bcal, the bin width specified for the BCal calibration. Defaults to the BCal default of 1. | |-----------|---| | decimal | If app is set to chronomodel, either . (default) or ,, the two choices offered by ${\bf ChronoModel}.$ | separator If app is set to chronomodel, the character used to separate fields in the CSV file. Defaults to,. #### **Details** This function is useful for estimating the sensitivity of calibration results to different model parameters. #### Value A list with the following components: ``` range_table A matrix of estimate ranges. ``` mean The mean of the ranges in range_table. **sd** The standard deviation of the ranges in range_table. min The minimum of the ranges in range_table. **median** The median of the ranges in range_table. max The maximum value of the ranges in range_table. ## Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` ``` ## Not run: ## Generate 0's res <- estimate_range(mcmc = c("http://tsdye.online/AP/ox.csv", "http://tsdye.online/AP/ox.csv"), position = c(1, 2), app = "oxcal", quiet = "yes") sum(res$range_table) ## End(Not run)</pre> ``` Events 11 Events Events # Description A data set containing information on the ages of four dated events. # Usage **Events** #### **Format** A data frame with 30,000 rows and 5 variables: iter iteration of the MCMC algorithm **Event.2** information on event 2 **Event.1** information on event 1 Event.22 information on event 22 Event.12 information on event 12 ImportCSV Importing a CSV file ## **Description** Import a CSV file containing the output of the MCMC algorithm # Usage ``` ImportCSV(file, dec = ".", sep = ",", comment.char = "#", header = TRUE, iterationColumn = NULL, referenceYear = NULL, rowToWithdraw = NULL, bin.width = NULL) ``` 12 ImportCSV #### **Arguments** file Name of the CSV file containing the output of the MCMC algorithm. dec Character used in the file for decimal points for the use of read.csv(). sep Field separator character for the use of read.csv(). comment.char Character vector of length one containing a single character or an empty string for the use of read.csv(). header Logical value indicating whether the file contains the names of the variables as its first line. iterationColumn Column number corresponding to the iteration values, default = NULL. referenceYear Year of reference for MCMC in date format other than BC/AD, default = NULL. rowToWithdraw Number of the row to be withdrawn or "last" for the last row of the data frame, default = NULL. bin.width Bin width specified in a BCal project (note that bin.width does not have to be set if the BCal default bin width of 1 is used). #### **Details** Use of the read.csv() function with default values for CSV files produced by ChronoModel software. For MCMC in a date format different from BC/AD, use the parameter referenceYear to convert the MCMC to BC/AD, otherwise the remaining functions of **ArchaeoPhases** will not work. MCMC files generated by BCal may contain an empty last row. This row should be withdrawn using the rowToWithdraw parameter. Otherwise, the functions of **ArchaeoPhases** will not work properly. ## Value A data frame containing a representation of the data in the file. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, ``` Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne. Vibet@univ-nantes.fr> ## See Also ImportCSV.BCal read_chronomodel read_oxcal ImportCSV.BCal 13 #### **Examples** ImportCSV.BCal Importing a BCal csv file # Description Importing a csv file containing the output of the MCMC algorithm from the BCal software #### Usage ``` ImportCSV.BCal(file, bin.width = NULL) ``` ## **Arguments** file Name of the CSV file containing the output of the MCMC algorithm. bin.width Bin width specified in a BCal project (note: bin.width does not have to be set if the BCal default bin width of 1 is used). #### Value A data frame containing a representation of the data in the CSV file #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` 14 MarginalPlot #### **Examples** MarginalPlot Plot a marginal posterior density # Description Draws a plot of the estimated marginal posterior density for the one-parameter and adds the mean and the credible interval at the desired level ### Usage ``` MarginalPlot(a_chain, level = 0.95, GridLength = 1024, title = "Characteristics of a date", subtitle = NULL, caption = "ArchaeoPhases", x.label = "Calendar year", y.label = NULL, y.grid = TRUE, x.scale = "calendar", elapsed.origin.position = NULL, x.min = NULL, x.max = NULL, height = 7, width = 7, units = "in", file = NULL, newWindow = TRUE) ``` MarginalPlot 15 # Arguments | a_chain | Numeric vector containing the output of the MCMC algorithm for the parameter. | |-------------------------|---| | level | Probability corresponding to the level of confidence. | | GridLength | Length of the grid used to estimate the density. | | title | Title of the graph. | | subtitle | Subtitle of the graph. | | caption | Caption of the graph. | | x.label | Label of the x-axis. | | y.label | Label of the y-axis. | | y.grid | Switch for horizontal grid lines. | | x.scale | One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin. | | elapsed.origin.position | | | | Position of the column to use as the origin for elapsed time calculations. | | x.min | Minimum x axis value. | | x.max | Maximum x axis value. | | height | Plot height in units. | | width | Plot width in units. | | units | String recognized by the ggsave() function, one of "in", "cm", "mm". | | file | Name of the file that will be saved if chosen, default = NULL. | | newWindow | Whether or not the plot is drawn within a new window. | # Details The density is estimated using density() function with n = GridLength. # Value NULL, called for its side effects # Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Events); MarginalPlot(a_chain = Events$Event.1, level = 0.95) ``` 16 MarginalProba | | | - | _ | | | |----|-----|-----|-----|----|----| | ма | rgi | naJ | LPI | ro | ba | *Bayesian test for anteriority / posteriority between two parameters* #### **Description** This function estimates the posterior probability that event 'a' is older than event 'b' using the output of the MCMC algorithm. This provides a Bayesian test for checking the following assumption: "Event a is older than event b". ## Usage ``` MarginalProba(a_chain, b_chain) ``` ## **Arguments** a_chain : Numeric vector containing the output of the MCMC algorithm for the first parameter. b_chain : Numeric vector containing the output of the MCMC algorithm for the second parameter. #### **Details** For a given output of MCMC algorithm, this function estimates the posterior probability of the event 'a' < 'b' by the relative frequency of the event "the value of event 'a' is less than the value of event 'b'" in the simulated Markov chain. #### Value An unnamed vector with the posterior probability of the assumption: "event a is older than event b" # Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Events); attach(Events) # Probability that Event.1 is older than Event.12 MarginalProba(Event.1, Event.12) # Probability that Event.1 is older than Event.2 MarginalProba(Event.1, Event.2) # Probability that the beginning of the phase 1 is older than the end of the phase 1 # Should always be 1 for every phase data(Phases); attach(Phases)
MarginalProba(Phase.1.alpha, Phase.1.beta) ``` Marginal Statistics 17 Marginal Statistics Marginal summary statistics #### **Description** Calculates summary statistics of the output of the MCMC algorithm for a one-parameter. Results are given in calendar years (BC/AD). ## Usage ``` MarginalStatistics(a_chain, level = 0.95, roundingOfValue = 0) ``` #### **Arguments** a_chain Numeric vector containing the output of the MCMC algorithm for the parameter. level Probability corresponding to the level of confidence used for the credible inter- val and the highest posterior density region. roundingOfValue Integer indicating the number of decimal places. #### **Details** The (100 * level) #### Value A named matrix of values corresponding to all the following statistics: title The title of the summary statistics mean The mean of the MCMC chain. Use of mean() function. map The maximum a posteriori of the MCMC chain. Use of hdr() function. sd The standard deviation of the MCMC chain. Use of sd() function. **Q1, median, Q3** The quantiles of the MCMC chain corresponding to 0.25, 0.50 and 0.75. Use of quantile function. CI The credible interval corresponding to the desired level. Use of CredibleInterval() function. **HPDR** The highest posterior density regions corresponding to the desired level. Use of hdr() function. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and ``` Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> 18 marginal_plot #### References Hyndman, R. J. (1996) Computing and graphing highest density regions. American Statistician, 50, 120-126 ## **Examples** ``` data(Events); attach(Events) MarginalStatistics(Event.1) MarginalStatistics(Event.2, level = 0.90) ``` marginal_plot Plot a marginal posterior density # Description Draws a plot of the marginal posterior density for a single parameter, with an option to add the mean and the credible interval at the desired level #### Usage ``` marginal_plot(data, position = 1, level = 0.95, grid_length = 1024, title = if (is.numeric(position)) names(data)[position] else position, subtitle = "Marginal posterior density", caption = paste(level * 100, "% credible interval", sep = ""), x_label = "Calendar year", y_label = "Density", y_grid = TRUE, x_scale = "calendar", elapsed_origin_position = NULL, x_min = NULL, x_max = NULL, height = 7, width = 7, units = "in", file = NULL, plot_result = TRUE, mean_linetype = "dashed", mean_color = "white", mean_size = 0.5, ci_linetype = "dotted", ci_color = mean_color, ci_size = mean_size, ``` marginal_plot 19 ``` line_linetype = "solid", line_color = "black", line_size = 1, density_color = "gray30", fill_palette = NULL) ``` #### **Arguments** data Data frame containing the output of the MCMC algorithm. position Index of the column corresponding to the MCMC chain of interest, or a column name. level Probability corresponding to the level of confidence. grid_length Length of the grid used to estimate the density. title Title of the graph. The default uses the data column name. subtitle Subtitle of the graph. The default is "Marginal posterior density". caption Caption of the graph. The default describes the confidence of the credible inter- val. x_label Label of the x-axis. y_label Label of the y-axis. y_grid Switch for horizontal grid lines. x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin. elapsed_origin_position Position of the column to use as the origin for elapsed time calculations. x_min Minimum x axis value. x_max Maximum x axis value. height Plot height in units. width Plot width in units. units String recognized by the ggsave() function, one of "in", "cm", "mm". This parameter has no effect on the display plot. file Name of the file that will be saved if chosen, default = NULL. plot_result If TRUE, then draw a plot on the display, else suppress drawing. mean_linetype The linetype used to indicate the mean density. mean_color The color of the line used to indicate mean density. mean_size The width of the line used to indicate the mean density. ci_linetype The linetype used to indicate the credible intervals. ci_color The color of the lines used to indicate the credible intervals. ci_size The width of the lines used to indicate the credible intervals. line_linetype The linetype used to indicate the density. line_color The color of the line used to indicate the density. line_size The width of the line used to indicate the density. density_color Color to use if fill_palette is not specified. fill_palette Palette to use for fills. 20 marginal_statistics #### **Details** The plot is drawn with the current theme and color scales; the function does not alter or override theme elements. ## Value An archaeophases_plot object with the data and metadata needed to reproduce the plot. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>; Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>; and Thomas S. Dye, <tsd@tsdye.online> ``` # **Examples** ``` data(Events) mp <- marginal_plot(data = Events, position = 2, level = 0.95) ## View data and metadata str(mp)</pre> ``` ## **Description** Calculates summary statistics of the output of the MCMC algorithm for a single parameter. Results are given in calendar years (BC/AD). ### Usage ``` marginal_statistics(a_chain, level = 0.95, round_to = 0) ``` # Arguments | a_chain | Numeric vector containing the output of the MCMC algorithm for the parameter. | |----------|---| | level | Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region. | | round_to | Integer indicating the number of decimal places. | #### **Details** The (100 * level)\ using hdr() function from **hdrcde** package. MultiCredibleInterval 21 #### Value A list with the following components: mean The mean of the MCMC chain. map The maximum a posteriori of the MCMC chain. **sd** The standard deviation of the MCMC chain. **quantiles** A vector with the following elements: min = minimum value of the MCMC chain; q1 = first quantile of the MCMC chain; median = median of the MCMC chain; q2 = second quantile of the MCMC chain; and max = maximum value of the MCMC chain. level Confidence level for the credible interval and highest posterior density. **ci** A vector with the following elements: inf = lower credible interval of the MCMC chain at level; and sup = upper credible interval of the MCMC chain at level. **hpdr** A variable length vector with the lower and upper highest posterior density regions of the MCMC chain at level. List components are named inf_n and sup_n for n = 1 to the number of highest posterior density regions. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online> ``` #### References Hyndman, R. J. (1996) Computing and graphing highest density regions. American Statistician, 50, 120-126. ## **Examples** ``` data(Events); attach(Events) marginal_statistics(Event.1) marginal_statistics(Event.2, level = 0.90) ## convenient vector foo <- marginal_statistics(Event.1) unlist(foo)</pre> ``` MultiCredibleInterval Bayesian credible interval for a series of dates # Description Estimation of the shortest credible interval for each variable of a simulated Markov chain 22 MultiDatesPlot #### Usage ``` MultiCredibleInterval(data, position, level = 0.95, roundingOfValue = 0) ``` #### **Arguments** data frame containing the output of the MCMC algorithm. position Numeric vector containing the position of the column corresponding to the MCMC chains of interest. level Probability corresponding to the level of confidence used for the credible inter- val. roundingOfValue Integer indicating the number of decimal places. #### **Details** ``` A (100 * level) \ The (100 * level) \ ``` #### Value Returns a matrix of values containing the level of confidence and the endpoints of the shortest credible interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ### **Examples** ``` data(Events) MultiCredibleInterval(Events, c(2, 4, 3), 0.95) ``` MultiDatesPlot Plot of credible intervals or HPD regions of a series of events ## **Description** Plot of credible intervals or HPD regions of a series of events MultiDatesPlot 23 #### Usage ``` MultiDatesPlot(data, position, level = 0.95, roundingOfValue = 0, intervals = "CI", order = "default" title = "Plot of intervals", subtitle = NULL, caption = "ArchaeoPhases", labelXaxis = "Calendar Year", labelYaxis = NULL, height = 7, width = 7, units = "in", x.min = NULL, x.max = NULL, x.scale = "calendar", elapsed.origin.position = NULL, dumbbell.size = 3, dot.guide = FALSE, dot.guide.size = 0.25, y.grid = FALSE, file = NULL, newWindow = TRUE, print.data.result = FALSE) ``` # Arguments data Data frame containing the output of the MCMC algorithm. position Numeric vector containing the position of the column corresponding to the MCMC chains of interest. level Probability corresponding to the level of confidence. roundingOfValue Integer indicating the number of decimal places to be used. intervals One of "CI" for credible intervals, or "HPD" for highest posterior density inter- vals. order Order of the events. If "default" then the order of the csv file is followed, if "increasing" events are ordered by the HPDInf of the first region or the CIInf title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. labelXaxis X axis label of the plot. 24 MultiDatesPlot | labelYaxis | Y axis label of the plot. | |-----------------
---| | height | Height of the plot in units. | | width | Width of the plot in units. | | units | A string recognized by ggsave() function, one of "in", "cm", "mm". | | x.min | Minimum x axis value. | | x.max | Maximum x axis value. | | x.scale | One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for years after a specified origin. | | elapsed.origin. | position | | | Position of the column corresponding to the origin for elapsed time calculations. | | dumbbell.size | Size of the symbols used to plot events. | | dot.guide | Switch for guides from y-axis to plot symbols. | | dot.guide.size | Size of the dot guides. | | y.grid | Switch for horizontal grids. | | file | Name of the file to be saved. If NULL then no plot is saved. | | newWindow | Whether the plot is drawn within a new window or not. | | print.data.resu | lt | | | If TRUE, the list containing the data to plot will be returned. | # Value NULL, called for its side effects. If print.data.result = TRUE then a list containing the data to plot will be returned. # Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` MultiHPD 25 | MultiHPD | Bayesian HPD regions for a series of MCMC chains | |----------|--| | MUTCINPD | Bayesian HPD regions for a series of MCMC chains | ## **Description** Estimation of the highest posterior density regions for each variable of a simulated Markov chain. This function uses the hdr() function included in the **hdrcde** package. An HPD region may be a union of several intervals. #### Usage ``` MultiHPD(data, position, level = 0.95, roundingOfValue = 0) ``` #### **Arguments** data Data frame containing the output of the MCMC algorithm. position Numeric vector containing the position of the column corresponding to the MCMC chains of interest. level Probability corresponding to the level of confidence. roundingOfValue Integer indicating the number of decimal places. #### **Details** Highest posterior density function region using the function hdr() from the hdrcd package ## Value Returns a matrix of values containing the level of confidence and the endpoints of each interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD). #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` # References Hyndman, R.J. (1996) Computing and graphing highest density regions. American Statistician, 50, 120-126. ``` data(Events) MultiHPD(Events, c(2, 4, 3), 0.95) ``` 26 MultiMarginalPlot MultiMarginalPlot Marginal posterior densities of several events ## **Description** Draws a plot of the estimated marginal posterior density for a parameter and adds the mean and the credible interval at the desired level # Usage ``` MultiMarginalPlot(data, position, level = 0.95, GridLength = 1024, x.scale = rep("calendar", length(position)), elapsed.origin = NULL, title = "Characteristics of several dates", subtitle = NULL, caption = "ArchaeoPhases", x.label = "Calendar year", y.label = NULL, y.grid = TRUE, x.min = NULL, x.max = NULL, legend.title = "Legend", height = 7, width = 7, units = "in", file = NULL, newWindow = TRUE) ``` #### **Arguments** | data | Data frame containing the output of the MCMC algorithm. | |----------------|---| | position | Numeric vector containing the position of the column corresponding to the MCMC chains of interest. | | level | Probability corresponding to the level of confidence. | | GridLength | Number of equally spaced points at which the density is to be estimated (for $density()$) function). | | x.scale | One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin. | | elapsed.origin | Position of the column to use as the origin for elapsed time calculations. | | title | Title of the plot. | MultiMarginalPlot 27 | subtitle | Subtitle of the plot. | |--------------|--| | caption | Caption of the plot. | | x.label | Label of the x-axis. | | y.label | Label of the y-axis. | | y.grid | Switch for horizontal grid lines. | | x.min | Minimum x-axis value. | | x.max | Maximum x-axis value. | | legend.title | Title for the legend. | | height | Plot height in units. | | width | Plot width in units. | | units | String recognized by the ggsave() function, one of "in", "cm", "mm". | | file | Name of the file that will be saved if specified, default = NULL. | | newWindow | Whether or not the plot is drawn within a new window. | | | | ## **Details** The density is estimated using density() function with n = GridLength. The input MCMC chains should either be in calendar years or converted to calendar years using x.scale vector or elapsed.origin. #### Value NULL, called for its side effects # Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` 28 MultiPhasePlot MultiPhasePlot Several phase density plots # **Description** Plot of the marginal posterior densities of several groups #### Usage ``` MultiPhasePlot(data, position_minimum, position_maximum = position_minimum + 1, level = 0.95, title = "Characterisation of several groups", colors = NULL, exportFile = NULL, exportFormat = "PNG") ``` # **Arguments** data Data frame containing the output of the MCMC algorithm. position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each group. position_maximum Numeric vector containing the column number corresponding to the end of the groups set in the same order as in position_minimum. level Probability corresponding to the level of confidence. title Title of the plot. colors Numeric vector of colors for each group of dates. exportFile Name of the file to be saved. If NULL then no plot is saved. exportFormat Format of the export file, one of "PNG" or "SVG". #### **Details** Draws a plot with the marginal posterior densities of the minimum and the maximum of the dates included in each group. No temporal order between phases is required. The result is given in calendar years (BC/AD). #### Value NULL, called for its side effects MultiPhasesGap 29 #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` #### **Examples** ``` # Data extracted from ChronoModel software data(Phases) # List of the name of the groups names(Phases) # Stipulating position_maximum MultiPhasePlot(Phases, c(4, 2), c(5, 3), title = "Succession of phase 1 and phase 2") # In this case, equivalent to MultiPhasePlot(Phases, c(4, 2), title = "Succession of phase 1 and phase 2", colors = c(3, 4)) ``` MultiPhasesGap Gap or hiatus between a succession of groups (for groups in temporal order constraint) #### **Description** Finds, if it exists, a gap or hiatus between two successive groups. This gap or hiatus is the longest interval that satisfies P(Phase1Max < IntervalInf < IntervalSup < Phase2Min|M) = level #### Usage ``` MultiPhasesGap(data, position_minimum, position_maximum = position_minimum + 1, level = 0.95) ``` #### **Arguments** data Data frame containing the output of the MCMC algorithm. position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each group. position_maximum Numeric vector containing the column number corresponding to the end of the phases set in the same order as in position_minimum. level Probability corresponding to the level of confidence. 30 MultiPhasesTransition #### **Details** For each i, MultiPhasesGap() computes the gap interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to CSV files exported from ChronoModel software. #### Value Returns a matrix of values containing the level of confidence and the endpoints of the gap for each pair of successive groups. The result is given in calendar years (BC/AD). #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` #### **Examples** ``` # Data extracted from ChronoModel software data(Phases) # List of the name of the groups names(Phases) # Stipulating position_maximum MultiPhasesGap(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3)) # In this case, equivalent to MultiPhasesGap(Phases, position_minimum = c(4, 2)) ``` MultiPhasesTransition Transition range for a succession of groups (for groups in temporal order constraint) # Description Finds, if it exists, the shortest interval that satisfies P(TransitionRangeInf < Phase1Max < Phase2Min < TransitionRangeSup|M) = level #### Usage ``` MultiPhasesTransition(data, position_minimum, position_maximum = position_minimum + 1, level = 0.95) ``` MultiPhaseTimeRange 31 #### **Arguments** data Data frame containing the output of the MCMC algorithm. position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each group. position_maximum Numeric vector containing the column number corresponding to the end of the groups set in the same order as in codeposition_minimum. level Probability corresponding to the level of confidence. #### **Details** For each i, MultiPhasesTransition() computes the transition interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to
CSV files exported from ChronoModel software. #### Value A matrix of values containing the level of confidence and the endpoints of the transition interval for each pair of successive groups. The result is given in calendar years (BC/AD). #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet. <Marie-Anne.Vibet@univ-nantes.fr> ``` #### **Examples** ``` # Data extracted from ChronoModel software data(Phases) # List of the name of the groups names(Phases) # Stipulating position_maximum MultiPhasesTransition(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3)) # In this case, equivalent to MultiPhasesTransition(Phases, position_minimum = c(4, 2)) ``` MultiPhaseTimeRange Phase time range for multiple groups ## **Description** Computes the shortest interval that satisfies P(PhaseMin < IntervalInf < IntervalSup < PhaseMax|M) = level for each phase #### Usage ``` MultiPhaseTimeRange(data, position_minimum, position_maximum = position_minimum + 1, level = 0.95) ``` ## **Arguments** data Data frame containing the output of the MCMC algorithm. position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each phase. position_maximum Numeric vector containing the column number corresponding to the maximum of the phases set in the same order as in position_minimum. level Probability corresponding to the desired level of confidence. #### **Details** For each i, MultiPhaseTimeRange() computes the time range interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to CSV files exported from ChronoModel software. #### Value A matrix of values containing the level of confidence and the endpoints of the shortest time range associated with the desired level. The result is given in calendar years (BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` # Data extracted from ChronoModel software data(Phases) # List of the name of the groups names(Phases) # Stipulating position_maximum MultiPhaseTimeRange(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3)) # In this case, equivalent to MultiPhaseTimeRange(Phases, position_minimum = c(4, 2)) ``` MultiSuccessionPlot 33 MultiSuccessionPlot Successive Phases Density Plots (for phases in temporal order constraint) #### **Description** This functions draws a plot of the densities of several successive phases and adds several statistics (mean, CI, HPDR). The result is given in calendar years (BC/AD). # Usage ``` MultiSuccessionPlot(data, position_minimum, position_maximum = position_minimum + 1, level = 0.95, title = "Characterisation of a succession of groups", colors = NULL, exportFile = NULL, exportFormat = "PNG") ``` #### **Arguments** data Data frame containing the output of the MCMC algorithm. position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each group. position_maximum Numeric vector containing the column number corresponding to the end of the groups set in the same order as in position_minimum. level Probability corresponding to the level of confidence. title Title of the plot. colors Vector of colors corresponding to each group of dates. exportFile Name of the file to be saved. If NULL then no plot is saved. Format of the export file, either "PNG" or "SVG" (default). ### Details Curves represent the density of the minimum (oldest dates) and the maximum (youngest dates) of the dates included in each group. Curves of the same color refer to the same phase. When there is only one curve of one color, it means that there is only one event in the corresponding group and then the minimum equals the maximum. Time range intervals are symbolised by segments above the curves drawn using the same color as the one of the curves of the associated group. Transition and gap range intervals are represented by two-coloured segments using the colors of successive phases. If the gap between the successive groups does not exist, a cross is drawn instead of a segment. #### Value NULL, called for its side effects #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ## **Examples** multi_credible_interval Bayesian credible interval for a series of dates #### **Description** Estimate the shortest credible interval for each of several MCMC chains. #### Usage ``` multi_credible_interval(data, position, level = 0.95, round_to = 0) ``` #### **Arguments** data data frame containing the output of the MCMC algorithm. position Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a list of column names. level Probability corresponding to the level of confidence used for the credible inter- val. round_to Integer indicating the number of decimal places. ## Details ``` A (100*level)\ that keeps N*(1-level) elements of the sample outside the interval. The (100*level)\ ``` multi_dates_plot 35 #### Value Returns a list with the following components: ci A data frame with a row for each column in data and two columns: inf, the lower credible interval in calendar years (BC/AD); and sup, the upper credible interval in calendar years (BC/AD). level Probability corresponding to the level of confidence used for the credible interval. call The function call. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>. ``` ### **Examples** ``` data(Events) multi_credible_interval(Events, c(2, 4, 3), 0.95) # round to decade multi_credible_interval(Events, c(2, 4, 3), 0.95, -1) ``` multi_dates_plot Plot of credible intervals or HPD regions of a series of events # **Description** Plot of credible intervals or HPD regions of a series of events ## Usage ``` multi_dates_plot(data, position = 1:ncol(data), level = 0.95, plot_result = TRUE, round = 0, intervals = "CI", order = "default", title = "Plot of intervals", subtitle = NULL, caption = "ArchaeoPhases", x_label = "Calendar Year", y_label = NULL, height = 7, ``` 36 multi_dates_plot ``` width = 7, units = "in", x_min = NULL, x_max = NULL, x_scale = "calendar", elapsed_origin_position = NULL, dumbbell_size = 1, dot_guide = FALSE, dot_guide_size = 0.25, y_grid = FALSE, file = NULL, new_window = TRUE) ``` #### **Arguments** data Data frame containing the output of the MCMC algorithm. position Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names. level Probability corresponding to the level of confidence. plot_result If TRUE, then draw a plot on the display, else suppress drawing. round Integer indicating the number of decimal places to be used. intervals One of "CI" for credible intervals, or "HPD" for highest posterior density inter- vals. order Order of the events. If "default" then the order of the csv file is followed, if "increasing" events are ordered by the HPDInf of the first region or the CIInf title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. x_label X axis label of the plot. y_label Y axis label of the plot. height Height of the plot in units. width Width of the plot in units. units A string recognized by ggsave() function, one of "in", "cm", "mm". x_min Minimum x axis value.x_max Maximum x axis value. x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for years after a specified origin. elapsed_origin_position Position of the column corresponding to the origin for elapsed time calculations. dumbbell_size Size of the symbols used to plot events. dot_guide Switch for guides from y-axis to plot symbols. multi_hpd 37 dot_guide_size Size of the dot guides. y_grid Switch for horizontal grids. file Name of the file to be saved. If NULL then no plot is saved. new_window Whether the plot is drawn within a new window or not. #### Value An archaeophases_plot object with the data and metadata needed to reproduce the plot. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ## **Examples** multi_hpd Bayesian HPD regions for a series of MCMC chains # Description Estimation of the highest posterior density regions for each variable of a simulated Markov chain. This function uses the hdr() function included in the **hdrcde** package. An HPD region may be a union of several intervals. #### Usage ``` multi_hpd(data, position, level = 0.95, round_to = 0) ``` # **Arguments** data Data frame containing the output of the MCMC algorithm. position Numeric vector containing the position of the column corresponding to the MCMC chains of interest. level Probability corresponding to the level of confidence. round_to Integer indicating the number of decimal places. 38 multi_marginal_plot #### **Details** Highest posterior density function region using the function hdr() from the hdrcd package #### Value Returns a list with the following components: **results** A data frame where the rows correspond to the columns in the selected data set and the columns labeled inf and sup correspond to the lower and upper endpoints of each highest posterior density interval, respectively. level Probability corresponding to the level of confidence. call The function call. matrix of values containing the level of confidence and for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` #### References Hyndman, R.J. (1996) Computing and graphing highest density
regions. American Statistician, 50, 120-126. # Examples ``` data(Events) multi_hpd(Events, c(2, 4, 3), 0.95) ``` multi_marginal_plot Marginal posterior densities of several events #### **Description** Draws a plot of the estimated marginal posterior density for a parameter and adds the mean and the credible interval at the desired level multi_marginal_plot 39 ## Usage ``` multi_marginal_plot(data, position = 1:ncol(data), level = 0.95, grid_length = 1024, x_scale = "calendar", elapsed_origin_position = NULL, title = "Characteristics of several dates", subtitle = "Marginal densities", caption = paste(level * 100, "% credible interval", sep = ""), x_label = "Calendar year", y_{abel} = NULL, density_fill = "gray30", density_color = "black", density_alpha = 1, mean_color = "white", mean_linetype = "dashed", mean_size = 0.5, ci_color = mean_color, ci_linetype = "dotted", ci_size = mean_size, y_grid = TRUE, x_min = NULL, x_max = NULL, height = 7, width = 7, units = "in", file = NULL, new_window = TRUE, plot_result = TRUE, fill_palette = NULL, colors = NULL, color_legend_name = "Legend") ``` #### **Arguments** | data | Data frame containing the output of the MCMC algorithm. | |-------------|---| | position | Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names. | | level | Probability corresponding to the level of confidence. | | grid_length | Number of equally spaced points at which the density is to be estimated (for density() function). | | x_scale | One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin. | 40 multi_marginal_plot elapsed_origin_position Position of the column to use as the origin for elapsed time calculations. title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. x_label Label of the x-axis. y_label Label of the y-axis. density_fill A color specification for the fill under the density line. density_color A color specification for the density line. density_alpha A number between 0 for transparent and 1 for opaque. mean_color A color specification for the mean line. mean_linetype A line type specification for the mean line. mean_size A size specification for the mean line. ci_color A color specification for the credible interval lines. ci_linetype A line type specification for the credible interval lines. ci_size A size specification of the credible interval lines. y_grid Switch for horizontal grid lines. x_min Minimum x-axis value. x_max Maximum x-axis value. height Plot height in units. width Plot width in units. units String recognized by the ggsave() function, one of "in", "cm", "mm". file Name of the file that will be saved if specified, default = NULL. new_window Whether or not the plot is drawn within a new window. plot_result If TRUE, then draw a plot on the display, else suppress drawing. fill_palette A vector of colors for qualitative data. colors A vector of indices into palette keyed by position. color_legend_name A label for the legend. #### **Details** The density is estimated using density() function with $n = grid_length$. The input MCMC chains should either be in calendar years or converted to calendar years using x_scale vector or elapsed_origin_position. #### Value An archaeophases_plot object with the data and metadata needed to reproduce the plot. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>; Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>; and Thomas S. Dye, <tsd@tsdye.online> ``` ## **Examples** ``` data(Events); multi_marginal_plot(Events, position = c(2, 3, 4), level = 0.95) ``` multi_marginal_statistics Marginal summary statistics for multiple MCMC chains ## **Description** Calculates summary statistics of the output of the MCMC algorithm for multiple parameters. Results are given in calendar years (BC/AD). #### Usage ``` multi_marginal_statistics(data, position = 1:ncol(data), level = 0.95, round_to = 0) ``` ## **Arguments** data Data frame containing the output of the MCMC algorithm. position Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names. level Probability corresponding to the level of confidence used for the credible inter- val and the highest posterior density region. round_to Integer indicating the number of decimal places. #### Value A data frame where the rows correspond to the chains of interest and columns to the following statistics: mean The mean of the MCMC chain. sd The standard deviation of the MCMC chain. ``` min Minimum value of the MCMC chain; ``` **q1** First quantile of the MCMC chain; median Median of the MCMC chain; q3 Third quantile of the MCMC chain; and max Maximum value of the MCMC chain. ci.inf Lower credible interval of the MCMC chain at level. **ci.sup** Upper credible interval of the MCMC chain at level. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online> ``` ## **Examples** ``` data(Events) multi_marginal_statistics(Events, 2:5) multi_marginal_statistics(Events, 2:5, level = 0.90) ## round to decades multi_marginal_statistics(Events, 2:5, round_to = -1) ``` new_archaeophases_mcmc Constructor for archaeophases_mcmc object # Description Object to be returned by functions that read MCMC data from csv files. #### Usage ``` new_archaeophases_mcmc(x = list(), call = match.call(), hash = character()) ``` #### **Arguments** x A data frame with the data from the csv file. call How the function was called. hash A SHA256 hash of the csv file. #### **Details** The SHA256 hash should be secure against intentional and unintentional alterations of the MCMC csv file. ## Value An archaeophases_mcmc object that inherits from tbl_df. #### Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` #### See Also ``` read_chronomodel read_bcal read_oxcal ``` new_archaeophases_plot Constructor for archaeophases_plot object # Description Objects returned by ArchaeoPhases plot functions. #### Usage ``` new_archaeophases_plot(x = list(), mcmc = list(), call = match.call()) ``` # **Arguments** x A data frame with the plot data.mcmc An archaeophases_mcmc object.call How the function was called. ## Value An archaeophases_plot object that inherits from archaeophases_mcmc. # Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` #### See Also ``` read_chronomodel read_bcal read_oxcal ``` 44 OccurrencePlot OccurrencePlot Plot occurrences #### **Description** A statistical graphic designed for the archaeological study of when events of a specified kind occurred ## Usage ``` OccurrencePlot(data, position, plot.result = NULL, level = 0.95, intervals = "CI", title = "Occurrence plot", subtitle = NULL, caption = "ArchaeoPhases", labelXaxis = "Calendar year", labelYaxis = NULL, language = "English", occurrence = "occurrence", height = 7, width = 7, units = "in", x.min = NULL, x.max = NULL, x.scale = "calendar", elapsed.origin.position = NULL, dumbbell.size = 1, dot.guide = FALSE, dot.guide.size = 0.25, y.grid = FALSE, file = NULL, newWindow = TRUE, print.data.result = FALSE) ``` ## **Arguments** | data | Data frame containing the output of the MCMC algorithm. | |-------------|--| | position | Numeric vector containing the position of the column corresponding to the MCMC chains of interest. | | plot.result | If TRUE, then draw a plot on the display, else suppress drawing. | | level | Probability corresponding to the level of confidence. | OccurrencePlot 45 intervals One of "CI" for credible intervals or "HPD" for highest posterior density inter- vals. title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. labelXaxis Label of the x-axis. labelYaxis Label of the y-axis. language String indicating a language recognized by the **toOrdinal** package. occurrence String to append to each y-axis tic label. height Plot height in units. width Plot width in units. units String recognized by the ggsave() function, one of "in", "cm", "mm". x.min Minimum x-axis value.x.max Maximum x-axis value. x.scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin. elapsed.origin.position Position of the column to use as the origin for elapsed time calculations. dumbbell.size Size of the plot symbol. dot.guide Switch for a horizontal guide from the y axis. dot.guide.size Size of the dot guide. y.grid Switch for horizontal grid lines. file Name of the file that will be saved if specified. If NULL no plot will be saved. newWindow Whether or not the plot is drawn within a new window. print.data.result If TRUE, the list containing the data to plot will be returned. #### **Details** If we have k events, then we can estimate the calendar date t corresponding to the smallest date such that the number of events observed before t is equal to k. The OccurrencePlot() estimates these occurrences and gives the credible interval or the highest posterior density (HPD) region with a desired level of confidence. #### Value NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE). #### Author(s) Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne. Vibet@univ-nantes.fr> 46 occurrence_plot ## **Examples** ``` data(Events); OccurrencePlot(Events[1:1000,], c(2:5), print.data.result = FALSE) ``` occurrence_plot Plot occurrences ## **Description** A statistical graphic designed for the archaeological study of when events of a specified kind occurred ## Usage ``` occurrence_plot(data, position = 1:ncol(data),
level = 0.95, plot_result = TRUE, intervals = "CI", title = "Occurrence plot", subtitle = NULL, caption = "ArchaeoPhases", x_label = "Calendar year", y_label = NULL, language = "English", occurrence = "occurrence", height = 7, width = 7, units = "in", x_min = NULL, x_max = NULL, x_scale = "calendar", elapsed_origin_position = NULL, dumbbell_size = 1, dot_guide = FALSE, dot_guide_size = 0.25, y_grid = FALSE, file = NULL, new_window = TRUE) ``` # Arguments data Data frame containing the output of the MCMC algorithm. occurrence_plot 47 position Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names. level Probability corresponding to the level of confidence. plot_result If TRUE, then draw a plot on the display, else suppress drawing. intervals One of "CI" for credible intervals or "HPD" for highest posterior density inter- vals. title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. x_label Label of the x-axis. y_label Label of the y-axis. language String indicating a language recognized by the **toOrdinal** package. occurrence String to append to each y-axis tic label. height Plot height in units. width Plot width in units. units String recognized by the ggsave() function, one of "in", "cm", "mm". x_min Minimum x-axis value.x_max Maximum x-axis value. x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin. elapsed_origin_position Position of the column to use as the origin for elapsed time calculations. dumbbell_size Size of the plot symbol. dot_guide Switch for a horizontal guide from the y axis. dot_guide_size Size of the dot guide. y_grid Switch for horizontal grid lines. file Name of the file that will be saved if specified. If NULL no plot will be saved. new_window Whether or not the plot is drawn within a new window. ## **Details** If we have k events, then we can estimate the calendar date t corresponding to the smallest date such that the number of events observed before t is equal to k. The OccurrencePlot() estimates these occurrences and gives the credible interval or the highest posterior density (HPD) region with a desired level of confidence. #### Value An archaeophases_plot object with the data and metadata needed to reproduce the plot. 48 original_file #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ## **Examples** ``` data(Events); OccurrencePlot(Events[1:1000,], c(2:5), print.data.result = FALSE) ## Not run: # Read from connection ox <- read_oxcal("http://tsdye.online/AP/ox.csv") # Plot all the columns op <- occurrence_plot(ox, position = 1:ncol(ox)) # Plot again plot(op) # View metadata str(op) ## End(Not run)</pre> ``` original_file Check for an original mcmc file # **Description** Checks whether or not a file is identical to the one used to create an archaeophases_mcmc object. ## Usage ``` original_file(x, ...) ``` ## Arguments x An archaeophases_mcmc object. Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain. #### Value A boolean, TRUE if the files match, FALSE otherwise. # Author(s) Thomas S. Dye, <tsd@tsdye.online> #### **Examples** ``` ## Not run: rem <- read_chronomodel("http://tsdye.online/AP/cm/Chain_all_Events.csv") original_file(rem, "http://tsdye.online/AP/cm/Chain_all_Events.csv") ## End(Not run)</pre> ``` ``` original_file.archaeophases_mcmc\\ Check for an original\ mcmc\ file ``` # **Description** Checks whether or not a file is identical to the one used to create an archaeophases_mcmc object. ## Usage ``` ## S3 method for class 'archaeophases_mcmc' original_file(x, file = NULL, ...) ``` # **Arguments** x An archaeophases_mcmc object. file Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain. ... Other parameters. ## **Details** If called with a single argument, checks the file indicated by the file_path attribute. ## Value A boolean, TRUE if the files match, FALSE otherwise. #### Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` 50 PhaseDurationPlot ``` original_file.archaeophases_plot\\ {\it Check for an original archaeophases_plot file} ``` # Description Checks whether or not a file is identical to the one used to create an archaeophases_plot object. # Usage ``` ## S3 method for class 'archaeophases_plot' original_file(x, file = NULL, ...) ``` ## **Arguments** | X | An archaeophases_plot object. | |------|---| | file | Either a path to a plot file, a connection, or the value clipboard() to read from the system clipboard. | ... Other parameters. #### **Details** If called with a single argument, checks the file indicated by the file_path attribute. ## Value A boolean, TRUE if the files match, FALSE otherwise. # Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` PhaseDurationPlot Plot the duration of a group ## Description This function draws the marginal posterior densities of the time elapsed between the minimum and the maximum of the dates included in a phase, and adds summary statistics (mean, CI) PhaseDurationPlot 51 #### Usage ``` PhaseDurationPlot(PhaseMin_chain, PhaseMax_chain, level = 0.95, title = "Duration of a group of dates", colors = TRUE, exportFile = NULL, exportFormat = "PNG", GridLength = 1024) ``` ## **Arguments** PhaseMin_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase. PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase. level Probability corresponding to the level of confidence used for the credible inter- val and the time range. title Title of the plot. colors If TRUE, use colors in the plot, otherwise produce a black and white plot. exportFile Name of the file to be saved. If NULL, then no plot is saved. exportFormat Format of the export file, either "PNG" or "SVG". GridLength Length of the grid used to estimate the density. #### **Details** Plot of the density of the time elapsed between the minimum and the maximum calendar years of the events included in a phase, along with mean and credible interval ## Value NULL, called for its side effects #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Phases); attach(Phases) PhaseDurationPlot(Phase.1.alpha, Phase.1.beta, 0.95, "Duration of Phase 1") PhaseDurationPlot(Phase.2.alpha, Phase.2.beta, 0.95, "Duration of Phase 2", colors = FALSE) ``` 52 PhasePlot | DhaaaDlat | Diet the characteristics of a course of averts | |-----------|--| | PhasePlot | Plot the characteristics of a group of events | | | | ## **Description** This function draws the marginal posterior densities of the minimum and the maximum of the events included in the phase and summary statistics including mean, credible interval, and time range. The result is given in calendar years (BC/AD). ## Usage ``` PhasePlot(PhaseMin_chain, PhaseMax_chain, level = 0.95, title = "Characterisation of a group of dates", colors = TRUE, exportFile = NULL, exportFormat = "PNG", GridLength = 1024) ``` #### **Arguments** | PhaseMin_chain | Numeric vector containing the output of the MCMC algorithm for the minimum | |----------------|--| | | of the events included in the phase. | PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase. level Probability corresponding to the level of confidence used for the credible inter- val and the time range. title The title of the plot colors If TRUE, then use of colors in the plot, otherwise draw the plot in black and white. exportFile Name of the file to be saved. If NULL, then no plot is saved. exportFormat Format of the export file, either "PNG" or "SVG". GridLength Length of the grid used to estimate the density. #### Value NULL, called for its side effects #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` Phases 53 ## **Examples** ``` data(Phases); attach(Phases) PhasePlot(Phase.1.alpha, Phase.1.beta, level = 0.95, title = "Densities of Phase 1") ``` Phases Phases ## **Description** A data set containing information on the start and end dates of two phases. ## Usage Phases ## **Format** A data frame with 30,000 rows and 5 variables: iter iteration of the MCMC algorithm Phase.2.alpha start date of Phase 2 Phase.2.beta end date of Phase 2 Phase.1.alpha start date of Phase 1 Phase.1.beta end date of Phase 1 PhasesGap Gap or hiatus between two successive phases (for phases in temporal order constraint) ## **Description** This function finds, if it exists, a gap or hiatus between two successive phases. This gap or hiatus is the longest interval that satisfies $P(Phase1Max_chain < IntervalInf < IntervalSup < Phase2Min_chain|M) = level$ ## Usage ``` PhasesGap(Phase1Max_chain, Phase2Min_chain, level = 0.95) ``` 54 PhaseStatistics # Arguments Phase1Max_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase. Phase2Min_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the following phase. level Probability corresponding to the level of confidence. #### Value Returns a vector of values containing the level of confidence and the endpoints of the gap between the successive phases. The result is given in calendar years (BC/AD). #### Author(s) ``` Anne
Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ## **Examples** ``` data(Phases); attach(Phases) PhasesGap(Phase.1.beta, Phase.2.alpha, 0.95) PhasesGap(Phase.1.beta, Phase.2.alpha, 0.50) ``` PhaseStatistics Summary statistics of a phase # Description Estimation of summary statistics, including the beginning and end of a phase, and the duration of the phase ## Usage ``` PhaseStatistics(PhaseMin_chain, PhaseMax_chain, level = 0.95, roundingOfValue = 0) ``` PhaseStatistics 55 ## Arguments PhaseMin_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the dates included in the phase. PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the dates included in the phase. level Probability corresponding to the level of confidence used for the credible inter- val and the highest density region. roundingOfValue Integer indicating the number of decimal places. #### **Details** The summary statistics are those given by the MarginalStatistics() function. The time range is given by PhaseTimeRange() function. The duration is computed as follows: duration = maximum - minimum at each iteration of the MCMC output. #### Value A matrix of values corresponding to the summary statistics: - 1 Statistics of the minimum of the dates included in the phase - 2 Statistics of the maximum of the dates included in the phase - 3 Statistics of the duration of the dates included in the phase The results are given in calendar year (in format BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and ``` Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` data(Phases); attach(Phases) PhaseStatistics(Phase.1.alpha, Phase.1.beta, 0.95) PhaseStatistics(Phase.2.alpha, Phase.2.beta, 0.95) ``` 56 PhasesTransition | PhasesTransition | Transition range between two successive phases (for phases in temporal order constraint) | |------------------|--| | | | ## **Description** Finds, if it exists, the shortest interval that satisfies $P(TransitionRangeInf < Phase1Max_chain < Phase2Min_chain < TransitionRangeSup|M) = level$ # Usage ``` PhasesTransition(Phase1Max_chain, Phase2Min_chain, level = 0.95) ``` ## **Arguments** Phase1Max_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase. Phase2Min_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the following phase. level Probability corresponding to the level of confidence. #### Value a vector of values containing the level of confidence and the endpoints of the transition interval between the successive phases. The result is given in calendar years (BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Phases); attach(Phases) PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.95) PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.50) ``` phases_gap 57 | phases_gap | Gap or hiatus between two successive phases (for phases in temporal order constraint) | |------------|---| | | | # **Description** This function finds, if it exists, a gap or hiatus between two successive phases. This gap or hiatus is the longest interval that satisfies $P(Phase1Max_chain < IntervalInf < IntervalSup < Phase2Min_chain|M) = level$ ## Usage ``` phases_gap(a_chain, b_chain, level = 0.95) ``` ## **Arguments** | a_chain | Numeric vector containing the output of the MCMC algorithm for the upper boundary of the older phase. | |---------|---| | b_chain | Numeric vector containing the output of the MCMC algorithm for the lower boundary of the younger phase. | | level | Probability corresponding to the level of confidence. | #### Value A list with the following components: **hiatus** A named vector where inf is the lower endpoint of the hiatus as a calendar year (AD/BC) or NA if there is no hiatus at level, and sup is the upper endpoint of the gap as a calendar year (AD/BC), or NA if there is no hiatus at level. level Probability corresponding to the confidence level of the interval. call The function call. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online> ``` ``` data(Phases); attach(Phases) phases_gap(Phase.1.beta, Phase.2.alpha, 0.95) phases_gap(Phase.1.beta, Phase.2.alpha, 0.50) ``` 58 PhaseTimeRange # Description Computes the shortest interval that satisfies $P(PhaseMin_chain = < IntervalInf < IntervalSup = < PhaseMax_chain|M) = level$ #### Usage ``` PhaseTimeRange(PhaseMin_chain, PhaseMax_chain, level = 0.95) ``` #### **Arguments** PhaseMin_chain: Numeric vector containing the output of the MCMC algorithm for the mini- mum of the events included in the phase. PhaseMax_chain: Numeric vector containing the output of the MCMC algorithm for the maxi- mum of the events included in the phase. level Probability corresponding to the desired level of confidence. ## Value A vector of values containing the desired level of confidence and the endpoints of the shortest time range associated with this desired level. The result is given in calendar years (BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Phases); attach(Phases) PhaseTimeRange(Phase.1.alpha, Phase.1.beta, 0.95) PhaseTimeRange(Phase.2.alpha, Phase.2.beta, 0.90) ``` phase_statistics 59 |--|--| ## **Description** Estimation of summary statistics for the beginning, end, and duration of a phase. ## Usage ``` phase_statistics(min_chain, max_chain, level = 0.95, round_to = 0) ``` ## **Arguments** | min_chain | Numeric vector containing the output of the MCMC algorithm for the start of the phase. | |-----------|---| | max_chain | Numeric vector containing the output of the MCMC algorithm for the end of the phase. | | level | Probability corresponding to the level of confidence used for the credible interval and the highest density region. | | round_to | Integer indicating the number of decimal places. | ## **Details** The summary statistics are those given by the MarginalStatistics() function. The time range is given by PhaseTimeRange() function. The duration is computed as follows: duration = maximum - minimum at each iteration of the MCMC output. #### Value A list with the following components: **statistics** A data frame where the rows correspond to the summary statistics and the columns include: start, the start of the phase in calendar years (BC/AD); end the end of the phase in calendar years (BC/AD); and duration the duration of the phase in years. **level** Probability corresponding to the level of confidence used for the credible interval and the highest density region. call The function call. ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online> ``` ## **Examples** ``` data(Phases); attach(Phases) phase_statistics(Phase.1.alpha, Phase.1.beta, 0.95) phase_statistics(Phase.2.alpha, Phase.2.beta, 0.95) ## round to decade phase_statistics(Phase.2.alpha, Phase.2.beta, 0.95, -1) ``` ``` plot.archaeophases_plot ``` Recreate a graphical plot ## **Description** Recreates a graphic from data and metadata held in a archaeophases_plot object. ## Usage ``` ## S3 method for class 'archaeophases_plot' plot(x, ...) ``` #### **Arguments** - x An archaeophases_plot object. - ... Other parameters. #### **Details** Uses data stored in the archaeophases_plot object, along with metadata from the call of the plotting function, to recreate the original graphic on the display. ## Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` #### See Also ``` tempo_plot occurrence_plot marginal_plot multi_marginal_plot tempo_activity_plot multi_dates_plot ``` read_bcal 61 ## **Examples** ``` ## Not run: # Read from connection ox <- read_oxcal("http://tsdye.online/AP/ox.csv") tp_1 <- tempo_plot(ox, position = 1:ncol(ox)) # Recreate the tempo_plot with the original arguments plot(tp_1) ## End(Not run)</pre> ``` read_bcal Read MCMC output from BCal # **Description** Import a CSV file containing the output of the MCMC algorithm produced by BCal. ## Usage ``` read_bcal(file, bin_width = 1, quiet = "no") ``` # Arguments | file | Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain. See read_csv for details. | |-----------|---| | bin_width | The bin width specified for the BCal calibration. Defaults to the BCal default of 1. | | quiet | One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings. | #### **Details** The read_bcal function is built on read_csv. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded, as are an empty last column and an empty last row. ## Value An archaeophases_mcmc object containing the marginal posterior(s) as a data frame. ## Author(s) Thomas S. Dye, <tsd@tsdye.online> 62 read_chronomodel ## See Also ``` read_csv ImportCSV new_archaeophases_mcmc ``` ## **Examples** ``` ## Not run: # Import of MCMC output from BCal data(Fishpond)
write.csv(Fishpond, "fishpond_MCMC.csv", row.names=FALSE) fishpond <- read_bcal("fishpond_MCMC.csv") # Read from connection bc_1 <- read_bcal("http://tsdye.online/AP/bc-1.csv") bc_17 <- read_bcal("http://tsdye.online/AP/bc-17.csv", bin_width = 17) ## End(Not run)</pre> ``` read_chronomodel Read MCMC output from ChronoModel ## Description Import a CSV file containing the output of the MCMC algorithm produced by ChronoModel. #### Usage ``` read_chronomodel(file, decimal = ".", separator = ",", quiet = "no") ``` ## **Arguments** | file | Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain. See read_delim for details. | |-----------|---| | decimal | Either "." (default) or ",", the two choices offered by ChronoModel. | | separator | The character used to separate fields in the CSV file. Defaults to ",". | | quiet | One of "no" (default) to allow messages and warnings, "partial" to suppress | messages and allow warnings, or "yes" to suppress messages and warnings. ## **Details** The read_chronomodel function is built on read_delim. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded. read_oxcal 63 #### Value An archaeophases_mcmc object containing the marginal posterior(s) from file. #### Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` ## See Also ``` read_delim ImportCSV new_archaeophases_mcmc ``` ## **Examples** ``` data(Events) ## Not run: write.csv(Events, "events.csv", row.names=FALSE) events = read_chronomodel("events.csv", decimal = ".", separator = ",") # equivalent events = read_chronomodel("events.csv") rem <- read_chronomodel("http://tsdye.online/AP/cm/Chain_all_Events.csv") ## End(Not run)</pre> ``` read_oxcal Read MCMC output from OxCal #### **Description** Import a CSV file containing the output of the MCMC algorithm produced by OxCal. # Usage ``` read_oxcal(file, quiet = "no") ``` ## **Arguments** | file | Either a | nath to a CSV | file, a connection, | or the value cli | nboard() | to read from | |------|-----------|----------------|---------------------|------------------|----------|-----------------| | 1110 | Littlei a | paul to a CD v | mic, a commection, | of the value cit | podui at | to icua ii oiii | the system clipboard. The CSV file can be compressed or plain. See read_csv for details. quiet One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings. ## **Details** The read_oxcal function is built on read_csv. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded, as is an empty last column. #### Value An archaeophases_mcmc object containing the marginal posterior(s) as a data frame. #### Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` #### See Also ``` read_csv ImportCSV ``` #### **Examples** ``` ## Not run: # Import of MCMC output from OxCal data(Events) #To do for saving in csv file # write.csv(Events, "events.csv", row.names = FALSE) fishpond <- read_oxcal("events.csv") # Read from connection oxc <- read_oxcal("http://tsdye.online/AP/ox.csv") ## End(Not run)</pre> ``` ``` reproduce.archaeophases_mcmc ``` Reproduce an MCMC data frame ## **Description** Reproduces a data frame from metadata held in an archaeophases_mcmc object. ## Usage ``` ## S3 method for class 'archaeophases_mcmc' reproduce(x, file = NULL, ...) ``` ## **Arguments** ``` x An archaeophases_mcmc object.file A path to the original MCMC csv file, or a copy of the file. ``` ... Other parameters. ## Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` ## See Also ``` original_file ``` ## **Examples** ``` ## Not run: x <- read_bcal("http://tsdye.online/AP/bc-1.csv") y <- reproduce(x) # TRUE identical(x, y) ## End(Not run)</pre> ``` ``` reproduce.archaeophases_plot ``` Reproduce an ArchaeoPhases plot # Description Reproduces a plot from metadata held in an archaeophases_plot object. # Usage ``` ## S3 method for class 'archaeophases_plot' reproduce(x, file = NULL, ...) ``` ## **Arguments** ``` x An archaeophases_plot object.file Path to the original MCMC csv file, or a copy of the file.... Other parameters. ``` # Author(s) ``` Thomas S. Dye, <tsd@tsdye.online> ``` 66 SuccessionPlot ## See Also ``` original_file ``` #### **Examples** ``` ## Not run: x <- read_bcal("http://tsdye.online/AP/bc-1.csv") y <- multi_dates_plot(x) z <- reproduce(y) # TRUE identical(y, z) #ERROR, Not the original file. z <- reproduce(y, file = "foo.csv") ## End(Not run)</pre> ``` SuccessionPlot Density plots of two successive groups (for groups in temporal order constraint) # Description Plot of the densities of the minimum and the maximum of the events included in each group, with summary statistics including the mean, credible interval, and highest posterior density. The result is given in calendar years (BC/AD). # Usage ``` SuccessionPlot(Phase1Min_chain, Phase1Max_chain, Phase2Min_chain, Phase2Max_chain, level = 0.95, title = "Characterisation of a succession of groups", exportFile = NULL, exportFormat = "PNG", GridLength = 1024) ``` #### **Arguments** Phase1Min_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the oldest phase. SuccessionPlot 67 Phase1Max_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase. Phase2Min_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the youngest phase. Phase2Max_chain level Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the youngest phase. Probability corresponding to the level of confidence. title Title of the plot. exportFile Name of the file to be saved. If NULL then no plot is saved. exportFormat Format of the export file, either "PNG" or "SVG". GridLength Length of the grid used to estimate the density. #### **Details** Curves represent the density of the minimum (oldest event) and the maximum (youngest event) of the events included in each group. Curves of the same color refer to the same group. Time range intervals are symbolised by segments above the curves drawn using the same color as curves of the associated group. Transition and gap range intervals are represented by two-coloured segments using the colors of the both groups in succession. If the gap between the successive groups does not exist, a cross is drawn instead of a segment. ## Value NULL, called for its side effects ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` ``` data(Phases); attach(Phases) SuccessionPlot(Phase.1.alpha, Phase.1.beta, Phase.2.alpha, Phase.2.beta, level = 0.95) ``` 68 TempoActivityPlot TempoActivityPlot Plot the derivative of the tempo plot Bayesian estimate ## **Description** A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events ## Usage ``` TempoActivityPlot(data, position, plot.result = NULL, level = 0.95, title = "Activity plot", subtitle = NULL, caption = "ArcheoPhases", x.label = "Calendar year", y.label = "Activity", line.types = c("solid"), width = 7, height = 7, units = "in", x.min = NULL, x.max = NULL, file = NULL, x.scale = "calendar", elapsed.origin.position = NULL, newWindow = TRUE, print.data.result = FALSE) ``` ## **Arguments** | data | Data frame containing the output of the MCMC algorithm. | |-------------|--| | position | Numeric vector containing the position of the column corresponding to the MCMC chains of interest. | | plot.result | List containing the data to plot, typically the result of a previous run of TempoActivityPlot(). | | level | Probability corresponding to the level of confidence. | | title | Title of the plot. | | subtitle | Subtitle of the plot. | | caption | Caption of the plot. | | x.label | Label of the x-axis. | | y.label | Label of the y-axis. | TempoActivityPlot 69 | | line.types | Type of the lines drawn on the plot. | |-------------------------|------------|---| | | width | Width of the plot in units. | | | height | Height of the plot in units. | | | units | Units used to specify width and height, one of "in" (default), "cm", or "mm". | | | x.min | Minimum value for x-axis. | | | x.max | Maximum value for x-axis. | | | file | Name of the file to be saved if specified. If Null, then no file is saved. | | | x.scale | One of "calendar", "bp", or "elapsed". | | elapsed.origin.position | | | | | | If $x.scale$ is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated. | | | newWindow | Whether or not the plot is drawn within a new window. | | print.data.result | | | | | | If TRUE, the list containing the data to plot is returned. | ## Value NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE). The result is given in calendar years (BC/AD). ## Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` # References Dye, T.S. (2016) Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science, 71, 1–9. ``` data(Events); TempoActivityPlot(Events[1:1000,], c(2:5), print.data.result = FALSE)
TempoActivityPlot(Events[1:1000,], c(2:5), print.data.result = FALSE) ``` TempoPlot TempoPlot Tempo plot ## **Description** A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events # Usage ``` TempoPlot(data, position, plot.result = NULL, level = 0.95, count = TRUE, Gauss = FALSE, title = "Tempo plot", subtitle = NULL, caption = "ArcheoPhases", legend.title = "Legend", legend.labels = c("Bayes estimate", "Credible interval, low", "Credible interval, high", "Gaussian approx., high", "Gaussian approx., low"), x.label = "Calendar year", y.label = "Cumulative events" line.types = c("solid", "12", "11", "28", "28"), width = 7, height = 7, units = "in", x.min = NULL, x.max = NULL, colors = TRUE, file = NULL, x.scale = "calendar", elapsed.origin.position = NULL, newWindow = TRUE, print.data.result = FALSE) ``` # Arguments | data | Data frame containing the output of the MCMC algorithm. | |-------------|--| | position | Numeric vector containing the position of the column corresponding to the MCMC chains of interest. | | plot.result | List containing the data to plot, typically the result of a previous run of TempoPlot(). | | level | Probability corresponding to the level of confidence. | TempoPlot 71 count If TRUE the counting process is a number, otherwise it is a probability. Gauss If TRUE, the Gaussian approximation of the credible interval is used. title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. legend.title Title of the plot legend. legend. labels Vector of strings to label legend entries. x.label Label of the x-axis.y.label Label of the y-axis. line.types Type of the lines drawn on the plot in the order of legend.labels. width Width of the plot in units. height Height of the plot in units. units Units used to specify width and height, one of "in" (default), "cm", or "mm". x.min Minimum value for x-axis.x.max Maximum value for x-axis. colors If TRUE, the plot is drawn with colors, otherwise it is drawn in black and white. file Name of the file that will be saved if specified. If NULL no file is saved. x.scale One of "calendar", "bp", or "elapsed". elapsed.origin.position If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated. newWindow Whether or not the plot is drawn within a new window. print.data.result If TRUE, a list containing the data to plot will be returned. #### **Details** The tempo plot is one way to measure change over time: it estimates the cumulative occurrence of archaeological events in a Bayesian calibration. The tempo plot yields a graphic where the slope of the plot directly reflects the pace of change: a period of rapid change yields a steep slope and a period of slow change yields a gentle slope. When there is no change, the plot is horizontal. When change is instantaneous, the plot is vertical. #### Value NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE). ## Author(s) Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> 72 tempo_activity_plot #### References Dye, T.S. (2016) Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science, 71, 1–9 #### See Also ``` tempo_plot ``` ## **Examples** ``` data(Events); TempoPlot(Events[1:1000,], c(2:5), print.data.result = FALSE) TempoPlot(Events[1:1000,], c(2:5), count = TRUE, print.data.result = FALSE) ``` tempo_activity_plot Plot the derivative of the tempo plot Bayesian estimate ## Description A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events #### Usage ``` tempo_activity_plot(data, position = 1:ncol(data), title = "Tempo Activity Plot", subtitle = NULL, caption = "ArcheoPhases", x_label = "Calendar year", y_label = "Activity", line_types = c("solid"), width = 7, height = 7, units = "in", x_min = NULL, x_max = NULL, file = NULL, x_scale = "calendar", elapsed_origin_position = NULL, new_window = TRUE, plot_result = TRUE) ``` tempo_activity_plot 73 ## **Arguments** | data | Data frame containing the output of the MCMC algorithm. | | |-------------------------|---|--| | position | Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names. | | | title | Title of the plot. | | | subtitle | Subtitle of the plot. | | | caption | Caption of the plot. | | | x_label | Label of the x-axis. | | | y_label | Label of the y-axis. | | | line_types | Type of the lines drawn on the plot. | | | width | Width of the plot in units. | | | height | Height of the plot in units. | | | units | Units used to specify width and height, one of "in" (default), "cm", or "mm". | | | x_min | Minimum value for x-axis. | | | x_max | Maximum value for x-axis. | | | file | Name of the file to be saved if specified. If Null, then no file is saved. | | | x_scale | One of "calendar", "bp", or "elapsed". | | | elapsed_origin_position | | | | | If x_scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated. | | | new_window | Whether or not the plot is drawn within a new window. | | | plot_result | If TRUE, then draw a plot on the display, else suppress drawing. | | #### Value An archaeophases_plot object with the data and metadata needed to reproduce the plot. # Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> Thomas S. Dye, <tsd@tsdye.online> ``` # References Dye, T.S. (2016) Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science, 71, 1–9. ``` data(Events); tempo_activity_plot(Events[1:1000,], c(2:5)) ``` 74 tempo_plot tempo_plot Tempo plot ## **Description** A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events ## Usage ``` tempo_plot(data, position = 1:ncol(data), level = 0.95, count = TRUE, Gauss = FALSE, title = NULL, subtitle = NULL, caption = NULL, legend_title = NULL, legend_position = "bottom", legend_labels = c("Bayes estimate", "Credible interval high", "Credible interval low"), x_label = "Calendar year", y_label = "Cumulative events", line_types = c("solid", "dotted", "dotted"), line_sizes = c(1.2, 0.8, 0.8), line_colors = c("black", "grey50", "grey50"), width = 7, height = 7, units = "in", x_min = NULL, x_max = NULL, color_palette = NULL, file = NULL, x_scale = "calendar", elapsed_origin_position = NULL, new_window = TRUE, plot_result = TRUE) ``` #### **Arguments** data Data frame or archaeophases_mcmc object containing the output of the MCMC algorithm. Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names. tempo_plot 75 level Probability corresponding to the level of confidence. count If TRUE the counting process is a number, otherwise it is a probability. Gauss If TRUE, the Gaussian approximation of the credible interval is used. title Title of the plot. subtitle Subtitle of the plot. caption Caption of the plot. legend_title Title of the plot legend. legend_position One of "top", "bottom" (default), "left", "right". legend_labels Vector of three strings to label legend entries. The strings must be unique. The first string labels the central tendency and the second and third strings label the high and low spreads. x_labelLabel of the x-axis.y_labelLabel of the y-axis. line_types Type of the lines drawn on the plot in the order of legend_labels. line_sizes Width of the lines drawn on the plot in the order of legend_labels. line_colors Color names for the lines drawn on the plot in the order of legend_labels. If color_palette is NULL, then standard color names are expected, otherwise the color names are from the supplied color_palette. width Width of the plot in units. height Height of the plot in units. units Units used to specify width and height, one of "in" (default), "cm", or "mm". x_min Minimum value for x-axis.x_max Maximum value for x-axis. color_palette A palette that supplies the colors used in the plot. file Name of the file that will be saved if specified. If NULL no file is saved. x_scale One of "calendar", "bp", or "elapsed". elapsed_origin_position If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated. new_window Whether or not the plot is drawn within a new window. plot_result If TRUE, then draw a plot on the display, else suppress drawing. ## **Details** The tempo plot is one way to measure change over time: it estimates the cumulative occurrence of archaeological events in a Bayesian calibration. The tempo plot yields a graphic where the slope of the plot directly reflects the pace of change: a period of rapid change yields a steep slope and a period of slow change yields a gentle slope. When there is no change, the plot is horizontal. When change is instantaneous, the plot is vertical. 76 tempo_plot #### Value An archaeophases_plot object with the data and metadata needed to reproduce the plot. #### Author(s) ``` Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Thomas S. Dye, <tsd@tsdye.online>, and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr> ``` #### References Dye, T.S. (2016) Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science, 71, 1–9 #### See Also ``` TempoPlot
new_archaeophases_plot ``` ``` data(Events); tempo_plot(Events[1:1000,], c(2:5)) tempo_plot(Events[1:1000,], c(2:5), count = TRUE) ## Not run: # Read from connection ox <- read_oxcal("http://tsdye.online/AP/ox.csv")</pre> # Plot all the columns tp <- tempo_plot(ox)</pre> # Reproduce the tempo plot plot(tp) # View metadata str(tp) # Check that the MCMC data file hasn't changed original_file(tp) # Use a custom palette library(khroma) light <- colours("light")</pre> tp <- tempo_plot(ox, color_palette = light(2),</pre> line_colors = c("light blue", "pale grey", "pale grey")) ## End(Not run) ``` # **Index** | * datasets | MultiSuccessionPlot, 33 | |---|--| | Events, 11 | | | Phases, 53 | new_archaeophases_mcmc, 42, 62, 63 | | | new_archaeophases_plot, 43, 76 | | app_ArchaeoPhases, 3 | | | ArchaeoPhases, 3 | occurrence_plot, 46, 60 | | | OccurrencePlot, 44 | | coda.mcmc, 4 | original_file, 48, 65, 66 | | CreateMinMaxGroup, 5 | original_file.archaeophases_mcmc,49 | | credible_interval, 6 | original_file.archaeophases_plot, 50 | | CredibleInterval, 6 | | | | phase_statistics, 59 | | dates_hiatus, 8 | PhaseDurationPlot, 50 | | DatesHiatus, 7 | PhasePlot, 52 | | antimate many 0 | Phases, 53 | | estimate_range, 9 | phases_gap, 57 | | Events, 11 | PhasesGap, 53 | | ImportCSV, 11, 62-64 | PhaseStatistics, 54 | | ImportCSV, 11, 02–04 ImportCSV.BCal, 12, 13 | PhasesTransition, 56 | | 1111por tC3v.BCa1, 12, 13 | PhaseTimeRange, 58 | | marginal_plot, 18, 60 | plot.archaeophases_plot,60 | | marginal_statistics, 20 | 1.1. 7. 40.41 | | MarginalPlot, 14 | read_bcal, 43, 61 | | MarginalProba, 16 | read_chronomodel, <i>12</i> , <i>43</i> , 62 | | MarginalStatistics, 17 | read_csv, <i>61–64</i> | | mcmc, 4 | read_delim, 62, 63 | | mcmc.list, 4 | read_oxcal, <i>12</i> , <i>43</i> , 63 | | multi_credible_interval, 34 | reproduce.archaeophases_mcmc,64 | | multi_dates_plot, 35, 60 | reproduce.archaeophases_plot,65 | | multi_hpd, 37 | 0 | | multi_marginal_plot, 38, 60 | SuccessionPlot, 66 | | multi_marginal_statistics, 41 | tempo_activity_plot, 60,72 | | MultiCredibleInterval, 21 | tempo_plot, 60, 72, 74 | | MultiDatesPlot, 22 | TempoActivityPlot, 68 | | MultiHPD, 25 | TempoPlot, 70, 76 | | MultiMarginalPlot, 26 | 1 cmpor 10 c, 70, 70 | | MultiPhasePlot, 28 | | | MultiPhasesGap, 29 | | | MultiPhasesTransition, 30 | | | MultiPhaseTimeRange, 31 | | | ria tetri ria de l'inicitatige, d'i | |