Package ‘AutoScore’

April 8, 2022

Type Package
Title An Interpretable Machine Learning-Based Automatic Clinical Score Generator
Version 0.3.0
Date 2022-04-05
URL https://github.com/nliulab/AutoScore
BugReports https://github.com/nliulab/AutoScore/issues
Description A novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation. The details are described in our research paper <doi:10.2196/21798>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.

License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports tableone, pROC, randomForest, ggplot2, rpart, knitr
Depends R (>= 2.10)
VignetteBuilder knitr
Suggests rmarkdown
NeedsCompilation no

Author Feng Xie [aut, cre] (<https://orcid.org/0000-0002-0215-667X>), Yilin Ning [aut] (<https://orcid.org/0000-0002-6758-4472>), Han Yuan [aut] (<https://orcid.org/0000-0002-2674-6068>), Mingxuan Liu [aut] (<https://orcid.org/0000-0002-4274-9613>), Ehsan Saffari [aut] (<https://orcid.org/0000-0002-6473-4375>), Bibhas Chakraborty [aut] (<https://orcid.org/0000-0002-7366-0478>), Nan Liu [aut] (<https://orcid.org/0000-0003-3610-4883>)
Maintainer Feng Xie <xief@u.duke.nus.edu>
Repository CRAN
Date/Publication 2022-04-08 06:42:40 UTC

R topics documented:

add_baseline .. 2
assign_score ... 3
AutoScore_fine_tuning .. 3
AutoScore_parsimony .. 5
AutoScore_rank .. 7
AutoScore_testing ... 8
AutoScore_weighting .. 9
change_reference ... 10
check_data .. 11
compute_auc_val ... 11
compute_descriptive_table 12
compute_multi_variable_table 13
compute_score_table 13
compute_uni_variable_table 14
conversion_table .. 14
get_cut_vec .. 15
plot_roc_curve ... 16
print_roc_performance 16
print_scoring_table 17
sample_data .. 17
sample_data_small ... 18
split_data .. 18
transform_df_fixed ... 19

Index 20

| add_baseline | Internal Function: Add baselines after second-step logistic regression (part of AutoScore Module 3) |

Description

Internal Function: Add baselines after second-step logistic regression (part of AutoScore Module 3)

Usage

add_baseline(df, coef_vec)
assign_score

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>A data.frame used for logistic regression</td>
</tr>
<tr>
<td>coef_vec</td>
<td>Generated from logistic regression</td>
</tr>
</tbody>
</table>

Value

Processed vector for generating the scoring table

assign_score

Internal Function: Automatically assign scores to each subjects given new data set and scoring table (Used for intermediate and final evaluation)

Description

Internal Function: Automatically assign scores to each subjects given new data set and scoring table (Used for intermediate and final evaluation)

Usage

assign_score(df, score_table)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>A data.frame used for testing, where variables keep before categorization</td>
</tr>
<tr>
<td>score_table</td>
<td>A vector containing the scoring table</td>
</tr>
</tbody>
</table>

Value

Processed data.frame with assigned scores for each variables

AutoScore_fine_tuning

AutoScore STEP(iv): Fine-tune the score by revising cut_vec with domain knowledge (AutoScore Module 5)

Description

Domain knowledge is essential in guiding risk model development. For continuous variables, the variable transformation is a data-driven process (based on "quantile" or "kmeans"). In this step, the automatically generated cutoff values for each continuous variable can be fine-tuned by combining, rounding, and adjusting according to the standard clinical norm. Revised cut_vec will be input with domain knowledge to update scoring table. User can choose any cut-off values/any number of categories. Then final Scoring table will be generated. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.
Usage

AutoScore_fine_tuning(
 train_set,
 validation_set,
 final_variables,
 cut_vec,
 max_score = 100
)

Arguments

train_set A processed data.frame that contains data to be analyzed, for training.
validation_set A processed data.frame that contains data for validation purpose.
final_variables A vector containing the list of selected variables, selected from Step(ii) AutoScore_parsimony. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.
cut_vec Generated from STEP(iii) AutoScore_weighting. Please follow the guidebook
max_score Maximum total score (Default: 100).

Value

Generated final table of scoring model for downstream testing

References

See Also

AutoScore_rank, AutoScore_parsimony, AutoScore_weighting, AutoScore_testing. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

Examples

Please see the guidebook or vignettes
AutoScore_parsimony AutoScore STEP(ii): Select the best model with parsimony plot (AutoScore Modules 2+3+4)

Description

AutoScore STEP(ii): Select the best model with parsimony plot (AutoScore Modules 2+3+4)

Usage

AutoScore_parsimony(
 train_set,
 validation_set,
 rank,
 max_score = 100,
 n_min = 1,
 n_max = 20,
 cross_validation = FALSE,
 fold = 10,
 categorize = "quantile",
 quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1),
 max_cluster = 5,
 do_trace = FALSE,
 auc_lim_min = 0.5,
 auc_lim_max = "adaptive"
)

Arguments

train_set A processed data.frame that contains data to be analyzed, for training.
validation_set A processed data.frame that contains data for validation purpose.
rank the raking result generated from AutoScore STEP(i) AutoScore_rank
max_score Maximum total score (Default: 100).
n_min Minimum number of selected variables (Default: 1).
n_max Maximum number of selected variables (Default: 20).
cross_validation If set to TRUE, cross-validation would be used for generating parsimony plot, which is suitable for small-size data. Default to FALSE
fold The number of folds used in cross validation (Default: 10). Available if cross_validation = TRUE.
categorize Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile").
quantiles Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if categorize = "quantile".
AutoScore_parsimony

- **max_cluster**
 The max number of cluster (Default: 5). Available if `categorize = "kmeans"`.

- **do_trace**
 If set to TRUE, all results based on each fold of cross-validation would be printed out and plotted (Default: FALSE). Available if `cross_validation = TRUE`.

- **auc_lim_min**
 Min y_axis limit in the parsimony plot (Default: 0.5).

- **auc_lim_max**
 Max y_axis limit in the parsimony plot (Default: "adaptive").

Details

This is the second step of the general AutoScore workflow, to generate the parsimony plot to help select a parsimonious model. In this step, it goes through AutoScore Module 2,3 and 4 multiple times and to evaluate the performance under different variable list. The generated parsimony plot would give researcher an intuitive figure to choose the best models. If data size is small (ie, <5000), an independent validation set may not be a wise choice. Then, we suggest using cross-validation to maximize the utility of data. Set `cross_validation=TRUE`. Run `vignette("Guide_book",package = "AutoScore")` to see the guidebook or vignette.

Value

List of AUC value for different number of variables

References

See Also

`AutoScore_rank`, `AutoScore_weighting`, `AutoScore_fine_tuning`, `AutoScore_testing`. Run `vignette("Guide_book",package = "AutoScore")` to see the guidebook or vignette.

Examples

```r
# see AutoScore Guidebook for the whole 5-step workflow
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
out_split <- split_data(data = sample_data, ratio = c(0.7, 0.1, 0.2))
train_set <- out_split$train_set
validation_set <- out_split$validation_set
ranking <- AutoScore_rank(train_set, ntree=100)
AUC <- AutoScore_parsimony(
  train_set, validation_set, rank = ranking,
  max_score = 100, n_min = 1, n_max = 20,
  categorize = "quantile",
)```
AutoScore STEP(i): Rank variables with machine learning (AutoScore Module 1)

Description
AutoScore STEP(i): Rank variables with machine learning (AutoScore Module 1)

Usage
AutoScore_rank(train_set, validation_set = NULL, method = "rf", ntree = 100)

Arguments
- train_set: A processed data.frame that contains data to be analyzed, for training.
- validation_set: A processed data.frame that contains data to be analyzed, for auc-based ranking.
- method: method for ranking. Options: 1. ‘rf‘ - random forest (default), 2. ‘auc‘ - auc-based (required validation set). For "auc", univariate models will be built based on the train set, and the variable ranking is constructed via the AUC performance of corresponding univariate models on the validation set (‘validation_set’).
- ntree: Number of trees in the random forest (Default: 100).

Details
The first step in the AutoScore framework is variable ranking. We use random forest (RF), an ensemble machine learning algorithm, to identify the top-ranking predictors for subsequent score generation. This step correspond to Module 1 in the AutoScore paper.

Value
Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)

References
- Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32

See Also
AutoScore_parsimony, AutoScore_weighting, AutoScore_fine_tuning, AutoScore_testing, Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.
Examples

# see AutoScore Guidebook for the whole 5-step workflow
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
ranking <- AutoScore_rank(sample_data, ntree = 50)

AutoScore_testing

AutoScore STEP(v): Evaluate the final score with ROC analysis (AutoScore Module 6)

Description

Domain knowledge is essential in guiding risk model development. For continuous variables, the variable transformation is a data-driven process (based on "quantile", "kmeans" or "decision_tree"). In this step, the automatically generated cutoff values for each continuous variable can be fine-tuned by combining, rounding, and adjusting according to the standard clinical norm. Revised cut_vec will be input with domain knowledge to update scoring table. User can choose any cut-off values/any number of categories. Then final Scoring table will be generated. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

Usage

AutoScore_testing(
  test_set,
  final_variables,
  cut_vec,
  scoring_table,
  threshold = "best",
  with_label = TRUE
)

Arguments

test_set A processed data.frame that contains data for testing purpose. This data.frame should have same format as train_set (same variable names and outcomes)

final_variables A vector containing the list of selected variables, selected from Step(ii) AutoScore_parsimony. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

cut_vec Generated from STEP(iii) AutoScore_weighting. Please follow the guidebook

scoring_table The final scoring table after fine-tuning, generated from STEP(iv) AutoScore_fine_tuning. Please follow the guidebook

threshold Score threshold for the ROC analysis to generate sensitivity, specificity, etc. If set to "best", the optimal threshold will be calculated (Default:"best").

with_label Set to TRUE if there are labels in the test_set and performance will be evaluated accordingly (Default:TRUE). Set it to "FALSE" if there are not "label" in the "test_set" and the final predicted scores will be the output without performance evaluation.
**AutoScore_weighting**

**Value**

A data frame with predicted score and the outcome for downstream visualization.

**References**


**See Also**

*AutoScore_rank, AutoScore_parsimony, AutoScore_weighting, AutoScore_fine_tuning, print_roc_performance.*

Run `vignette("Guide_book",package = "AutoScore")` to see the guidebook or vignette.

**Examples**

```r
Please see the guidebook or vignettes
```

---

**AutoScore_weighting**

AutoScore STEP(iii): Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)

**Description**

AutoScore STEP(iii): Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)

**Usage**

```r
AutoScore_weighting(
 train_set, validation_set, final_variables,
 max_score = 100, categorize = "quantile",
 max_cluster = 5,
 quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1)
)
```

**Arguments**

- `train_set`: A processed data.frame that contains data to be analyzed, for training.
- `validation_set`: A processed data.frame that contains data for validation purpose.
- `final_variables`: A vector containing the list of selected variables, selected from Step(ii) `AutoScore_parsimony`. Run `vignette("Guide_book",package = "AutoScore")` to see the guidebook or vignette.
change_reference

max_score: Maximum total score (Default: 100).

categorize: Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile").

max_cluster: The max number of cluster (Default: 5). Available if categorize = "kmeans".

quantiles: Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if categorize = "quantile".

Value

Generated cut_vec for downstream fine-tuning process STEP(iv) AutoScore_fine_tuning.

References


See Also

AutoScore_rank, AutoScore_parsimony, AutoScore_fine_tuning, AutoScore_testing. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

change_reference  Internal Function: Change Reference category after first-step logistic regression (part of AutoScore Module 3)

Description

Internal Function: Change Reference category after first-step logistic regression (part of AutoScore Module 3)

Usage

change_reference(df, coef_vec)

Arguments

df: A data.frame used for logistic regression

coeff_vec: Generated from logistic regression

Value

Processed data.frame after changing reference category
check_data

AutoScore function: Check whether the input dataset fulfill the requirement of the AutoScore

Description
AutoScore function: Check whether the input dataset fulfill the requirement of the AutoScore

Usage
check_data(data)

Arguments
- data: The data to be checked

Value
No return value, the result of the checking will be printed out.

Examples
```r
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
check_data(sample_data)
```

compute_auc_val

Internal function: Compute AUC based on validation set for plotting parsimony (AutoScore Module 4)

Description
Compute AUC based on validation set for plotting parsimony

Usage
```r
compute_auc_val(
 train_set_1,
 validation_set_1,
 variable_list,
 categorize,
 quantiles,
 max_cluster,
 max_score
)
```
**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>train_set_1</td>
<td>Processed training set</td>
</tr>
<tr>
<td>validation_set_1</td>
<td>Processed validation set</td>
</tr>
<tr>
<td>variable_list</td>
<td>List of included variables</td>
</tr>
<tr>
<td>categorize</td>
<td>Methods for categorize continuous variables. Options include &quot;quantile&quot; or</td>
</tr>
<tr>
<td>quantiles</td>
<td>&quot;kmeans&quot;</td>
</tr>
<tr>
<td>max_cluster</td>
<td>The max number of cluster (Default: 5). Available if categorize = &quot;kmeans&quot;.</td>
</tr>
<tr>
<td>max_score</td>
<td>Maximum total score</td>
</tr>
</tbody>
</table>

**Value**

A List of AUC for parsimony plot

```
compute_descriptive_table

AutoScore function: Descriptive Analysis
```

**Description**

Compute descriptive table (usually Table 1 in the medical literature) for the dataset.

**Usage**

```
compute_descriptive_table(df)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>data frame after checking and fulfilling the requirement of AutoScore</td>
</tr>
</tbody>
</table>

**Value**

No return value and the result of the descriptive analysis will be printed out.

**Examples**

```
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
compute_descriptive_table(sample_data)
```
**compute_multi_variable_table**

*AutoScore function: Multivariate Analysis*

**Description**

Generate tables for multivariate analysis

**Usage**

```r
compute_multi_variable_table(df)
```

**Arguments**

- `df` data frame after checking

**Value**

result of the multivariate analysis

**Examples**

```r
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
multi_table <- compute_multi_variable_table(sample_data)
```

---

**compute_score_table**

*Internal function: Compute scoring table based on training dataset (AutoScore Module 3)*

**Description**

Compute scoring table based on training dataset

**Usage**

```r
compute_score_table(train_set_2, max_score, variable_list)
```

**Arguments**

- `train_set_2` Processed training set after variable transformation (AutoScore Module 2)
- `max_score` Maximum total score
- `variable_list` List of included variables

**Value**

A scoring table
compute_uni_variable_table

AutoScore function: Univariable Analysis

Description

Perform univariable analysis and generate the result table with odd ratios.

Usage

compute_uni_variable_table(df)

Arguments

df data frame after checking

Value

result of univariate analysis

Examples

data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
uni_table<-compute_uni_variable_table(sample_data)

conversion_table

AutoScore function: Print conversion table based on final performance evaluation

Description

Print conversion table based on final performance evaluation

Usage

conversion_table(
    pred_score,
    by = "risk",
    values = c(0.01, 0.05, 0.1, 0.2, 0.5)
)
get_cut_vec

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred_score</td>
<td>a vector with outcomes and final scores generated from AutoScore_fine_tuning.</td>
</tr>
<tr>
<td>by</td>
<td>specify correct method for categorizing the threshold: by &quot;risk&quot; or &quot;score&quot;. Default to &quot;risk&quot;</td>
</tr>
<tr>
<td>values</td>
<td>A vector of threshold for analyze sensitivity, specificity and other metrics. Default to &quot;c(0.01,0.05,0.1,0.2,0.5)&quot;</td>
</tr>
</tbody>
</table>

Value

No return value and the conversion will be printed out directly.

See Also

AutoScore_testing

Description

Internal function: Calculate cut_vec from the training set (AutoScore Module 2)

Usage

get_cut_vec(
  df, 
  quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1),
  max_cluster = 5,
  categorize = "quantile"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>training set to be used for calculate the cut vector</td>
</tr>
<tr>
<td>quantiles</td>
<td>Predefined quantiles to convert continuous variables to categorical ones. (Default: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if categorize = &quot;quantile&quot;.</td>
</tr>
<tr>
<td>max_cluster</td>
<td>The max number of cluster (Default: 5). Available if categorize = &quot;kmeans&quot;.</td>
</tr>
<tr>
<td>categorize</td>
<td>Methods for categorize continuous variables. Options include &quot;quantile&quot; or &quot;kmeans&quot; (Default: &quot;quantile&quot;).</td>
</tr>
</tbody>
</table>

Value

cut_vec for transform_df_fixed
plot_roc_curve  

*Internal Function: Plotting ROC curve*

**Description**

Internal Function: Plotting ROC curve

**Usage**

```r
plot_roc_curve(prob, labels, quiet = TRUE)
```

**Arguments**

- **prob**: Predicate probability
- **labels**: Actual outcome (binary)
- **quiet**: if set to TRUE, there will be no trace printing

**Value**

No return value and the ROC curve will be plotted.

---

print_roc_performance  

*AutoScore function: Print receiver operating characteristic (ROC) performance*

**Description**

Print receiver operating characteristic (ROC) performance

**Usage**

```r
print_roc_performance(label, score, threshold = "best")
```

**Arguments**

- **label**: outcome variable
- **score**: predicted score
- **threshold**: Threshold for analyze sensitivity, specificity and other metrics. Default to "best"

**Value**

No return value and the ROC performance will be printed out directly.

**See Also**

`AutoScore_testing`
print_scoring_table  AutoScore Function: Print scoring tables for visualization

Description
AutoScore Function: Print scoring tables for visualization

Usage
print_scoring_table(scoring_table, final_variable)

Arguments
scoring_table  Raw scoring table generated by AutoScore step(iv)  AutoScore_fine_tuning
final_variable  Final included variables

Value
Data frame of formatted scoring table

See Also
AutoScore_fine_tuning, AutoScore_weighting

sample_data  20000 simulated ICU admission data, with the same distribution as the data in the MIMIC-III ICU database

Description
20000 simulated samples, with the same distribution as the data in the MIMIC-III ICU database. It is used for demonstration only in the Guidebook. Run vignette("Guide_book", package = "AutoScore") to see the guidebook or vignette.


Usage
sample_data

Format
An object of class data.frame with 20000 rows and 22 columns.
sample_data_small  1000 simulated ICU admission data, with the same distribution as the data in the MIMIC-III ICU database

Description

1000 simulated samples, with the same distribution as the data in the MIMIC-III ICU database. It is used for demonstration only in the Guidebook. Run `vignette("Guide_book", package = "AutoScore")` to see the guidebook or vignette.


Usage

```r
sample_data_small
```

Format

An object of class `data.frame` with 1000 rows and 22 columns.

split_data  AutoScore function: Automatically splitting dataset to train, validation and test set

Description

AutoScore function: Automatically splitting dataset to train, validation and test set

Usage

```r
split_data(data, ratio, cross_validation = FALSE)
```

Arguments

- `data`  The dataset to be split
- `ratio`  The ratio for dividing dataset into training, validation and testing set. (Default: c(0.7, 0.1, 0.2))
- `cross_validation`  If set to `TRUE`, cross-validation would be used for generating parsimony plot, which is suitable for small-size data. Default to `FALSE`

Value

Returns a list containing training, validation and testing set
Examples

```r
data("sample_data")
set.seed(4)
large sample size
out_split <- split_data(data = sample_data, ratio = c(0.7, 0.1, 0.2))
small sample size (for cross-validation)
out_split <- split_data(data = sample_data, ratio = c(0.7, 0, 0.3), cross_validation = TRUE)
```

transform_df_fixed

**Internal function:** Categorizing continuous variables based on `cut_vec` (AutoScore Module 2)

Description

Internal function: Categorizing continuous variables based on `cut_vec` (AutoScore Module 2)

Usage

transform_df_fixed(df, cut_vec)

Arguments

- `df` : dataset(training, validation or testing) to be processed
- `cut_vec` : fixed cut vector

Value

Processed `data.frame` after categorizing based on fixed `cut_vec`
Index

* datasets
  sample_data, 17
  sample_data_small, 18

add_baseline, 2
assign_score, 3
AutoScore_fine_tuning, 3, 6–10, 15, 17
AutoScore_parsimony, 4, 5, 7–10
AutoScore_rank, 4–6, 7, 9, 10
AutoScore_testing, 4, 6, 7, 8, 10, 15, 16
AutoScore_weighting, 4, 6–9, 9, 17

change_reference, 10
check_data, 11
compute_auc_val, 11
compute_descriptive_table, 12
compute_multi_variable_table, 13
compute_score_table, 13
compute_uni_variable_table, 14
conversion_table, 14

getcut_vec, 15

plot_roc_curve, 16
print_roc_performance, 9, 16
print_scoring_table, 17

sample_data, 17
sample_data_small, 18
split_data, 18
transform_df_fixed, 19