Package ‘BALLI’

October 12, 2022

Type Package

Title Expression RNA-Seq Data Analysis Based on Linear Mixed Model

Version 0.2.0

Author Kyungtaek Park <qkrrudxor147@snu.ac.kr>

Maintainer Kyungtaek Park <qkrrudxor147@snu.ac.kr>

Description Analysis of gene expression RNA-seq data using Bartlett-Adjusted Likelihood-based Linear model (BALLI). Based on likelihood ratio test, it provides comparisons for effect of one or more variables. See Kyungtaek Park (2018) <doi:10.1101/344929> for more information.

Depends R (>= 2.15.0), edgeR, limma, MASS, parallel, stats, methods

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2019-04-25 10:40:07 UTC

R topics documented:

balli .. 2
Balli-class ... 3
balliFit .. 3
LargeDataObject-class 4
tecVarEstim ... 4
TecVarList-class 5

Index 6
balli

Description

DEG analysis using BALLI algorithm

Usage

balli(object, intV = 2, logcpm = NULL, tecVar = NULL,
 design = NULL, numCores = NULL, threshold = 1e-06, maxiter = 200)

Arguments

- **object**: a TecVarList object
- **intV**: numeric vector designating interest variable(s) which is(are) column number(s)
 of design matrix
- **logcpm**: logcpm values for each gene and each sample
- **tecVar**: estimated technical variance values for each gene and each sample
- **design**: design matrix with samples in row and covariable(s) to be estimated in column
- **numCores**: number of cores to be used for multithreading. If NULL, a single core is used
- **threshold**: threshold for convergence
- **maxiter**: maximum number of iteration to converge of estimated biological variance. If not, biological variance is estimated by using Brent method

Value

an Balli object including Result and topGenes list. Following components are shown by Result
(same order of genes with input data) and topGenes (ordered by pBALLI in Result):

- **log2FC**: log2 fold changes of interest variable(s)
- **lLLI**: log-likelihoods estimated by LLI
- **lBALLI**: log-likelihoods estimated by BALLI
- **pLLI**: p-values estimated by LLI
- **pBALLI**: p-values estimated by BALLI
- **BCF**: Bartlett’s correction factor

```r
expr <- data.frame(t(sapply(1:1000,function(x)rnbinom(20,mu=500,size=50))))
group <- c(rep("A",10),rep("B",10))
design <- model.matrix(~group, data = expr)
dge <- DGEList(counts=expr, group=group)
dge <- calcNormFactors(dge)
tV <- tecVarEstim(dge,design)
balli(tV,intV=2)
```
Balli-class

Class Balli

Balli holds results from BALLI

Description

Class Balli Class Balli holds results from BALLI

balliFit

balliFit

Description

Estimates likelihood and Bartlett correction factor using BALLI algorithm of each gene

Usage

`balliFit(y_mat, x_mat, tecVar, intVar = 2, full = T, cfault = 0, miter = 200, conv = 1e-06)`

Arguments

- **y_mat**: numeric vector containing log-cpm values of each gene and each sample
- **x_mat**: design matrix with samples in row and covariable(s) to be estimated in column
- **tecVar**: numeric vector containing estimated technical variance of a gene of each sample
- **intVar**: numeric vector designating interest variable(s) which is(are) column number(s) of x_mat
- **full**: logical value designating full model (TRUE) or reduced model (FALSE).
- **cfault**: initial value of index showing whether converged (0) or not (1).
- **miter**: maximum number of iteration to converge.
- **conv**: threshold for convergence

Value

Following components are estimated:

- **ll**: log-likelihoods
- **beta**: coefficients of interested variable(s)
- **alpha**: coefficients of nuisance variable(s)
- **BCF**: Bartlett’s correction factor
- **cfault**: index whether converged or not
Examples

```r
eexpr <- data.frame(t(sapply(1:1000,function(x)rnbinom(20,mu=500,size=50))))
group <- c(rep("A",10),rep("B",10))
design <- model.matrix(~group, data = expr)
dge <- DGEList(counts=expr, group=group)
dge <- calcNormFactors(dge)
tV <- tecVarEstim(dge,design)
gtv <- tV$tecVar[1,]
gdat <- data.frame(logcpm=tV$logcpm[1,],design,tecVar=gtv)
gy <- matrix(unlist(gdat[,1]),ncol=1)
gx <- matrix(unlist(gdat[,2:(ncol(gdat)-1)]),ncol=ncol(gdat)-2)
bailfit(y_mat=gy,x_mat=gx,tecVar=gtv,intVar=2,full=TRUE,cfault=0,miter=200,conv=1e-6)
```

LargeDataObject-class

Class LargeDataObject

Class LargeDataObject holds large data such as technical variance and results from BALLI fit

Description

Class LargeDataObject

Class LargeDataObject holds large data such as technical variance and results from BALLI fit

tecVarEstim

Technical Variance Estimation

Description

Estimate technical variance by using voom-trend. The code is derived from voom function in limma package

Usage

```
tecVarEstim(counts, design = NULL, lib.size = NULL, span = 0.5, ...)
```

Arguments

- **counts**: a DGEList object
- **design**: design matrix with samples in row and coefficient(s) to be estimated in column
- **lib.size**: numeric vector containing total library sizes for each sample
- **span**: width of the lowess smoothing window as a proportion
- **...**: other arguments are passed to lmFit.
Value

an TecVarList object with the following components:

- **targets**: matrix containing covariables, library sizes and normalization factors of each sample
- **design**: design matrix with samples in row and covariable(s) to be estimated in column
- **logcpm**: logcpm values of each gene and each sample
- **tecVar**: estimated technical variance of each gene and each sample

Examples

```r
expr <- data.frame(t(sapply(1:1000,function(x)rnbinom(20,mu=500,size=50))))
group <- c(rep("A",10),rep("B",10))
design <- model.matrix(~group, data = expr)
dge <- DGEList(counts=expr, group=group)
dge <- calcNormFactors(dge)
tecVarEstim(dge,design)
```

Description

Class TecVarList Class TecVarList holds technical variance
Index

balli, 2
Balli-class, 3
balliFit, 3

LargeDataObject-class, 4

tecVarEstim, 4
TecVarList-class, 5