Package ‘ArchaeoPhases’

October 12, 2022

Type Package

Title Post-Processing of the Markov Chain Simulated by 'ChronoModel', 'Oxcal' or 'BCal'

Version 1.8

Date 2022-06-10

Author Anne Philippe [aut, cre], Marie-Anne Vibet [aut], Thomas S. Dye [ctb]

Maintainer Anne Philippe <anne.philippe@univ-nantes.fr>

Description Provides a list of functions for the statistical analysis of archaeological dates and groups of dates. It is based on the post-processing of the Markov Chains whose stationary distribution is the posterior distribution of a series of dates. Such output can be simulated by different applications as for instance 'ChronoModel' (see <https://chronomodel.com/>), 'Oxcal' (see <https://c14.arch.ox.ac.uk/oxcal.html>) or 'BCal' (see <https://bcal.shef.ac.uk/>). The only requirement is to have a csv file containing a sample from the posterior distribution. Note that this package interacts with data available through the ‘ArchaeoPhases.dataset’ package which is available in a separate repository. The size of the ‘ArchaeoPhases.dataset’ package is approximately 4 MB.

License GPL-3

Depends R (>= 3.5.0), coda, hdrcde

Imports stats, utils, graphics, grDevices, shiny, readr, toOrdinal, ggplot2, ggalt, reshape2, dplyr, digest, gplots, magrittr, ggraph, gtools

Suggests knitr, rmarkdown, testthat (>= 2.1.0), ArchaeoPhases.dataset (>= 0.1.0)

VignetteBuilder knitr

BugReports https://github.com/ArchaeoStat/ArchaeoPhases/issues

RoxygenNote 7.2.0

NeedsCompilation no

Encoding UTF-8
LazyData true
Repository CRAN
Date/Publication 2022-06-21 18:20:02 UTC

R topics documented:

AgeDepth ... 4
allen_analyze ... 5
allen_basic_relation_set .. 6
allen_basic_relation_strings 7
allen_composition ... 7
allen_concurrent_relations 8
allen_create_concurrent_vector 8
allen_create_distinct_endpoint_vector 9
allen_create_result_vector 9
allen_ensure_set_vector 10
allen_illustrate ... 10
allen_is_result_vector 12
allen_is_set_string .. 12
allen_is_set_vector .. 13
allen_joint_concurrency 13
allen_lattice_x .. 14
allen_lattice_y .. 14
allen_observe ... 15
allen_observe_frequency 16
allen_plot .. 17
allen_proportion_result 18
allen_relate_intervals 19
allen_relation ... 20
allen_set_to_vector 20
allen_six_value_set 21
allen_string_to_set 21
allen_string_to_vector 22
allen_union .. 22
allen_update_result 23
analyze_allen_relations 23
app_ArchaeoPhases .. 24
ArchaeoPhases .. 24
coda.mcmc ... 24
composition_lookup_table 25
CreateMinMaxGroup 26
CredibleInterval .. 27
credible_interval .. 27
DatesHiatus .. 28
dates_hiatus .. 29
estimate_range .. 30
Events .. 32
R topics documented:

- illustrate_allen_relations .. 32
- ImportCSV .. 33
- ImportCSV:BCal .. 35
- is.url ... 36
- MarginalPlot .. 37
- MarginalProba .. 38
- MarginalStatistics .. 39
- marginal_plot .. 40
- marginal_statistics .. 43
- MultiCredibleInterval ... 44
- MultiDatesPlot ... 45
- MultiHPD ... 47
- MultiMarginalPlot .. 48
- MultiPhasePlot ... 50
- MultiPhasesGap ... 51
- MultiPhasesTransition ... 52
- MultiPhaseTimeRange ... 54
- MultiSuccessionPlot .. 55
- multi_credible_interval ... 56
- multi_dates_plot ... 57
- multi_hpd ... 60
- multi_marginal_plot .. 61
- multi_marginal_statistics .. 63
- new_archaeophases_mcmc ... 64
- new_archaeophases_plot .. 65
- OccurrencePlot ... 66
- occurrence_plot .. 68
- original_file ... 71
- original_file.archaeophases_mcmc 71
- original_file.archaeophases_plot 72
- oxc ... 73
- PhaseDurationPlot .. 73
- PhasePlot .. 74
- Phases ... 76
- PhasesGap .. 76
- PhaseStatistics .. 77
- PhasesTransition ... 78
- phases_gap .. 79
- PhaseTimeRange ... 80
- phase_statistics .. 81
- plot.archaeophases_plot .. 82
- read_bcal ... 83
- read_chronomodel ... 84
- read_oxcal .. 85
- reproduce ... 86
- reproduce.archaeophases_mcmc 87
- reproduce.archaeophases_plot 88
- SuccessionPlot ... 89
AgeDepth

age depth curve Compute the age-depth curve from the output of mcmc algorithm of ages and the known depth of each dated samples.

Description

age depth curve Compute the age-depth curve from the output of mcmc algorithm of ages and the known depth of each dated samples.

Usage

AgeDepth(
 data,
 depth,
 new.depth = NULL,
 max.iter = nrow(data),
 sampling = FALSE
)

Arguments

data Data frame containing the output of the MCMC algorithm.
depth Vector of the depths of the dated samples
new. depth Vector of the undated depths whose the age will be predict. By defauft new. depth=NULL
max. iter a non-negative integer giving the limit number of MCMC itereations By defauft max.iter=nrow(data)
sampling should sampling be random. By defauft sampling = FALSE

Details

Estimate the Age-Depth relationship from the MCMC output of a Bayesian chronological model and the depth of each dated sample. We assume it exists a function \(f \) relating the age and the depth \(\text{age} = f(\text{depth}) \). We estimate the function using local regression (also called local polynomial regression): \(f = \text{loess}(\text{age depth}) \). This estimated function \(f \) depends on the unknown dates. However, from the posterior distribution of the age/date sequence, we can evaluate the posterior distribution of the age function for each desired depth.
Value

A list containing two matrix. `data.stat` summarises the MCMC output from the L1 Bayes estimate and credible interval at significance level 68% and 95%. `age.depth` provide the L1 Bayes estimate, credible interval at significance level 68% and 95% on the age at depth `depth` and new `depth`.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>

References

Examples

```r
data = matrix(rnorm(6000, (1:6)^2), ncol=6, byrow = TRUE)
depth = 1:6
AgeDepth(data, depth)
AgeDepth(data, depth, 1.5:6)
```

Description

Visualize composite Allen relations with a Nokel lattice.

Usage

```r
allen_analyze(relation_1, relation_2, title, ...)
```

Arguments

- `relation_1`: A string denoting an Allen set.
- `relation_2`: A string denoting an Allen set.
- `title`: A string displayed as the title of the Nokel lattice.
- `...`: Named arguments to be passed on to `allen_plot()`.
Value

A layout_tbl_graph object.

Author(s)

Thomas S. Dye

Examples

Plot to the R graphics device
allen_analyze("mDFo", "MdfO", "Composite reticulation relation")

Description

A vector of one-letter codes for the thirteen basic Allen relations. The codes were proposed by Thomas Alspaugh.

Usage

allen_basic_relation_set()

Value

A vector of thirteen one-letter codes

Author(s)

Thomas S. Dye
allen_basicrelation_strings

Allen basic relation set as strings

Description
String descriptors of the Allen basic relations.

Usage
```
allen_basicrelation_strings()
```

Value
A vector of thirteen strings

Author(s)
Thomas S. Dye

allen_composition

Composition of two Allen relations

Description
Composition of two Allen relations

Usage
```
allen_composition(first, second)
```

Arguments
- `first` the first Allen relation
- `second` the second Allen relation

Value
A dataframe for input to `allen_plot`

Author(s)
Thomas S. Dye
allen_concurrent_relations

Allen concurrent relation set

Description

A vector of nine one-letter codes for the Allen concurrent relations. The codes were proposed by Thomas Alspaugh.

Usage

```r
allen_concurrent_relations()
```

Value

A vector of nine one-letter codes.

allen_create_concurrent_vector

Create a result vector identifying concurrent relations

Description

Create a result vector where concurrent relations are set to 1 and non-concurrent relations are set to 0.

Usage

```r
allen_create_concurrent_vector()
```

Value

A result vector

Author(s)

Thomas S. Dye
Allen Create Distinct Endpoint Vector

Create a result vector for relations with distinct endpoints

Description

The six relations with distinct endpoints are commonly observed when comparing indefinite intervals, such as those returned by a Bayesian calibration.

Usage

```
allen_create_distinct_endpoint_vector()
```

Value

A named vector with distinct endpoint relations set to 1 and all others set to 0.

Author(s)

Thomas S. Dye

Allen Create Result Vector

Create a named result vector

Description

Create a named result vector initialized to zero by default or to some other value.

Usage

```
allen_create_result_vector(initial_value = 0)
```

Arguments

- `initial_value` A value used to initialize the vector. Typically 0 (default) or 1.

Value

An initialized result vector.

Author(s)

Thomas S. Dye
Allen Ensure Set Vector

Ensure an Allen set is represented as a vector of single character strings

Description

Expects a string, set vector, or result vector and will stop with an error if something else is encountered.

Usage

```
allen_ensure_set_vector(obj)
```

Arguments

- `obj`: An Allen set represented as a string, a set vector, or a result vector.

Value

An Allen set represented as a set vector.

Author(s)

Thomas S. Dye

Allen Illustrate

Illustrate basic and composite relations

Description

Illustrate basic and composite Allen relations for several chronological model domains with a Nokel lattice. Chronological model domains include stratigraphy and branching, transformative, and reticulate processes of artifact change.

Usage

```
allen_illustrate(relations = "basic", ...)
```
Arguments

relations One of:
 - **basic** the 13 basic Allen relations (default);
 - **concurrent** concurrent relations;
 - **distinct** relations with distinct endpoints;
 - **stratigraphic** basic relations established by an observation of superposition;
 - **branching** basic branching relations;
 - **transformation** basic relations of transformation;
 - **reticulation** basic relations of reticulation;
 - **sequence** composite relations in a stratigraphic sequence;
 - **branch** composite relations of branching;
 - **transform** composite relations of transformation; or
 - **reticulate** composite relations of reticulation.

... Named arguments to be passed on to `allen_plot()`.

Value

A layout_tbl_graph object.

Author(s)

Thomas S. Dye

References

Examples

```r
# Plot the basic Allen relations to the R graphics device
# allen_illustrate()
```
allen_is_result_vector

Test whether an object is a result vector

Description
Checks for vector, names, and class

Usage

```
allen_is_result_vector(obj)
```

Arguments

- `obj`: An object to test

Value

Boolean, TRUE if obj is a result vector, FALSE otherwise.

allen_is_set_string

Test if an object is a set string

Description
Checks for mode 'character', length of 1, and nchar ≤ 13

Usage

```
allen_is_set_string(obj)
```

Arguments

- `obj`: An object to test

Value

Boolean, TRUE if obj is a set string, FALSE otherwise.

Author(s)

Thomas S. Dye
allen_is_set_vector

Test if an object is a set vector

Description

Checks for mode 'character', length less than 13. Note: this predicate is a (very) partial implementation.

Usage

`allen_is_set_vector(obj)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>An object to test</td>
</tr>
</tbody>
</table>

Value

Boolean, TRUE if obj is a set vector, FALSE otherwise.

Author(s)

Thomas S. Dye

allen_joint_concurrency

Joint concurrence of two or more observed intervals

Description

Estimate the age of an undated context based on the known depositional history of associated artifacts.

Usage

`allen_joint_concurrency(mcmc, chains, ...)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcmc</td>
<td>Dataframe or archaeophases_mcmc object with the MCMC output from a Bayesian calibration.</td>
</tr>
<tr>
<td>chains</td>
<td>a list of vectors of names or indexes of columns in mcmc.</td>
</tr>
<tr>
<td>...</td>
<td>Arguments to multi_marginal_statistics.</td>
</tr>
</tbody>
</table>
Value

foo bar

Author(s)

Thomas S. Dye

Description

A vector of arbitrary coordinates for lattice node placement

Usage

`allen_lattice_x()`

Value

A vector of integers

Author(s)

Thomas S. Dye

`allen_lattice_x` *Nokel lattice x coordinates*

Description

A vector of arbitrary coordinates for lattice node placement

Usage

`allen_lattice_y()`

Value

A vector of integers

Author(s)

Thomas S. Dye
Observe the relation between two phases, each representing an interval of time

Description

Plots an empirical Nökel lattice.

Usage

allen_observe(data, chains, ...)

Arguments

data Data frame or archaeophases_mcmc object containing the output of the MCMC algorithm.
chains a list of lists, each with two elements, each of which is a vector of chains.
... Named arguments to be passed on to allen_plot().

Value

An object of class archaeophases_plot.

Author(s)

Thomas S. Dye

Examples

Not run:
Dates associated with bead BE3 Amber
"UB-4735 (Ber022)", "UB-4739 (Ber134/1)", "UB-4728 (MH064)",
"UB-4729 (MH068)", "UB-4732 (MH094)", "UB-4733 (MH095)", "UB-4734 (MH105c)",
"UB-4984 (Lec018)", "UB-4709 (EH014)", "UB-4707 (EH079)", "UB-4708 (EH083)",
"UB-6033 (Whes113)", "UB-4706 (Whes118)", "UB-4705 (Whes123)",
"UB-6040 (CasD053)", "UB-6037 (CasD134)", "UB-6472 (Bu0222)",
"UB-6473 (Bu0250)", "UB-6476 (Bu0339)", "UB-4963 (SPTip208)",
"UB-4890 (MelSG075)", "UB-4887 (MelSG082)", "UB-4888 (MelSG089)",
"MaDE1 & E2", "UB-4552 (MaDE3)", "UB-4975 (AstC112)", "UB-4835 (ApD134)",
"SUERC-39108 ERLK G322", "SUERC-39109 ERL G362", "SUERC-39112 ERL G405",
"SUERC-51560 ERL G038", "SUERC-39091 (ERL G003)", "SUERC-39092 (ERL G005)",
"SUERC-39113 (ERL G417)", "SUERC-51549 (ERL G195)", "SUERC-51552 (ERL G107)",
"SUERC-51550 (ERL G254)"

Dates associated with bead BE1 Dghnt
be1.dghnt <- c("UB-4503 (Lec148)", "UB-4506 (Lec172/2)",
"UB-6038 (CasD183)", "UB-4512 (EH091)", "UB-4501 (Lec014)"
"UB-4507 (Lec187)", "UB-4502 (Lec138)", "UB-4042 (But1674)", "SUERC-39100 (ERL G266)"

Construct a list of lists
chains <- list(list(be3.amber, be1.dghnt), list(be1.dghnt, be3.amber))

Read the calibration MCMC output
oxc <- read_oxcal("https://tsdye.online/AP/beads-mcmc.csv", quiet = 'yes')

Plot to the R graphics device
allen_observe(data = oxc, chains = chains)
End(Not run)

allen_observe_frequency

Observed frequency of an Allen set

Description

Create a matrix of observed frequencies of a given Allen set among two or more groups of chains from the MCMC output of a Bayesian calibration. The groups are permuted to form the matrix.

Usage

```
allen_observe_frequency(mcmc, chains, allen_set)
```

Arguments

- `mcmc` (Dataframe or archaeophases_mcmc object with the MCMC output from a Bayesian calibration.)
- `chains` (a list of vectors of names or indexes of columns in mcmc.)
- `allen_set` (A string representation of an Allen set.)

Value

A matrix of observed frequencies.

Author(s)

Thomas S. Dye
Examples

Not run:
Dates associated with bead BE3 Amber
"UB-4735 (Ber022)", "UB-4739 (Ber134/1)", "UB-4728 (MH064)",
"UB-4729 (MH068)", "UB-4732 (MH094)", "UB-4733 (MH095)", "UB-4734 (MH105c)",
"UB-4984 (Lec018)", "UB-4709 (EH014)", "UB-4707 (EH079)", "UB-4708 (EH083)",
"UB-6033 (WHes113)", "UB-4706 (WHes118)", "UB-4705 (WHes123)",
"UB-6040 (CasD053)", "UB-6037 (CasD134)", "UB-6472 (BuD222)",
"UB-6473 (BuD258)", "UB-6476 (BuD339)", "UB-4963 (SPTip208)",
"UB-4890 (MelSG075)", "UB-4887 (MelSG082)", "UB-4888 (MelSG089)",
"MaDE1 & E2", "UB-4552 (MaDE3)", "UB-4975 (AstCli12)", "UB-4835 (ApD134)",
"SUERC-39108 ERLK G322", "SUERC-39109 ERL G362", "SUERC-39112 ERL G405",
"SUERC-51560 ERL G038", "SUERC-39091 (ERL G003)", "SUERC-39092 (ERL G005)",
"SUERC-39113 (ERL G417)", "SUERC-51549 (ERL G195)", "SUERC-51550 (ERL G107)",
"SUERC-51550 (ERL G254)")

Dates associated with bead BE1 Dghnt
be1.dghnt <- c("UB-4503 (Lec148)", "UB-4506 (Lec172/2)",
"UB-6038 (CasD183)", "UB-4512 (EH091)", "UB-4501 (Lec014)",
"UB-4507 (Lec187)", "UB-4502 (Lec138)", "UB-4042 (But1674)",
"SUERC-39100 (ERL G266)")

Construct a list of vectors
chains <- list("BE3-Amber" = be3.amber, "BE1-Dghnt" = be1.dghnt)

Read the calibration MCMC output
oxc <- read_oxcal("https://tsdye.online/AP/beads-mcmc.csv", quiet = 'yes')

Observe 2x2 frequency matrix of the relation of trunk to branch
allen_observe(mcmc = oxc, chains = chains, allen_set = "oFD")

End(Not run)

Description

Plots a Nökel lattice to the display and optionally to a file.

Usage

```r
allen_plot(
  allen_set,
  file_name = NULL,
  pad = 0.2,
)```

---

*Make a single plot of a Nökel lattice.*
font_size = 11,
height = 7,
width = 7,
columns = 1,
plot_title = allen_set$title,
dpi = 600
)

Arguments

allen_set a dataframe with plot information, such as the one produced by illustrate_allen_relations()
file_name optional path to the graphic file output
pad padding in inches to the margins to keep labels from disappearing off the edge of the graphic (default 0.2)
font_size font size for the labels in the plot (default 11)
height height in inches of the graphic file output (default 7)
width width in inches of the graphic file output (default 7)
columns number of columns for a plot with more than one lattice (default 1)
plot_title title for the plot, defaults to the title in allen_set
dpi dots per inch for bitmap files (default 600)

Value

Typically called for its side effects, returns allen_set

Author(s)

Thomas S. Dye

allen_proportion_result

_calculate the proportion of each relation in a result vector

Description

Divides through by the sum of observations in the result vector. Assigns the names of the result vector to the optionally sorted return vector.

Usage

allen_proportion_result(result_vector, sort = FALSE)

Arguments

result_vector A result vector
sort if TRUE sort in decreasing order else return unsorted vector
\textit{allen_relate_intervals}

\textbf{Value}

A named vector with proportions

\textbf{Author(s)}

Thomas S. Dye

\begin{verbatim}
\textbf{allen_relate_intervals}

\textit{Relate two or more observed intervals}

\end{verbatim}

\textbf{Description}

Reads MCMC output to create a dataframe suitable for plotting the observed Allen relation of two intervals.

\textbf{Usage}

\begin{verbatim}
\texttt{allen_relate_intervals(mcmc, chains)}
\end{verbatim}

\textbf{Arguments}

\begin{verbatim}
\texttt{mcmc} \quad \texttt{Dataframe or archaeophases_mcmc object with the MCMC output from a Bayesian calibration.}
\texttt{chains} \quad \texttt{a list of lists, each with two named elements, each element a vector of names or indexes of columns in mcmc.}
\end{verbatim}

\textbf{Value}

A dataframe suitable for plotting with \texttt{allen_plot}.

\textbf{Author(s)}

Thomas S. Dye
**allen_relation** *Allen relation of two definite intervals*

**Description**
Calculates the Allen relation of two definite intervals and reports the one-letter code for the interval proposed by Thomas Alspaugh. Stops with an error if the end of an interval is earlier than its start.

**Usage**

```r
allen_relation(start_1, end_1, start_2, end_2)
```

**Arguments**

- `start_1`: The start date of the first interval
- `end_1`: The end date of the first interval
- `start_2`: The start date of the second interval
- `end_2`: The end date of the second interval

**Value**
A one-letter code indicating the Allen relation

**Author(s)**
Thomas S. Dye

---

**allen_set_to_vector** *Convert an Allen relation set to a named vector*

**Description**
Set elements that are not Allen relation codes are silently ignored.

**Usage**

```r
allen_set_to_vector(s)
```

**Arguments**

- `s`: An Allen relation set, a vector of single letter codes.

**Value**
A named result vector.
**Allen six value set**

**Author(s)**
Thomas S. Dye

---

**Description**

Return the six value Allen relation set for intervals with distinct endpoints.

**Usage**

```r
allen_six_value_set()
```

**Value**

An Allen relation set

**Author(s)**
Thomas S. Dye

---

**Allen string to set**

Convert a string containing Allen relation codes to a relation set

**Description**

Characters in the string that are not Allen relation codes are not identified and are added to the set.

**Usage**

```r
allen_string_to_set(s)
```

**Arguments**

- `s` A string with Allen relation codes.

**Value**

A vector of single letter Allen relation codes.

**Author(s)**
Thomas S. Dye
\textbf{allen_string_to_vector}  

\textit{Convert a string containing Allen relation codes to a result vector}

\textbf{Description}  
A result vector is named with Allen relation codes and contains counts of observed relations.

\textbf{Usage}  
\texttt{allen_string_to_vector(s)}

\textbf{Arguments}  
\texttt{s} \hspace{1em} A string with Allen relation codes

\textbf{Value}  
A named result vector

\textbf{Author(s)}  
Thomas S. Dye

\textbf{allen_union}  
\textit{Union of two Allen relation sets.}

\textbf{Description}  
Returns the union of two Allen relation sets, taking care to handle empty sets and the sets represented by result vectors.

\textbf{Usage}  
\texttt{allen_union(set_1, set_2)}

\textbf{Arguments}  
\texttt{set_1} \hspace{1em} The first Allen relation set or result vector  
\texttt{set_2} \hspace{1em} The second Allen relation set or result vector

\textbf{Value}  
An Allen relation set

\textbf{Author(s)}  
Thomas S. Dye
**Allen Update Result**

*Update a result vector*

**Description**

Increment the element of the result vector corresponding to the given relation.

**Usage**

```r
code
```

**Arguments**

- `relation`  
  The relation to increment
- `result_vector`  
  The result vector to update

**Value**

The updated result vector

**Author(s)**

Thomas S. Dye

---

**Analyze Allen Relations**

*Data for an analytic graphic*

**Description**

Calculates the Allen composition of two relations.

**Usage**

```r
analyze_allen_relations(relation_1, relation_2, title)
```

**Arguments**

- `relation_1`  
  a string representation of an Allen relation
- `relation_2`  
  a string representation of an Allen relation
- `title`  
  a title for the plot

**Value**

A dataframe for input to `allen_plot`
**Author(s)**

Thomas S. Dye

---

**app_ArchaeoPhases**

*Run ArchaeoPhases shiny apps*

---

**Description**

Run ArchaeoPhases shiny apps

**Usage**

```r
app_ArchaeoPhases()
```

---

**ArchaeoPhases**

*ArchaeoPhases: Post-Processing of the Markov Chain Simulated by 'Chronomodel', 'OxCal', or 'BCal'.*

---

**Description**

Provides a list of functions for the statistical analysis of archaeological dates and groups of dates. It is based on the post-processing of the Markov Chains whose stationary distribution is the posterior distribution of a series of dates. Such output can be simulated by different applications, as for instance ChronoModel, OxCal, or BCal. The only requirement is to have a csv file containing a sample from the posterior distribution.

---

**coda.mcmc**

*Create an mcmc.list object for coda users*

---

**Description**

This wrapper function extracts parallel chains from a data frame to create an mcmc.list object for use with coda diagnostic tools

**Usage**

```r
coda.mcmc(data, numberChains = 1, iterationColumn = NULL)
```

**Arguments**

- **data**
  - Data frame containing the output of the MCMC algorithm.
- **numberChains**
  - Number of parallel chains, default = 1.
- **iterationColumn**
  - Column number corresponding to the iteration values, default = NULL.
composition_lookup_table

Value

An `mcmc.list` object.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

See Also

`mcmc`

`mcmc.list`

Examples

```r
data(Events)
mcmcList = coda.mcmc(data = Events, numberChains = 3, iterationColumn = 1)
plot(mcmcList)
gelman.diag(mcmcList)
The multivariate criterion can not be evaluated when a phase
contains only one date. This induces colinearity problems.
gelman.diag(mcmcList, multivariate = FALSE)
```

---

**composition_lookup_table**

*Construct an Allen composition lookup table*

---

Description

Construct an Allen composition lookup table

Usage

```r
composition_lookup_table()
```

Author(s)

Thomas S. Dye
CreateMinMaxGroup

Construct the minimum and maximum for a group of events (phase)

Description

Constructs a data frame containing the output of the MCMC algorithm corresponding to the minimum and maximum of a group of events

Usage

CreateMinMaxGroup(
  data,
  position,
  name = "Phase",
  add = NULL,
  exportFile = NULL
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of all dates included in the phase of interest.
name Name of the current group of dates or phase.
add Name of the data frame in which the current minimum and maximum should be added, default = NULL.
exportFile Name of the final file that will be saved if chosen, default = NULL.

Value

A data frame containing the minimum and maximum of the group of dates included in the phase of interest. These values may be appended to a data frame add if given.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events)
Temp = CreateMinMaxGroup(Events, c(2,4), name = "Phase2")
## Not run:
#To do for saving the new variables in csv file
Temp = CreateMinMaxGroup(Events, c(3,5), name = "Phase1", add=Temp, exportFile = "MinMaxPhases.csv")
## End(Not run)
**CredibleInterval**

*Bayesian credible interval*

**Description**

Computes the shortest credible interval of the output of the MCMC algorithm for a single parameter.

**Usage**

```r
CredibleInterval(a_chain, level = 0.95, roundingOfValue = 0)
```

**Arguments**

- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the parameter.
- `level`: Probability corresponding to the level of confidence used for the credible interval, default = 0.95.
- `roundingOfValue`: Integer indicating the number of decimal places to be used, default = 0.

**Details**

A \((100 \times \text{level})\) elements of the sample outside the interval. The \((100 \times \text{level})\) Value

A named vector of values containing the confidence level and the endpoints of the shortest credible interval in calendar years (BC/AD).

**Examples**

```r
data(Events); attach(Events)
CredibleInterval(Event.1)
CredibleInterval(Event.12, 0.50)
```

---

**credible_interval**

*Bayesian credible interval*

**Description**

Computes the shortest credible interval for a single parameter.

**Usage**

```r
credible_interval(data, level = 0.95, round_to = 0)
```
Arguments

data Numeric vector containing the output of the MCMC algorithm for the parameter.
level Probability corresponding to the level of confidence used for the credible interval, default = 0.95.
round_to Integer indicating the number of decimal places to be used, default = 0.

Details

A \((100 \ast level)\) that keeps \(N \ast (1 - level)\) elements of the sample outside the interval. The \((100 \ast level)\) of those intervals.

Value

A list with the following components:

- **ci** Named vector of length 2, with inf the lower endpoint of the shortest credible interval as a calendar year; and sup the upper endpoint of the shortest credible interval as a calendar year;
- **level** Confidence level for the credible intervals; and
- **call** Function call.

Examples

data(Events); attach(Events)
credible_interval(Event.1)
credible_interval(Event.12, 0.50)

---

DatesHiatus Test for the existence of a hiatus between two parameters

Description

Finds if a gap exists between two dates and returns the longest interval that satisfies: 
\[ P(a_{\text{chain}} < \text{IntervalInf} < \text{IntervalSup} < b_{\text{chain}} | M) = level \]

Usage

DatesHiatus(a_chain, b_chain, level = 0.95)

Arguments

- **a_chain**: Numeric vector containing the output of the MCMC algorithm for the first parameter.
- **b_chain**: Numeric vector containing the output of the MCMC algorithm for the second parameter.
- **level**: Probability corresponding to the confidence level of the interval.


**dates_hiatus**

Value

A named vector with the level and the endpoints of the gap in calendar years (AD/BC)

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Events); attach(Events)
DatesHiatus(Event.1, Event.12)
DatesHiatus(Event.1, Event.12, level = 0.5)
```

---

**dates_hiatus**  
*Test for the existence of a hiatus between two MCMC chains.*

Description

Determines whether there is a hiatus between two MCMC chains and returns the longest interval that satisfies:  
\[ P(\text{a\_chain} < \text{IntervalInf} < \text{IntervalSup} < \text{b\_chain}|M) = \text{level} \]

Usage

```r
dates_hiatus(a_chain, b_chain, level = 0.95)
```

Arguments

- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the first parameter.
- `b_chain`: Numeric vector containing the output of the MCMC algorithm for the second parameter.
- `level`: Probability corresponding to the confidence level of the interval.

Value

A list with the following components:

- **hiatus** A named vector where *inf* is the lower endpoint of the hiatus as a calendar year (AD/BC) or *NA* if there is no hiatus at *level*, and *sup* is the upper endpoint of the gap as a calendar year (AD/BC), or *NA* if there is no hiatus at *level*.
- **duration** The duration of the hiatus at *level*.
- **level** Probability corresponding to the confidence level of the interval.
- **call** The function call.
estimate_range

Estimate ranges from two or more calibrations

Description

Calculates the ranges of summary statistics from the output of two or more runs of the MCMC algorithm. Results are given in calendar years for statistics that estimate them.

Usage

```r
estimate_range(
 mcmc, position, app = "bcal", estimates = c("mean", "q1", "median", "q3", "ci.inf", "ci.sup"), quiet = "partial", bin_width = 1, decimal = ".", separator = ",")
```

Arguments

- `mcmc`: A vector of path names to the MCMC files.
- `position`: Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.
- `app`: Name of the application that created the MCMC files, one of `bcal`, `oxcal`, `chronomodel`.
- `estimates`: Numeric vector containing the positions of the columns corresponding to the statistics of interest returned by the `multi_marginal_statistics()` function, or a vector of column names.
- `quiet`: One of `no` (default) to allow messages and warnings, `partial` to suppress messages and allow warnings, or `yes` to suppress messages and warnings.
estimate_range

bin_width  If app is set to bcal, the bin width specified for the BCal calibration. Defaults to the BCal default of 1.
decimal  If app is set to chronomodel, either . (default) or ,, the two choices offered by ChronoModel.
separator  If app is set to chronomodel, the character used to separate fields in the CSV file. Defaults to ,,.

Details

This function is useful for estimating the sensitivity of calibration results to different model parameters.

Value

A list with the following components:

range_table  A matrix of estimate ranges.
mean  The mean of the ranges in range_table.
sd  The standard deviation of the ranges in range_table.
min  The minimum of the ranges in range_table.
median  The median of the ranges in range_table.
max  The maximum value of the ranges in range_table.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
Not run:
Generate 0's
res <- estimate_range(mcmc = c("http://tsdye.online/AP/ox.csv", "http://tsdye.online/AP/ox.csv"), position = c(1, 2), app = "oxcal", quiet = "yes")
sum(res$range_table)
End(Not run)
```
### Events

<table>
<thead>
<tr>
<th>Description</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data set containing information on the ages of four dated events.</td>
<td></td>
</tr>
</tbody>
</table>

#### Usage

**Events**

#### Format

A data frame with 30,000 rows and 5 variables:

- **iter**: iteration of the MCMC algorithm
- **Event.2**: information on event 2
- **Event.1**: information on event 1
- **Event.22**: information on event 22
- **Event.12**: information on event 12

---

#### illustrate_allen_relations

*Data for an illustrative graphic*

<table>
<thead>
<tr>
<th>Description</th>
<th>illustrate_allen_relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a dataframe that can be used as input for an illustrative plot. Useful for describing the Allen operators: illustrate the full set of Allen relations, concurrent Allen relations, and relations with distinct endpoints. Also, useful for describing the chronological domains of stratification, branching, transformation, and reticulation.</td>
<td></td>
</tr>
</tbody>
</table>

#### Usage

**illustrate_allen_relations(relations = "basic")**

#### Arguments

- **relations**: One of 'basic', 'concurrent', 'distinct', 'stratigraphic', 'branching', 'transformation', 'reticulation', 'sequence', 'branch', 'transform', or 'reticulate'.

---
Details

The illustrative graphics include:

- **basic** the 13 basic Allen relations (default);
- **concurrent** concurrent relations;
- **distinct** relations with distinct endpoints;
- **stratigraphic** basic relations established by an observation of superposition;
- **branching** basic branching relations;
- **transformation** basic relations of transformation;
- **reticulation** basic relations of reticulation;
- **sequence** composite relations in a stratigraphic sequence;
- **branch** composite relations of branching;
- **transform** composite relations of transformation; or
- **reticulate** composite relations of reticulation.

Value

A dataframe for input to `allen_plot`

Author(s)

Thomas S. Dye

References


---

**Description**

Import a CSV file containing the output of the MCMC algorithm
Usage

ImportCSV(
  file,
  dec = ",",
  sep = ",",
  comment.char = "#",
  header = TRUE,
  iterationColumn = NULL,
  referenceYear = NULL,
  rowToWithdraw = NULL,
  bin.width = NULL
)

Arguments

file  Name of the CSV file containing the output of the MCMC algorithm.
dec Character used in the file for decimal points for the use of read.csv().
sep Field separator character for the use of read.csv().
comment.char Character vector of length one containing a single character or an empty string for the use of read.csv().
header Logical value indicating whether the file contains the names of the variables as its first line.
iterationColumn Column number corresponding to the iteration values, default = NULL.
referenceYear Year of reference for MCMC in date format other than BC/AD, default = NULL.
rowToWithdraw Number of the row to be withdrawn or "last" for the last row of the data frame, default = NULL.
bin.width Bin width specified in a BCal project (note that bin.width does not have to be set if the BCal default bin width of 1 is used).

Details

Use of the read.csv() function with default values for CSV files produced by ChronoModel software. For MCMC in a date format different from BC/AD, use the parameter referenceYear to convert the MCMC to BC/AD, otherwise the remaining functions of ArchaeoPhases will not work. MCMC files generated by BCal may contain an empty last row. This row should be withdrawn using the rowToWithdraw parameter. Otherwise, the functions of ArchaeoPhases will not work properly.

Value

A data frame containing a representation of the data in the file.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
## ImportCSV.BCal

**Importing a BCal csv file**

### Description
Importing a csv file containing the output of the MCMC algorithm from the BCal software

### Usage
```r
ImportCSV.BCal(file, bin.width = NULL)
```

### Arguments
- **file**: Name of the CSV file containing the output of the MCMC algorithm.
- **bin.width**: Bin width specified in a BCal project (note: bin.width does not have to be set if the BCal default bin width of 1 is used).

### Value
A data frame containing a representation of the data in the CSV file
is.url

Check if string is a URL

Description

Uses a regex approach to check if a string is a URL. This approach is faster than `url.exists` but does not do the actual verification.

Usage

```r
is.url(x)
```

Arguments

- `x`: A character string.

Details


Value

Returns a logical evaluation as to whether a string is a URL.
MarginalPlot

Plot a marginal posterior density

Description

Draws a plot of the estimated marginal posterior density for the one-parameter and adds the mean and the credible interval at the desired level.

Usage

MarginalPlot(
  a_chain,
  level = 0.95,
  GridLength = 1024,
  title = "Characteristics of a date",
  subtitle = NULL,
  caption = "ArchaeoPhases",
  x.label = "Calendar year",
  y.label = NULL,
  y.grid = TRUE,
  x.scale = "calendar",
  elapsed.origin.position = NULL,
  x.min = NULL,
  x.max = NULL,
  height = 7,
  width = 7,
  units = "in",
  file = NULL,
  newWindow = TRUE
)

Arguments

a_chain Numeric vector containing the output of the MCMC algorithm for the parameter.
level Probability corresponding to the level of confidence.
GridLength Length of the grid used to estimate the density.
title Title of the graph.
title Subtitle of the graph.
caption Caption of the graph.
x.label Label of the x-axis.
y.label Label of the y-axis.
y.grid Switch for horizontal grid lines.
x.scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
MarginalProba

Position of the column to use as the origin for elapsed time calculations.

Minimum x axis value.

Maximum x axis value.

Plot height in units.

Plot width in units.

String recognized by the ggsave() function, one of "in", "cm", "mm".

Name of the file that will be saved if chosen, default = NULL.

Whether or not the plot is drawn within a new window.

The density is estimated using density() function with n = GridLength.

NULL, called for its side effects

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

MarginalProba(a_chain, b_chain)

MarginalProba (Bayesian test for anteriority / posteriority between two parameters)

This function estimates the posterior probability that event 'a' is older than event 'b' using the output of the MCMC algorithm. This provides a Bayesian test for checking the following assumption: "Event a is older than event b".

MarginalProba(a_chain, b_chain)

Arguments

a_chain : Numeric vector containing the output of the MCMC algorithm for the first parameter.
b_chain : Numeric vector containing the output of the MCMC algorithm for the second parameter.
Details
For a given output of MCMC algorithm, this function estimates the posterior probability of the event \( a < b \) by the relative frequency of the event "the value of event \( a \) is less than the value of event \( b \)" in the simulated Markov chain.

Value
An unnamed vector with the posterior probability of the assumption: "event a is older than event b"

Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Events); attach(Events)
Probability that Event.1 is older than Event.12
MarginalProba(Event.1, Event.12)
Probability that Event.1 is older than Event.2
MarginalProba(Event.1, Event.2)
Probability that the beginning of the phase 1 is older than the end of the phase 1
Should always be 1 for every phase
data(Phases); attach(Phases)
MarginalProba(Phase.1.alpha, Phase.1.beta)
```

---

### MarginalStatistics

**Marginal summary statistics**

**Description**
Calculates summary statistics of the output of the MCMC algorithm for a one-parameter. Results are given in calendar years (BC/AD).

**Usage**

```
MarginalStatistics(a_chain, level = 0.95, roundingOfValue = 0)
```

**Arguments**
- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the parameter.
- `level`: Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region.
- `roundingOfValue`: Integer indicating the number of decimal places.
Details

The \[(100 \times \text{level})\]

Value

A named matrix of values corresponding to all the following statistics:

- **title**: The title of the summary statistics.
- **mean**: The mean of the MCMC chain. Use of `mean()` function.
- **map**: The maximum a posteriori of the MCMC chain. Use of `hdr()` function.
- **sd**: The standard deviation of the MCMC chain. Use of `sd()` function.
- **Q1, median, Q3**: The quantiles of the MCMC chain corresponding to 0.25, 0.50 and 0.75. Use of `quantile` function.
- **CI**: The credible interval corresponding to the desired level. Use of `CredibleInterval()` function.
- **HPDR**: The highest posterior density regions corresponding to the desired level. Use of `hdr()` function.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References


Examples

```r
data(Events); attach(Events)
MarginalStatistics(Event.1)
MarginalStatistics(Event.2, level = 0.90)
```

---

**marginal_plot**

*Plot a marginal posterior density*

Description

Draws a plot of the marginal posterior density for a single parameter, with an option to add the mean and the credible interval at the desired level.
Usage

marginal_plot(
    data,
    position = 1,
    level = 0.95,
    grid_length = 1024,
    title = if (is.numeric(position)) names(data)[position] else position,
    subtitle = "Marginal posterior density",
    caption = paste(level * 100, "\% credible interval", sep = " ",
    x_label = "Calendar year",
    y_label = "Density",
    y_grid = TRUE,
    x_scale = "calendar",
    elapsed_origin_position = NULL,
    x_min = NULL,
    x_max = NULL,
    height = 7,
    width = 7,
    units = "in",
    file = NULL,
    plot_result = TRUE,
    mean_linetype = "dashed",
    mean_color = "white",
    mean_size = 0.5,
    ci_linetype = "dotted",
    ci_color = mean_color,
    ci_size = mean_size,
    line_linetype = "solid",
    line_color = "black",
    line_size = 1,
    density_color = "gray30",
    fill_palette = NULL
)

Arguments

data | Data frame containing the output of the MCMC algorithm.
position | Index of the column corresponding to the MCMC chain of interest, or a column name.
level | Probability corresponding to the level of confidence.
grid_length | Length of the grid used to estimate the density.
title | Title of the graph. The default uses the data column name.
subtitle | Subtitle of the graph. The default is "Marginal posterior density".
caption | Caption of the graph. The default describes the confidence of the credible interval.
x_label | Label of the x-axis.
marginal_plot

y_label Label of the y-axis.
y_grid Switch for horizontal grid lines.
x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
elapsed_origin_position Position of the column to use as the origin for elapsed time calculations.
x_min Minimum x axis value.
x_max Maximum x axis value.
height Plot height in units.
width Plot width in units.
units String recognized by the ggsave() function, one of "in", "cm", "mm". This parameter has no effect on the display plot.
file Name of the file that will be saved if chosen, default = NULL.
plot_result If TRUE, then draw a plot on the display, else suppress drawing.
mean_linetype The linetype used to indicate the mean density.
mean_color The color of the line used to indicate mean density.
mean_size The width of the line used to indicate the mean density.
ci_linetype The linetype used to indicate the credible intervals.
ci_color The color of the lines used to indicate the credible intervals.
ci_size The width of the lines used to indicate the credible intervals.
line_linetype The linetype used to indicate the density.
line_color The color of the line used to indicate the density.
line_size The width of the line used to indicate the density.
density_color Color to use if fill_palette is not specified.
fill_palette Palette to use for fills.

Details

The plot is drawn with the current theme and color scales; the function does not alter or override theme elements.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>; Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>; and Thomas S. Dye, <tsd@tsdye.online>
Examples

```r
data(Events)
mp <- marginal_plot(data = Events, position = 2, level = 0.95)
View data and metadata
str(mp)
```

marginal_statistics  

*Marginal summary statistics*

Description

Calculates summary statistics of the output of the MCMC algorithm for a single parameter. Results are given in calendar years (BC/AD).

Usage

```r
marginal_statistics(a_chain, level = 0.95, round_to = 0)
```

Arguments

- `a_chain` Numeric vector containing the output of the MCMC algorithm for the parameter.
- `level` Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region.
- `round_to` Integer indicating the number of decimal places.

Details

The \((100 \times level)\) using `hdr()` function from `hdrcde` package.

Value

A list with the following components:

- `mean` The mean of the MCMC chain.
- `map` The maximum a posteriori of the MCMC chain.
- `sd` The standard deviation of the MCMC chain.
- `quantiles` A vector with the following elements: `min` = minimum value of the MCMC chain; `q1` = first quantile of the MCMC chain; `median` = median of the MCMC chain; `q2` = second quantile of the MCMC chain; and `max` = maximum value of the MCMC chain.
- `level` Confidence level for the credible interval and highest posterior density.
- `ci` A vector with the following elements: `inf` = lower credible interval of the MCMC chain at `level`; and `sup` = upper credible interval of the MCMC chain at `level`.
- `hpdr` A variable length vector with the lower and upper highest posterior density regions of the MCMC chain at `level`. List components are named `inf_n` and `sup_n` for `n = 1` to the number of highest posterior density regions.
Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and
Thomas S. Dye, <tsd@tsdye.online>

References

Examples
```r
data(Events); attach(Events)
marginal_statistics(Event.1)
marginal_statistics(Event.2, level = 0.90)
convenient vector
foo <- marginal_statistics(Event.1)
unlist(foo)
```

---

MultiCredibleInterval  **Bayesian credible interval for a series of dates**

Description
Estimation of the shortest credible interval for each variable of a simulated Markov chain

Usage
```r
MultiCredibleInterval(data, position, level = 0.95, roundingOfValue = 0)
```

Arguments
data  data frame containing the output of the MCMC algorithm.
position  Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
level  Probability corresponding to the level of confidence used for the credible interval.
roundingOfValue  Integer indicating the number of decimal places.

Details
A $(100 \times level)\%$ interval.
Value

Returns a matrix of values containing the level of confidence and the endpoints of the shortest credible interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events)
MultiCredibleInterval(Events, c(2, 4, 3), 0.95)

Description

Plot of credible intervals or HPD regions of a series of events

Usage

MultiDatesPlot(
data, 
position, 
level = 0.95, 
roundingOfValue = 0, 
intervals = "CI", 
order = "default", 
title = "Plot of intervals", 
subtitle = NULL, 
caption = "ArchaeoPhases", 
labelXaxis = "Calendar Year", 
labelYaxis = NULL, 
height = 7, 
width = 7, 
units = "in", 
x.min = NULL, 
x.max = NULL, 
x.scale = "calendar", 
elapsed.origin.position = NULL, 
dumbbell.size = 3, 
dot.guide = FALSE, 
dot.guide.size = 0.25,
y.grid = FALSE,
file = NULL,
newWindow = TRUE,
print.data.result = FALSE
)

Arguments

data         Data frame containing the output of the MCMC algorithm.
position     Numeric vector containing the position of the column corresponding to the
             MCMC chains of interest.
level         Probability corresponding to the level of confidence.
roundingOfValue Integer indicating the number of decimal places to be used.
intervals     One of "CI" for credible intervals, or "HPD" for highest posterior density intervals.
order         Order of the events. If "default" then the order of the csv file is followed, if
             "increasing" events are ordered by the HPDInf of the first region or the CIInf

title         Title of the plot.
subtitle      Subtitle of the plot.
caption       Caption of the plot.
labelXaxis    X axis label of the plot.
labelYaxis    Y axis label of the plot.
height        Height of the plot in units.
width         Width of the plot in units.
units         A string recognized by ggsave() function, one of "in", "cm", "mm".
x.min         Minimum x axis value.
x.max         Maximum x axis value.
x.scale       One of "calendar" for calendar years, "BP" for years before present, or "elapsed"
             for years after a specified origin.
elapsed.origin.position Position of the column corresponding to the origin for elapsed time calculations.
dumbbell.size Size of the symbols used to plot events.
dot.guide     Switch for guides from y-axis to plot symbols.
dot.guide.size Size of the dot guides.
y.grid        Switch for horizontal grids.
file          Name of the file to be saved. If NULL then no plot is saved.
newWindow     Whether the plot is drawn within a new window or not.
print.data.result
              If TRUE, the list containing the data to plot will be returned.
MultiHPD

**Value**

NULL, called for its side effects. If print.data.result = TRUE then a list containing the data to plot will be returned.

**Author(s)**

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

**Examples**

```r
data(Events)
MultiDatesPlot(Events, c(2, 4, 3), level = 0.95, intervals = "CI",
 title = "Plot of CI intervals")
MultiDatesPlot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
 title = "Plot of HPD intervals")
MultiDatesPlot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
 order = "increasing")
```

**MultiHPD**

*Bayesian HPD regions for a series of MCMC chains*

**Description**

Estimation of the highest posterior density regions for each variable of a simulated Markov chain. This function uses the hdr() function included in the hdrcde package. An HPD region may be a union of several intervals.

**Usage**

```r
MultiHPD(data, position, level = 0.95, roundingOfValue = 0)
```

**Arguments**

- `data`: Data frame containing the output of the MCMC algorithm.
- `position`: Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- `level`: Probability corresponding to the level of confidence.
- `roundingOfValue`: Integer indicating the number of decimal places.

**Details**

Highest posterior density function region using the function hdr() from the hdrcde package.
Value

Returns a matrix of values containing the level of confidence and the endpoints of each interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References


Examples

data(Events)
MultiHPD(Events, c(2, 4, 3), 0.95)

Marginal posterior densities of several events

Description

Draws a plot of the estimated marginal posterior density for a parameter and adds the mean and the credible interval at the desired level

Usage

MultiMarginalPlot(
  data,
  position,
  level = 0.95,
  GridLength = 1024,
  x.scale = rep("calendar", length(position)),
  elapsed.origin = NULL,
  title = "Characteristics of several dates",
  subtitle = NULL,
  caption = "ArchaeoPhases",
  x.label = "Calendar year",
  y.label = NULL,
  y.grid = TRUE,
  x.min = NULL,
  x.max = NULL,
  legend.title = "Legend",
)
MultiMarginalPlot

```r
height = 7,
width = 7,
units = "in",
file = NULL,
newWindow = TRUE
)
```

**Arguments**

- `data` Data frame containing the output of the MCMC algorithm.
- `position` Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- `level` Probability corresponding to the level of confidence.
- `GridLength` Number of equally spaced points at which the density is to be estimated (for `density()` function).
- `x.scale` One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
- `elapsed.origin` Position of the column to use as the origin for elapsed time calculations.
- `title` Title of the plot.
- `subtitle` Subtitle of the plot.
- `caption` Caption of the plot.
- `x.label` Label of the x-axis.
- `y.label` Label of the y-axis.
- `y.grid` Switch for horizontal grid lines.
- `x.min` Minimum x-axis value.
- `x.max` Maximum x-axis value.
- `legend.title` Title for the legend.
- `height` Plot height in units.
- `width` Plot width in units.
- `units` String recognized by the `ggsave()` function, one of "in", "cm", "mm".
- `file` Name of the file that will be saved if specified, default = NULL.
- `newWindow` Whether or not the plot is drawn within a new window.

**Details**

The density is estimated using `density()` function with `n = GridLength`. The input MCMC chains should either be in calendar years or converted to calendar years using `x.scale` vector or `elapsed.origin`.

**Value**

`NULL`, called for its side effects
Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples
```
data(Events);
MultiMarginalPlot(Events, position = c(2, 3, 4), level = 0.95)
```

Description
Plot of the marginal posterior densities of several groups

Usage
```
MultiPhasePlot(
data, position_minimum, position_maximum = position_minimum + 1, level = 0.95,
title = "Characterisation of several groups", colors = NULL,
exportFile = NULL, exportFormat = "PNG"
)
```

Arguments
- **data** Data frame containing the output of the MCMC algorithm.
- **position_minimum** Numeric vector containing the column number corresponding to the minimum of the events included in each group.
- **position_maximum** Numeric vector containing the column number corresponding to the end of the groups set in the same order as in `position_minimum`.
- **level** Probability corresponding to the level of confidence.
- **title** Title of the plot.
- **colors** Numeric vector of colors for each group of dates.
- **exportFile** Name of the file to be saved. If `NULL` then no plot is saved.
- **exportFormat** Format of the export file, one of "PNG" or "SVG".
**Details**

Draws a plot with the marginal posterior densities of the minimum and the maximum of the dates included in each group. No temporal order between phases is required. The result is given in calendar years (BC/AD).

**Value**

NULL, called for its side effects

**Author(s)**

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

**Examples**

```r
Data extracted from ChronoModel software
data(Phases)
List of the name of the groups
names(Phases)
Stipulating position_maximum
MultiPhasePlot(Phases, c(4, 2), c(5, 3), title = "Succession of phase 1 and phase 2")
In this case, equivalent to
MultiPhasePlot(Phases, c(4, 2), title = "Succession of phase 1 and phase 2", colors = c(3, 4))
```

---

**MultiPhasesGap**

_Gap or hiatus between a succession of groups (for groups in temporal order constraint)_

**Description**

Finds, if it exists, a gap or hiatus between two successive groups. This gap or hiatus is the longest interval that satisfies $P(Phase1Max < IntervalInf < IntervalSup < Phase2Min | M) = level$

**Usage**

```r
MultiPhasesGap(
 data,
 position_minimum,
 position_maximum = position_minimum + 1,
 level = 0.95
)
```
MultiPhasesTransition

Transition range for a succession of groups (for groups in temporal order constraint)

Description

Finds, if it exists, the shortest interval that satisfies \( P(TransitionRangeInf < Phase1Max < Phase2Min < TransitionRangeSup|M) = level \)
**Usage**

```r
MultiPhasesTransition(
 data,
 position_minimum,
 position_maximum = position_minimum + 1,
 level = 0.95
)
```

**Arguments**

- **data**: Data frame containing the output of the MCMC algorithm.
- **position_minimum**: Numeric vector containing the column number corresponding to the minimum of the events included in each group.
- **position_maximum**: Numeric vector containing the column number corresponding to the end of the groups set in the same order as in `position_minimum`.
- **level**: Probability corresponding to the level of confidence.

**Details**

For each \(i\), `MultiPhasesTransition()` computes the transition interval for the phase defined by its minimum `position_minimum[i]` and its maximum `position_maximum[i]`. The default value of `position_maximum` corresponds to CSV files exported from `ChronoModel` software.

**Value**

A matrix of values containing the level of confidence and the endpoints of the transition interval for each pair of successive groups. The result is given in calendar years (BC/AD).

**Author(s)**

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

**Examples**

```r
Data extracted from ChronoModel software
data(Phases)
List of the name of the groups
names(Phases)
Stipulating position_maximum
MultiPhasesTransition(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3))
In this case, equivalent to
MultiPhasesTransition(Phases, position_minimum = c(4, 2))
```
MultiPhaseTimeRange

Phase time range for multiple groups

Description

Computes the shortest interval that satisfies $P(PhaseMin < IntervalInf < IntervalSup < PhaseMax|M) = level$ for each phase

Usage

MultiPhaseTimeRange(
    data,
    position_minimum,
    position_maximum = position_minimum + 1,
    level = 0.95
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each phase.
position_maximum Numeric vector containing the column number corresponding to the maximum of the phases set in the same order as in position_minimum.
level Probability corresponding to the desired level of confidence.

Details

For each $i$, MultiPhaseTimeRange() computes the time range interval for the phase defined by its minimum $position_{minimum}[i]$ and its maximum $position_{maximum}[i]$. The default value of $position_{maximum}$ corresponds to CSV files exported from ChronoModel software.

Value

A matrix of values containing the level of confidence and the endpoints of the shortest time range associated with the desired level. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
Examples

# Data extracted from ChronoModel software
data(Phases)
# List of the name of the groups
names(Phases)
# Stipulating position_maximum
MultiPhaseTimeRange(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3))
# In this case, equivalent to
MultiPhaseTimeRange(Phases, position_minimum = c(4, 2))

MultiSuccessionPlot

Successive Phases Density Plots (for phases in temporal order constraint)

Description

This function draws a plot of the densities of several successive phases and adds several statistics (mean, CI, HPDR). The result is given in calendar years (BC/AD).

Usage

MultiSuccessionPlot(
  data,
  position_minimum,
  position_maximum = position_minimum + 1,
  level = 0.95,
  title = "Characterisation of a succession of groups",
  colors = NULL,
  exportFile = NULL,
  exportFormat = "PNG"
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each group.
position_maximum Numeric vector containing the column number corresponding to the end of the groups set in the same order as in position_minimum.
level Probability corresponding to the level of confidence.
title Title of the plot.
colors Vector of colors corresponding to each group of dates.
exportFile Name of the file to be saved. If NULL then no plot is saved.
exportFormat Format of the export file, either "PNG" or "SVG" (default).
multi_credible_interval

Bayesian credible interval for a series of dates

Description

Estimate the shortest credible interval for each of several MCMC chains.

Usage

multi_credible_interval(data, position, level = 0.95, round_to = 0)
**Arguments**

- **data**: data frame containing the output of the MCMC algorithm.
- **position**: Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a list of column names.
- **level**: Probability corresponding to the level of confidence used for the credible interval.
- **round_to**: Integer indicating the number of decimal places.

**Details**

A \((100 \ast \text{level})\) that keeps \(N \ast (1 - \text{level})\) elements of the sample outside the interval. The \((100 \ast \text{level})\).

**Value**

Returns a list with the following components:

- **ci**: A data frame with a row for each column in `data` and two columns: `inf`, the lower credible interval in calendar years (BC/AD); and `sup`, the upper credible interval in calendar years (BC/AD).
- **level**: Probability corresponding to the level of confidence used for the credible interval.
- **call**: The function call.

**Author(s)**

Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>.

**Examples**

```r
data(Events)
multi_credible_interval(Events, c(2, 4, 3), 0.95)
round to decade
multi_credible_interval(Events, c(2, 4, 3), 0.95, -1)
```

---

`multi_dates_plot`  
*Plot of credible intervals or HPD regions of a series of events*

**Description**

Plot of credible intervals or HPD regions of a series of events
Usage

multi_dates_plot(
  data,
  position = 1:ncol(data),
  level = 0.95,
  plot_result = TRUE,
  round = 0,
  intervals = "CI",
  order = "default",
  title = "Plot of intervals",
  subtitle = NULL,
  caption = "ArchaeoPhases",
  x_label = "Calendar Year",
  y_label = NULL,
  height = 7,
  width = 7,
  units = "in",
  x_min = NULL,
  x_max = NULL,
  x_scale = "calendar",
  elapsed_origin_position = NULL,
  dumbbell_size = 1,
  dot_guide = FALSE,
  dot_guide_size = 0.25,
  y_grid = FALSE,
  file = NULL,
  new_window = TRUE
)

Arguments

data          Data frame containing the output of the MCMC algorithm.
position      Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.
level         Probability corresponding to the level of confidence.
plot_result   If TRUE, then draw a plot on the display, else suppress drawing.
round         Integer indicating the number of decimal places to be used.
intervals     One of "CI" for credible intervals, or "HPD" for highest posterior density intervals.
order         Order of the events. If "default" then the order of the csv file is followed, if "increasing" events are ordered by the HPDInf of the first region or the CIInf
title         Title of the plot.
subtitle      Subtitle of the plot.
caption       Caption of the plot.
x_label       X axis label of the plot.
**multi_dates_plot**

- **y_label**: Y axis label of the plot.
- **height**: Height of the plot in units.
- **width**: Width of the plot in units.
- **units**: A string recognized by `ggsave()` function, one of "in", "cm", "mm".
- **x_min**: Minimum x axis value.
- **x_max**: Maximum x axis value.
- **x_scale**: One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for years after a specified origin.
- **elapsed_origin_position**: Position of the column corresponding to the origin for elapsed time calculations.
- **dumbbell_size**: Size of the symbols used to plot events.
- **dot_guide**: Switch for guides from y-axis to plot symbols.
- **dot_guide_size**: Size of the dot guides.
- **y_grid**: Switch for horizontal grids.
- **file**: Name of the file to be saved. If NULL then no plot is saved.
- **new_window**: Whether the plot is drawn within a new window or not.

### Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

### Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,

Thomas S. Dye, <tsd@tsdye.online>, and

Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

### Examples

```r
data(Events)
multi_dates_plot(Events, c(2, 4, 3), level = 0.95, intervals = "CI",
 title = "Plot of CI intervals")
multi_dates_plot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
 title = "Plot of HPD intervals")
multi_dates_plot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
 order = "increasing")
```
multi_hpd  Bayesian HPD regions for a series of MCMC chains

Description
Estimation of the highest posterior density regions for each variable of a simulated Markov chain. This function uses the `hdr()` function included in the `hdrcde` package. An HPD region may be a union of several intervals.

Usage
```
multi_hpd(data, position, level = 0.95, round_to = 0)
```

Arguments
- `data`: Data frame containing the output of the MCMC algorithm.
- `position`: Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- `level`: Probability corresponding to the level of confidence.
- `round_to`: Integer indicating the number of decimal places.

Details
Highest posterior density function region using the function `hdr()` from the `hdrcde` package

Value
Returns a list with the following components:

- `results`: A data frame where the rows correspond to the columns in the selected data set and the columns labeled `inf` and `sup` correspond to the lower and upper endpoints of each highest posterior density interval, respectively.
- `level`: Probability corresponding to the level of confidence.
- `call`: The function call.

matrix of values containing the level of confidence and for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD).

Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References
Examples

```r
data(Events)
multi_hpd(Events, c(2, 4, 3), 0.95)
```

Description

Draws a plot of the estimated marginal posterior density for a parameter and adds the mean and the credible interval at the desired level.

Usage

```r
multi_marginal_plot(
 data,
 position = 1:ncol(data),
 level = 0.95,
 grid_length = 1024,
 x_scale = "calendar",
 elapsed_origin_position = NULL,
 title = "Characteristics of several dates",
 subtitle = "Marginal densities",
 caption = paste(level * 100, "% credible interval", sep = " "),
 x_label = "Calendar year",
 y_label = NULL,
 density_fill = "gray30",
 density_color = "black",
 density_alpha = 1,
 mean_color = "white",
 mean_linetype = "dashed",
 mean_size = 0.5,
 ci_color = mean_color,
 ci_linetype = "dotted",
 ci_size = mean_size,
 y_grid = TRUE,
 x_min = NULL,
 x_max = NULL,
 height = 7,
 width = 7,
 units = "in",
 file = NULL,
 new_window = TRUE,
 plot_result = TRUE,
 fill_palette = NULL,
 colors = NULL,
)```
color_legend_name = "Legend"
}

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names.
level Probability corresponding to the level of confidence.
grid_length Number of equally spaced points at which the density is to be estimated (for density() function).
x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
elapsed_origin_position Position of the column to use as the origin for elapsed time calculations.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
x_label Label of the x-axis.
y_label Label of the y-axis.
density_fill A color specification for the fill under the density line.
density_color A color specification for the density line.
density_alpha A number between 0 for transparent and 1 for opaque.
mean_color A color specification for the mean line.
mean_linetype A line type specification for the mean line.
mean_size A size specification for the mean line.
ci_color A color specification for the credible interval lines.
ci_linetype A line type specification for the credible interval lines.
ci_size A size specification of the credible interval lines.
y_grid Switch for horizontal grid lines.
x_min Minimum x-axis value.
x_max Maximum x-axis value.
height Plot height in units.
width Plot width in units.
units String recognized by the ggsave() function, one of "in", "cm", "mm".
file Name of the file that will be saved if specified, default = NULL.
new_window Whether or not the plot is drawn within a new window.
plot_result If TRUE, then draw a plot on the display, else suppress drawing.
fill_palette A vector of colors for qualitative data.
colors A vector of indices into palette keyed by position.
color_legend_name A label for the legend.
multi_marginal_statistics

Details

The density is estimated using density() function with n = grid_length. The input MCMC chains should either be in calendar years or converted to calendar years using x_scale vector or elapsed_origin_position.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>;
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>; and
Thomas S. Dye, <tsd@tsdye.online>

Examples

data(Events);
multi_marginal_plot(Events, position = c(2, 3, 4), level = 0.95)

multi_marginal_statistics

Marginal summary statistics for multiple MCMC chains

Description

Calculates summary statistics of the output of the MCMC algorithm for multiple parameters. Results are given in calendar years (BC/AD).

Usage

multi_marginal_statistics(
 data,
 position = 1:ncol(data),
 level = 0.95,
 round_to = 0
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.
level Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region.
round_to Integer indicating the number of decimal places.
Value

A data frame where the rows correspond to the chains of interest and columns to the following statistics:

- **mean**: The mean of the MCMC chain.
- **sd**: The standard deviation of the MCMC chain.
- **min**: Minimum value of the MCMC chain;
- **q1**: First quantile of the MCMC chain;
- **median**: Median of the MCMC chain;
- **q3**: Third quantile of the MCMC chain; and
- **max**: Maximum value of the MCMC chain.
- **ci.inf**: Lower credible interval of the MCMC chain at level
- **ci.sup**: Upper credible interval of the MCMC chain at level

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and
Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
data(Events)
multi_marginal_statistics(Events, 2:5)
multi_marginal_statistics(Events, 2:5, level = 0.90)
## round to decades
multi_marginal_statistics(Events, 2:5, round_to = -1)
```

new_archaeophases_mcmc

Constructor for archaeophases_mcmc object

Description

Object to be returned by functions that read MCMC data from csv files.

Usage

```r
new_archaeophases_mcmc(x = list(), call = match.call(), hash = character())
```

Arguments

- `x`: A data frame with the data from the csv file.
- `call`: How the function was called.
- `hash`: A SHA256 hash of the csv file.
Details

The SHA256 hash should be secure against intentional and unintentional alterations of the MCMC csv file.

Value

An archaeophases_mcmc object that inherits from tbl_df.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

read_chronomodel
read_bcal
read_oxcal

new_archaeophases_plot

Constructor for archaeophases_plot object

Description

Objects returned by ArchaeoPhases plot functions.

Usage

new_archaeophases_plot(x = list(), mcmc = list(), call = match.call())

Arguments

x A data frame with the plot data.
mcmc An archaeophases_mcmc object.
call How the function was called.

Value

An archaeophases_plot object that inherits from archaeophases_mcmc.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
OccurrencePlot

See Also

read_chronomodel
read_bcal
read_oxcal

Description

A statistical graphic designed for the archaeological study of when events of a specified kind occurred

Usage

OccurrencePlot(
 data,
 position,
 plot.result = NULL,
 level = 0.95,
 intervals = "CI",
 title = "Occurrence plot",
 subtitle = NULL,
 caption = "ArchaeoPhases",
 labelXaxis = "Calendar year",
 labelYaxis = NULL,
 language = "English",
 occurrence = "occurrence",
 height = 7,
 width = 7,
 units = "in",
 x.min = NULL,
 x.max = NULL,
 x.scale = "calendar",
 elapsed.origin.position = NULL,
 dumbbell.size = 1,
 dot.guide = FALSE,
 dot.guide.size = 0.25,
 y.grid = FALSE,
 file = NULL,
 newWindow = TRUE,
 print.data.result = FALSE
)
Arguments

- **data**: Data frame containing the output of the MCMC algorithm.
- **position**: Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- **plot.result**: If TRUE, then draw a plot on the display, else suppress drawing.
- **level**: Probability corresponding to the level of confidence.
- **intervals**: One of "CI" for credible intervals or "HPD" for highest posterior density intervals.
- **title**: Title of the plot.
- **subtitle**: Subtitle of the plot.
- **caption**: Caption of the plot.
- **labelXaxis**: Label of the x-axis.
- **labelYaxis**: Label of the y-axis.
- **language**: String indicating a language recognized by the `toOrdinal` package.
- **occurrence**: String to append to each y-axis tic label.
- **height**: Plot height in units.
- **width**: Plot width in units.
- **units**: String recognized by the `ggsave()` function, one of "in", "cm", "mm".
- **x.min**: Minimum x-axis value.
- **x.max**: Maximum x-axis value.
- **x.scale**: One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
- **elapsed.origin.position**: Position of the column to use as the origin for elapsed time calculations.
- **dumbbell.size**: Size of the plot symbol.
- **dot.guide**: Switch for a horizontal guide from the y axis.
- **dot.guide.size**: Size of the dot guide.
- **y.grid**: Switch for horizontal grid lines.
- **file**: Name of the file that will be saved if specified. If NULL no plot will be saved.
- **newWindow**: Whether or not the plot is drawn within a new window.
- **print.data.result**: If TRUE, the list containing the data to plot will be returned.

Details

If we have k events, then we can estimate the calendar date t corresponding to the smallest date such that the number of events observed before t is equal to k. The `OccurrencePlot()` estimates these occurrences and gives the credible interval or the highest posterior density (HPD) region with a desired level of confidence.
Value

NULL, called for its side effects. It may also return a list containing the data to plot (if `print.data.result = TRUE`).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events);
OccurrencePlot(Events[1:1000,], c(2:5), print.data.result = FALSE)

occurrence_plot
Plot occurrences

Description

A statistical graphic designed for the archaeological study of when events of a specified kind occurred.

Usage

occurrence_plot(
 data,
 position = 1:ncol(data),
 name = list("All"),
 level = 0.95,
 plot_result = TRUE,
 intervals = "CI",
 title = "Occurrence plot",
 subtitle = NULL,
 caption = "ArchaeoPhases",
 x_label = "Calendar year",
 y_label = NULL,
 language = "English",
 occurrence = "occurrence",
 height = 7,
 width = 7,
 unit = "in",
 x_min = NULL,
 x_max = NULL,
 x_scale = "calendar",
)
occurrence_plot

elapsed_origin_position = NULL,
dumbbell_size = 1,
dot_guide = FALSE,
dot_guide_size = 0.25,
y_grid = FALSE,
columns = 1,
file = NULL,
new_window = TRUE
}

Arguments

data Data frame containing the output of the MCMC algorithm.
position A list, each member of which is either a numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names. For convenience, a vector can be substituted for the singleton list.
name A list, each member of which is a string that names the kind of event in the corresponding element of position. For convenience, a string can be substituted for the singleton list.
level Probability corresponding to the level of confidence.
plot_result If TRUE, then draw a plot on the display, else suppress drawing.
intervals One of "CI" for credible intervals or "HPD" for highest posterior density intervals.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
x_label Label of the x-axis.
y_label Label of the y-axis.
language String indicating a language recognized by the toOrdinal package.
ocurrence String to append to each y-axis tic label.
height Plot height in unit.
width Plot width in unit.
unit String recognized by the ggsave() function, one of "in", "cm", "mm".
x_min Minimum x-axis value.
x_max Maximum x-axis value.
x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
elapsed_origin_position Position of the column to use as the origin for elapsed time calculations.
dumbbell_size Size of the plot symbol.
dot_guide Switch for a horizontal guide from the y axis.
dot_guide_size Size of the dot guide.
y_grid Switch for horizontal grid lines.
columns Number of columns for facet.
file Name of the file that will be saved if specified. If NULL no plot will be saved.
new_window Whether or not the plot is drawn within a new window.

Details

If we have k events, then we can estimate the calendar date t corresponding to the smallest date such that the number of events observed before t is equal to k. The `OccurrencePlot()` estimates these occurrences and gives the credible interval or the highest posterior density (HPD) region with a desired level of confidence.

Value

An `archaeophases_plot` object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events);
OccurrencePlot(Events[1:1000,], c(2:5), print.data.result = FALSE)

Not run:
Read from connection
ox <- read_oxcal("http://tsdye.online/AP/ox.csv")
Plot all the columns
op <- occurrence_plot(ox, position = 1:ncol(ox))
Plot again
plot(op)
View metadata
str(op)

End(Not run)
original_file
Check for an original mcmc file

Description

Checks whether or not a file is identical to the one used to create an *archaeophases_mcmc* object.

Usage

```r
original_file(x, ...)
```

Arguments

- `x`
 An *archaeophases_mcmc* object.

- `...`
 Either a path to a CSV file, a connection, or the value `clipboard()` to read from the system clipboard. The CSV file can be compressed or plain.

Value

A boolean, TRUE if the files match, FALSE otherwise.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
## Not run:
rem <- read_chronomodel("http://tsdye.online/AP/cm/Chain_all_Events.csv")
original_file(rem, "http://tsdye.online/AP/cm/Chain_all_Events.csv")
## End(Not run)
```

original_file.archaeophases_mcmc

Check for an original mcmc file

Description

Checks whether or not a file is identical to the one used to create an *archaeophases_mcmc* object.

Usage

```r
## S3 method for class 'archaeophases_mcmc'
original_file(x, file = NULL, ...)
```
Arguments

x An archaeophases_mcmc object.
file Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain.
...

Details

If called with a single argument, checks the file indicated by the file_path attribute.

Value

A boolean, TRUE if the files match, FALSE otherwise.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
Author(s)

Thomas S. Dye, <tsd@tsdye.online>

Description

A data set containing information on the ages of two events. see the vignette Reproductibility for more details

Usage

oxc

Format

A data frame with 1000 rows and 2 variables:

- **foo-early** date oo-early
- **foo-late** date foo-late

PhaseDurationPlot

Plot the duration of a group

Description

This function draws the marginal posterior densities of the time elapsed between the minimum and the maximum of the dates included in a phase, and adds summary statistics (mean, CI)

Usage

PhaseDurationPlot(
 PhaseMin_chain,
 PhaseMax_chain,
 level = 0.95,
 title = "Duration of a group of dates",
 colors = TRUE,
 exportFile = NULL,
 exportFormat = "PNG",
 GridLength = 1024
)
Arguments

PhaseMin_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase.

PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase.

level Probability corresponding to the level of confidence used for the credible interval and the time range.

title Title of the plot.

colors If TRUE, use colors in the plot, otherwise produce a black and white plot.

exportFile Name of the file to be saved. If NULL, then no plot is saved.

exportFormat Format of the export file, either "PNG" or "SVG".

GridLength Length of the grid used to estimate the density.

Details

Plot of the density of the time elapsed between the minimum and the maximum calendar years of the events included in a phase, along with mean and credible interval.

Value

NULL, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhaseDurationPlot(Phase.1.alpha, Phase.1.beta, 0.95, "Duration of Phase 1")
PhaseDurationPlot(Phase.2.alpha, Phase.2.beta, 0.95, "Duration of Phase 2", colors = FALSE)

PhasePlot

Plot the characteristics of a group of events

Description

This function draws the marginal posterior densities of the minimum and the maximum of the events included in the phase and summary statistics including mean, credible interval, and time range. The result is given in calendar years (BC/AD).
PhasePlot

Usage

PhasePlot(
 PhaseMin_chain, # Numeric vector containing the output of the MCMC algorithm for the minimum
 PhaseMax_chain, # of the events included in the phase.
 level = 0.95, # Probability corresponding to the level of confidence used for the credible interval and the time range.
 title = "Characterisation of a group of dates", # The title of the plot
 colors = TRUE, # If TRUE, then use of colors in the plot, otherwise draw the plot in black and white.
 exportFile = NULL, # Name of the file to be saved. If NULL, then no plot is saved.
 exportFormat = "PNG", # Format of the export file, either "PNG" or "SVG".
 GridLength = 1024 # Length of the grid used to estimate the density.
)

Arguments

PhaseMin_chain | Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase.
PhaseMax_chain | Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase.
levels | Probability corresponding to the level of confidence used for the credible interval and the time range.
titles | The title of the plot
colors | If TRUE, then use of colors in the plot, otherwise draw the plot in black and white.
exportFile | Name of the file to be saved. If NULL, then no plot is saved.
exportFormat | Format of the export file, either "PNG" or "SVG".
GridLength | Length of the grid used to estimate the density.

Value

NULL, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhasePlot(Phase.1.alpha, Phase.1.beta, level = 0.95, title = "Densities of Phase 1")
Phases

Description
A data set containing information on the start and end dates of two phases.

Usage
Phases

Format
A data frame with 30,000 rows and 5 variables:

- **iter**: iteration of the MCMC algorithm
- **Phase.2.alpha**: start date of Phase 2
- **Phase.2.beta**: end date of Phase 2
- **Phase.1.alpha**: start date of Phase 1
- **Phase.1.beta**: end date of Phase 1

PhasesGap

Description
This function finds, if it exists, a gap or hiatus between two successive phases. This gap or hiatus is the longest interval that satisfies \(P(Phase1Max_chain < IntervalInf < IntervalSup < Phase2Min_chain|M) = level \)

Usage
PhasesGap(Phase1Max_chain, Phase2Min_chain, level = 0.95)

Arguments
- **Phase1Max_chain**: Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase.
- **Phase2Min_chain**: Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the following phase.
- **level**: Probability corresponding to the level of confidence.
PhaseStatistics

Value

Returns a vector of values containing the level of confidence and the endpoints of the gap between the successive phases. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhasesGap(Phase.1.beta, Phase.2.alpha, 0.95)
PhasesGap(Phase.1.beta, Phase.2.alpha, 0.50)

PhaseStatistics | Summary statistics of a phase

Description

Estimation of summary statistics, including the beginning and end of a phase, and the duration of the phase

Usage

PhaseStatistics(
 PhaseMin_chain,
 PhaseMax_chain,
 level = 0.95,
 roundingOfValue = 0
)

Arguments

PhaseMin_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the dates included in the phase.
PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the dates included in the phase.
level Probability corresponding to the level of confidence used for the credible interval and the highest density region.
roundingOfValue Integer indicating the number of decimal places.
Details

The summary statistics are those given by the `MarginalStatistics()` function. The time range is given by `PhaseTimeRange()` function. The duration is computed as follows: $\text{duration} = \text{maximum} - \text{minimum}$ at each iteration of the MCMC output.

Value

A matrix of values corresponding to the summary statistics:

1. Statistics of the minimum of the dates included in the phase
2. Statistics of the maximum of the dates included in the phase
3. Statistics of the duration of the dates included in the phase

The results are given in calendar year (in format BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Phases); attach(Phases)
PhaseStatistics(Phase.1.alpha, Phase.1.beta, 0.95)
PhaseStatistics(Phase.2.alpha, Phase.2.beta, 0.95)
```

```r
PhasesTransition Phase2Min_chain, Phase2Min_chain, level = 0.95)
```

Description

Finds, if it exists, the shortest interval that satisfies $P(\text{TransitionRangeInf} < \text{Phase1Max_chain} < \text{Phase2Min_chain} < \text{TransitionRangeSup}|M) = \text{level}$

Usage

```r
PhasesTransition(Phase1Max_chain, Phase2Min_chain, level = 0.95)
```

Arguments

- **Phase1Max_chain**: Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase.
- **Phase2Min_chain**: Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the following phase.
- **level**: Probability corresponding to the level of confidence.
phases_gap

Value

A vector of values containing the level of confidence and the endpoints of the transition interval between the successive phases. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Phases); attach(Phases)
PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.95)
PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.50)
```

phases_gap

Gap or hiatus between two successive phases (for phases in temporal order constraint)

Description

This function finds, if it exists, a gap or hiatus between two successive phases. This gap or hiatus is the longest interval that satisfies

\[
P(\text{Phase1 Max,chain} < \text{IntervalInf} < \text{IntervalSup} < \text{Phase2 Min,chain}| M) = \text{level}
\]

Usage

```r
phases_gap(a_chain, b_chain, level = 0.95)
```

Arguments

- **a_chain**: Numeric vector containing the output of the MCMC algorithm for the upper boundary of the older phase.
- **b_chain**: Numeric vector containing the output of the MCMC algorithm for the lower boundary of the younger phase.
- **level**: Probability corresponding to the level of confidence.

Value

A list with the following components:

- **hiatus**: A named vector where *inf* is the lower endpoint of the hiatus as a calendar year (AD/BC) or NA if there is no hiatus at level, and *sup* is the upper endpoint of the gap as a calendar year (AD/BC), or NA if there is no hiatus at level.
- **level**: Probability corresponding to the confidence level of the interval.
- **call**: The function call.
Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
data(Phases); attach(Phases)
phases_gap(Phase.1.beta, Phase.2.alpha, 0.95)
phases_gap(Phase.1.beta, Phase.2.alpha, 0.50)
```

<table>
<thead>
<tr>
<th>PhaseTimeRange</th>
<th>Phase time range</th>
</tr>
</thead>
</table>

Description

Computes the shortest interval that satisfies $P(\text{PhaseMin}_{chain} =< \text{IntervalInf} < \text{IntervalSup} =< \text{PhaseMax}_{chain}|M) = level$

Usage

```r
PhaseTimeRange(PhaseMin_chain, PhaseMax_chain, level = 0.95)
```

Arguments

- **PhaseMin_chain**: Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase.
- **PhaseMax_chain**: Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase.
- **level**: Probability corresponding to the desired level of confidence.

Value

A vector of values containing the desired level of confidence and the endpoints of the shortest time range associated with this desired level. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Phases); attach(Phases)
PhaseTimeRange(Phase.1.alpha, Phase.1.beta, 0.95)
PhaseTimeRange(Phase.2.alpha, Phase.2.beta, 0.90)
```
Description

Estimation of summary statistics for the beginning, end, and duration of a phase.

Usage

phase_statistics(min_chain, max_chain, level = 0.95, round_to = 0)

Arguments

min_chain Numeric vector containing the output of the MCMC algorithm for the start of the phase.
max_chain Numeric vector containing the output of the MCMC algorithm for the end of the phase.
level Probability corresponding to the level of confidence used for the credible interval and the highest density region.
round_to Integer indicating the number of decimal places.

Details

The summary statistics are those given by the `MarginalStatistics()` function. The time range is given by `PhaseTimeRange()` function. The duration is computed as follows: \(\text{duration} = \text{maximum} - \text{minimum} \) at each iteration of the MCMC output.

Value

A list with the following components:

- **statistics** A data frame where the rows correspond to the summary statistics and the columns include: start, the start of the phase in calendar years (BC/AD); end the end of the phase in calendar years (BC/AD); and duration the duration of the phase in years.
- **level** Probability corresponding to the level of confidence used for the credible interval and the highest density region.
- **call** The function call.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>
Examples

```r
data(Phases); attach(Phases)
phase_statistics(Phase.1.alpha, Phase.1.beta, 0.95)
phase_statistics(Phase.2.alpha, Phase.2.beta, 0.95)
## round to decade
phase_statistics(Phase.2.alpha, Phase.2.beta, 0.95, -1)
```

`plot.archaeophases_plot`

Recreate a graphical plot

Description

Recreates a graphic from data and metadata held in a `archaeophases_plot` object.

Usage

```r
## S3 method for class 'archaeophases_plot'
plot(x, ...)
```

Arguments

- `x` An `archaeophases_plot` object.
- `...` Other parameters.

Details

Uses data stored in the `archaeophases_plot` object, along with metadata from the call of the plotting function, to recreate the original graphic on the display.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

- `tempo_plot`
- `occurrence_plot`
- `marginal_plot`
- `multi_marginal_plot`
- `tempo_activity_plot`
- `multi_dates_plot`
Examples

```r
## Not run:
# Read from connection
ox <- read_oxcal("http://tsdye.online/AP/ox.csv")
tp_1 <- tempo_plot(ox, position = 1:ncol(ox))
# Recreate the tempo_plot with the original arguments
plot(tp_1)

## End(Not run)
```

read_bcal

Read MCMC output from BCal

Description

Import a CSV file containing the output of the MCMC algorithm produced by BCal.

Usage

```r
read_bcal(file, bin_width = 1, quiet = "no")
```

Arguments

- `file` (required): Either a path to a CSV file, a connection, or the value `clipboard()` to read from the system clipboard. The CSV file can be compressed or plain. See `read_csv` for details.
- `bin_width` (optional): The bin width specified for the BCal calibration. Defaults to the BCal default of 1.
- `quiet` (optional): One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings.

Details

The `read_bcal` function is built on `read_csv`. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded, as are an empty last column and an empty last row.

Value

An `archaeophases_mcmc` object containing the marginal posterior(s) as a data frame, or NULL if file is not found.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
See Also

read_csv
ImportCSV
new_archeophases_mcmc

Examples

Not run:
Import of MCMC output from BCaI
data(Fishpond)
write.csv(Fishpond, "fishpond_MCMC.csv", row.names=FALSE)
fishpond <- read_bcal("fishpond_MCMC.csv")

Read from connection
bc_1 <- read_bcal("http://tsdye.online/AP/bc-1.csv")
bc_17 <- read_bcal("http://tsdye.online/AP/bc-17.csv", bin_width = 17)

End(Not run)

read_chronomodel

Read MCMC output from ChronoModel

Description

Import a CSV file containing the output of the MCMC algorithm produced by ChronoModel.

Usage

read_chronomodel(file, decimal = ".", separator = ",", quiet = "no")

Arguments

- **file**: Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain. See read_delim for details.
- **decimal**: Either "." (default) or ",", the two choices offered by ChronoModel.
- **separator**: The character used to separate fields in the CSV file. Defaults to ",".
- **quiet**: One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings.

Details

The read_chronomodel function is built on read_delim. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded.
Value

An `archaeophases_mcmc` object containing the marginal posterior(s) from file, or NULL if file is not found.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

`read_delim`
`ImportCSV`
`new_archaeophases_mcmc`

Examples

```r
data(Events)
## Not run:
write.csv(Events, "events.csv", row.names=FALSE)
events = read_chronomodel("events.csv", decimal = ".", separator = ",")
# equivalent
events = read_chronomodel("events.csv")

rem <- read_chronomodel("http://tsdye.online/AP/cm/Chain_all_Events.csv")
## End(Not run)
```

```r
read_oxcal
```

Read MCMC output from OxCal

Description

Import a CSV file containing the output of the MCMC algorithm produced by `OxCal`.

Usage

```r
read_oxcal(file, quiet = "no")
```

Arguments

- **file**

 Either a path to a CSV file, a connection, or the value `clipboard()` to read from the system clipboard. The CSV file can be compressed or plain. See `read_csv` for details.

- **quiet**

 One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings.
Details

The `read_oxcal` function is built on `read_csv`. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded, as is an empty last column.

Value

An `archaeophases_mcmc` object containing the marginal posterior(s) as a data frame, or NULL if file is not found.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

`read_csv`, `ImportCSV`

Examples

```r
## Not run:
# Import of MCMC output from OxCal
data(Events)
#To do for saving in csv file
# write.csv(Events, "events.csv", row.names = FALSE)
fishpond <- read_oxcal("events.csv")

# Read from connection
oxc <- read_oxcal("http://tsdye.online/AP/ox.csv")

## End(Not run)
```

reproduce
Reproduce an MCMC data frame

Description

Reproduces a data frame from metadata held in an `archaeophases_mcmc` object.

Usage

`reproduce(x, ...)`
Arguments

x An archaeophases_mcmc object.
... Other parameters.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

reproduce.archeophases_mcmc

Reproduce an MCMC data frame

Description

Reproduces a data frame from metadata held in an archaeophases_mcmc object. Returns NULL if file is not the original file.

Usage

```r
## S3 method for class 'archeophases_mcmc'
reproduce(x, file = NULL, ...)
```

Arguments

x An archaeophases_mcmc object.
file A path to the original MCMC csv file, or a copy of the file.
... Other parameters.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

original_file

Examples

```r
## Not run:
x <- read_bcal("http://tsdye.online/AP/bc-1.csv")
y <- reproduce(x)
# TRUE
identical(x, y)
```

End(Not run)
reproduce.archaeophases_plot

Reproduce an ArchaeoPhases plot

Description

Reproduces a plot from metadata held in an archaeophases_plot object. Returns NULL if file is not the original file.

Usage

S3 method for class 'archaeophases_plot'
reproduce(x, file = NULL, ...)

Arguments

x An archaeophases_plot object.
file Path to the original MCMC csv file, or a copy of the file.
... Other parameters.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

original_file

Examples

Not run:
x <- read_bcal("http://tsdye.online/AP/bc-1.csv")
y <- multi_dates_plot(x)
z <- reproduce(y)
TRUE
identical(y, z)

#ERROR, Not the original file.
z <- reproduce(y, file = "foo.csv")

End(Not run)
SuccessionPlot

Density plots of two successive groups (for groups in temporal order constraint)

Description

Plot of the densities of the minimum and the maximum of the events included in each group, with summary statistics including the mean, credible interval, and highest posterior density. The result is given in calendar years (BC/AD).

Usage

SuccessionPlot(
 Phase1Min_chain,
 Phase1Max_chain,
 Phase2Min_chain,
 Phase2Max_chain,
 level = 0.95,
 title = "Characterisation of a succession of groups",
 exportFile = NULL,
 exportFormat = "PNG",
 GridLength = 1024
)

Arguments

Phase1Min_chain
 Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the oldest phase.

Phase1Max_chain
 Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase.

Phase2Min_chain
 Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the youngest phase.

Phase2Max_chain
 Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the youngest phase.

level
 Probability corresponding to the level of confidence.

title
 Title of the plot.

exportFile
 Name of the file to be saved. If NULL then no plot is saved.

exportFormat
 Format of the export file, either "PNG" or "SVG".

GridLength
 Length of the grid used to estimate the density.
Details

Curves represent the density of the minimum (oldest event) and the maximum (youngest event) of the events included in each group. Curves of the same color refer to the same group. Time range intervals are symbolised by segments above the curves drawn using the same color as curves of the associated group. Transition and gap range intervals are represented by two-coloured segments using the colors of the both groups in succession. If the gap between the successive groups does not exist, a cross is drawn instead of a segment.

Value

NULL, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
SuccessionPlot(Phase.1.alpha, Phase.1.beta, Phase.2.alpha, Phase.2.beta, level = 0.95)

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events

Usage

TempoActivityPlot(
 data,
 position,
 plot.result = NULL,
 level = 0.95,
 title = "Activity plot",
 subtitle = NULL,
 caption = "ArcheoPhases",
 x.label = "Calendar year",
 y.label = "Activity",
 line.types = c("solid"),
 width = 7,
 height = 7,
TempoActivityPlot

```r
units = "in",
x.min = NULL,
x.max = NULL,
file = NULL,
x.scale = "calendar",
elapsed.origin.position = NULL,
newWindow = TRUE,
print.data.result = FALSE
```

Arguments

data Data frame containing the output of the MCMC algorithm.

position Numeric vector containing the position of the column corresponding to the MCMC chains of interest.

plot.result List containing the data to plot, typically the result of a previous run of TempoActivityPlot().

level Probability corresponding to the level of confidence.

title Title of the plot.

subtitle Subtitle of the plot.

caption Caption of the plot.

x.label Label of the x-axis.

y.label Label of the y-axis.

line.types Type of the lines drawn on the plot.

width Width of the plot in units.

height Height of the plot in units.

units Units used to specify width and height, one of "in" (default), "cm", or "mm".

x.min Minimum value for x-axis.

x.max Maximum value for x-axis.

file Name of the file to be saved if specified. If NULL, then no file is saved.

x.scale One of "calendar", "bp", or "elapsed".

elapsed.origin.position

If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.

newWindow Whether or not the plot is drawn within a new window.

print.data.result

If TRUE, the list containing the data to plot is returned.

Value

NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE). The result is given in calendar years (BC/AD).
Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References

Examples
```r
data(Events);
TempoActivityPlot(Events[1:1000, ], c(2:5), print.data.result = FALSE)
TempoActivityPlot(Events[1:1000, ], c(2:5), print.data.result = FALSE)
```

Description
A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events.

Usage
```r
TempoPlot(
data,
position,
plot.result = NULL,
level = 0.95,
count = TRUE,
Gauss = FALSE,
title = "Tempo plot",
subtitle = NULL,
caption = "ArcheoPhases",
legend.title = "Legend",
legend.labels = c("Bayes estimate", "Credible interval, low", "Credible interval, high", "Gaussian approx., high", "Gaussian approx., low"),
x.label = "Calendar year",
y.label = "Cumulative events",
line.types = c("solid", "12", "11", "28", "28"),
width = 7,
height = 7,
units = "in",
x.min = NULL,
x.max = NULL,
```

TempoPlot

Tempo plot
colors = TRUE,
file = NULL,
x.scale = "calendar",
elapsed.origin.position = NULL,
newWindow = TRUE,
print.data.result = FALSE
)

Arguments

data
position
plot.result
level
count
Gauss
title
subtitle
caption
legend.title
legend.labels
x.label
y.label
line.types
width
height
units
x.min
x.max
colors
file
x.scale
elapsed.origin.position
newWindow
print.data.result

data: Data frame containing the output of the MCMC algorithm.
position: Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
plot.result: List containing the data to plot, typically the result of a previous run of TempoPlot().
level: Probability corresponding to the level of confidence.
count: If TRUE the counting process is a number, otherwise it is a probability.
Gauss: If TRUE, the Gaussian approximation of the credible interval is used.
title: Title of the plot.
subtitle: Subtitle of the plot.
caption: Caption of the plot.
legend.title: Title of the plot legend.
legend.labels: Vector of strings to label legend entries.
x.label: Label of the x-axis.
y.label: Label of the y-axis.
line.types: Type of the lines drawn on the plot in the order of legend.labels.
width: Width of the plot in units.
height: Height of the plot in units.
units: Units used to specify width and height, one of "in" (default), "cm", or "mm".
x.min: Minimum value for x-axis.
x.max: Maximum value for x-axis.
colors: If TRUE, the plot is drawn with colors, otherwise it is drawn in black and white.
file: Name of the file that will be saved if specified. If NULL no file is saved.
x.scale: One of "calendar", "bp", or "elapsed".
elapsed.origin.position: If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.
newWindow: Whether or not the plot is drawn within a new window.
print.data.result: If TRUE, a list containing the data to plot will be returned.
Details

The tempo plot is one way to measure change over time: it estimates the cumulative occurrence of archaeological events in a Bayesian calibration. The tempo plot yields a graphic where the slope of the plot directly reflects the pace of change: a period of rapid change yields a steep slope and a period of slow change yields a gentle slope. When there is no change, the plot is horizontal. When change is instantaneous, the plot is vertical.

Value

`NULL`, called for its side effects. It may also return a list containing the data to plot (if `print.data.result = TRUE`).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References

See Also

`tempo_plot`

Examples

```r
data(Events);
TempoPlot(Events[1:1000, ], c(2:5), print.data.result = FALSE)
TempoPlot(Events[1:1000, ], c(2:5), count = TRUE, print.data.result = FALSE)
```

`ttempo_activity_plot` *Plot the derivative of the tempo plot Bayesian estimate*

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events
tempo_activity_plot

Usage

tempo_activity_plot(
 data,
 position = 1:ncol(data),
 title = "Tempo Activity Plot",
 subtitle = NULL,
 caption = "ArcheoPhases",
 x_label = "Calendar year",
 y_label = "Activity",
 line_types = c("solid"),
 width = 7,
 height = 7,
 units = "in",
 x_min = NULL,
 x_max = NULL,
 file = NULL,
 x_scale = "calendar",
 elapsed_origin_position = NULL,
 new_window = TRUE,
 plot_result = TRUE
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
x_label Label of the x-axis.
y_label Label of the y-axis.
line_types Type of the lines drawn on the plot.
width Width of the plot in units.
height Height of the plot in units.
units Units used to specify width and height, one of "in" (default), "cm", or "mm".
x_min Minimum value for x-axis.
x_max Maximum value for x-axis.
file Name of the file to be saved if specified. If NULL, then no file is saved.
x_scale One of "calendar", "bp", or "elapsed".
elapsed_origin_position If x_scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.
new_window Whether or not the plot is drawn within a new window.
plot_result If TRUE, then draw a plot on the display, else suppress drawing.
Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
Thomas S. Dye, <tsd@tsdye.online>

References

Examples

data(Events);
tempo_activity_plot(Events[1:1000,], c(2:5))

data(Events);
tempo_plot(data, position = 1:ncol(data), name = list("All"), level = 0.95, count = TRUE, Gauss = FALSE, title = NULL, subtitle = NULL, caption = NULL, legend_title = NULL, legend_position = "bottom", legend_labels = c("Bayes estimate", "Credible interval high", "Credible interval low"), x_label = "Calendar year", y_label = "Cumulative events", line_types = c("solid", "dotted", "dotted"),

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events

Usage

tempo_plot(
data, position = 1:ncol(data), name = list("All"), level = 0.95, count = TRUE, Gauss = FALSE, title = NULL, subtitle = NULL, caption = NULL, legend_title = NULL, legend_position = "bottom", legend_labels = c("Bayes estimate", "Credible interval high", "Credible interval low"), x_label = "Calendar year", y_label = "Cumulative events", line_types = c("solid", "dotted", "dotted"),
```
line_sizes = c(1.2, 0.8, 0.8),
line_colors = c("black", "grey50", "grey50"),
width = 7,
height = 7,
unit = "in",
x_min = NULL,
x_max = NULL,
color.palette = NULL,
file = NULL,
x_scale = "calendar",
elapsed.origin.position = NULL,
columns = 1,
new.window = TRUE,
plot.result = TRUE
```

Arguments

data
Data frame or `archaeophases_mcmc` object containing the output of the MCMC algorithm.

position
A list, each member of which is either a numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names. For convenience, a vector can be substituted for the singleton list.

name
A list, each member of which is a string that names the kind of event in the corresponding element of `position`. For convenience, a string can be substituted for the singleton list.

level
Probability corresponding to the level of confidence.

count
If TRUE the counting process is a number, otherwise it is a probability.

Gauss
If TRUE, the Gaussian approximation of the credible interval is used.

title
Title of the plot.

subtitle
Subtitle of the plot.

caption
Caption of the plot.

legend_title
Title of the plot legend.

legend_position
One of "top", "bottom" (default), "left", "right".

legend_labels
Vector of three strings to label legend entries. The strings must be unique. The first string labels the central tendency and the second and third strings label the high and low spreads.

x_label
Label of the x-axis.

y_label
Label of the y-axis.

line_types
Type of the lines drawn on the plot in the order of `legend_labels`.

line_sizes
Width of the lines drawn on the plot in the order of `legend_labels`.
line_colors Color names for the lines drawn on the plot in the order of legend_labels. If color_palette is NULL, then standard color names are expected, otherwise the color names are from the supplied color_palette.

width Width of the plot in unit.

height Height of the plot in unit.

unit String recognized by the ggsave() function, one of "in" (default), "cm", or "mm".

x_min Minimum value for x-axis.

x_max Maximum value for x-axis.

color_palette A palette that supplies the colors used in the plot.

file Name of the file that will be saved if specified. If NULL no file is saved.

x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.

elapsed_origin_position If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.

columns Number of columns for facet.

new_window Whether or not the plot is drawn within a new window.

plot_result If TRUE, then draw a plot on the display, else suppress drawing.

Details

The tempo plot is one way to measure change over time: it estimates the cumulative occurrence of archaeological events in a Bayesian calibration. The tempo plot yields a graphic where the slope of the plot directly reflects the pace of change: a period of rapid change yields a steep slope and a period of slow change yields a gentle slope. When there is no change, the plot is horizontal. When change is instantaneous, the plot is vertical.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,

Thomas S. Dye, <tsd@tsdye.online>, and

Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References

See Also

TempoPlot
new_archaeophases_plot

Examples

data(Events);
tempo_plot(Events[1:1000,], c(2:5))
tempo_plot(Events[1:1000,], c(2:5), count = TRUE)

Not run:
Read from connection
ox <- read_oxcal("http://tsdye.online/AP/ox.csv")
Plot all the columns
tp <- tempo_plot(ox)
Reproduce the tempo plot
plot(tp)
View metadata
str(tp)
Check that the MCMC data file hasn't changed
original_file(tp)

Use a custom palette
library(kroma)
light <- colours("light")
tp <- tempo_plot(ox, color_palette = light(2),
line_colors = c("light blue", "pale grey", "pale grey"))

End(Not run)

undated_sample Predictive distribution of date

Description

Predictive distribution of date

Usage

undated_sample(data1, data2, level = 0.95)

Arguments

data1 Numeric vector containing the output of the MCMC algorithm for the begining of interval
data2 Numeric vector containing the output of the MCMC algorithm for the end of interval
level Probability corresponding to the desired level of confidence. @return A list with the following components:
Details

Simulate the sample from the predictive distribution of an undated sample in stratigraphic constraint between two dates. The input is an MCMC sample simulated from the joint posterior distribution of these dates.

Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr> and

TR time range to characterize the period defined by data1 and data2
ci credible interval for the predictive date
mcmc simulated sample from undated sample age
call Function call.

Examples

```
data(Phases);
attach(Phases)
sample = undated_sample(Phase.1.alpha,Phase.1.beta)
# credible interval for the new date.
sample$credible
# time range interval
sample$timerange
# graphics = densities / IC / time range ggplot
sample$gr
```

valid_url

Check if a resource can be located

Description

Function retrieved from https://stackoverflow.com/questions/52911812/check-if-url-exists-in-r

Usage

`valid_url(url_in, t = 2)`

Arguments

- `url_in`
 A character string.
- `t`
 Timeout in seconds.
Index

* datasets
 - Events, 32
 - oxc, 73
 - Phases, 76
 - AgeDepth, 4
 - allen_analyze, 5
 - allen_basic_relation_set, 6
 - allen_basic_relation_strings, 7
 - allen_composition, 7
 - allen_concurrent_relations, 8
 - allen_create_concurrent_vector, 8
 - allen_create_distinct_endpoint_vector, 9
 - allen_create_result_vector, 9
 - allen_ensure_set_vector, 10
 - allen_illustrate, 10
 - allen_is_result_vector, 12
 - allen_is_set_string, 12
 - allen_is_set_vector, 13
 - allen_joint_concurrency, 13
 - allen_lattice_x, 14
 - allen_lattice_y, 14
 - allen_observe, 15
 - allen_observe_frequency, 16
 - allen_plot, 17
 - allen_proportion_result, 18
 - allen_relate_intervals, 19
 - allen_relation, 20
 - allen_set_to_vector, 20
 - allen_six_value_set, 21
 - allen_string_to_set, 21
 - allen_string_to_vector, 22
 - allen_union, 22
 - allen_update_result, 23
 - analyze_allen_relations, 23
 - app_ArchaeoPhases, 24
 - ArchaeoPhases, 24
 - composition_lookup_table, 25
 - CreateMinMaxGroup, 26
 - credible_interval, 27
 - CredibleInterval, 27
 - dates_hiatus, 29
 - DatesHiatus, 28
 - estimate_range, 30
 - Events, 32
 - illustrate_allen_relations, 32
 - ImportCSV, 33, 84–86
 - ImportCSV.BCal, 35, 35
 - is.url, 36
 - marginal_plot, 40, 82
 - marginal_statistics, 43
 - MarginalPlot, 37
 - MarginalProba, 38
 - MarginalStatistics, 39
 - mcmc, 25
 - mcmc.list, 25
 - multi_credible_interval, 56
 - multi_dates_plot, 57, 82
 - multi_hpd, 60
 - multi_marginal_plot, 61, 82
 - multi_marginal_statistics, 63
 - MultiCredibleInterval, 44
 - MultiDatesPlot, 45
 - MultiHPD, 47
 - MultiMarginalPlot, 48
 - MultiPhasePlot, 50
 - MultiPhasesGap, 51
 - MultiPhasesTransition, 52
 - MultiPhaseTimeRange, 54
 - MultiSuccessionPlot, 55
 - new_archaeophases_mcmc, 64, 84, 85
 - new_archaeophases_plot, 65, 99
 - coda.mcmc, 24
occurrence_plot, 68, 82
OccurrencePlot, 66
original_file, 71, 87, 88
original_file.archaeophases_mcmc, 71
original_file.archaeophases_plot, 72
oxc, 73
phase_statistics, 81
PhaseDurationPlot, 73
PhasePlot, 74
Phases, 76
phases_gap, 79
PhasesGap, 76
PhaseStatistics, 77
PhasesTransition, 78
PhaseTimeRange, 80
plot.archaeophases_plot, 82
read_bcal, 65, 66, 83
read_chronomodel, 35, 65, 66, 84
read_csv, 83–86
read_delim, 84, 85
read_oxcal, 35, 65, 66, 85
reproduce, 86
reproduce.archaeophases_mcmc, 87
reproduce.archaeophases_plot, 88
SuccessionPlot, 89
tempo_activity_plot, 82, 94
tempo_plot, 82, 94, 96
TempoActivityPlot, 90
TempoPlot, 92, 99
undated_sample, 99
url.exists, 36
valid_url, 100