Package ‘BBEST’

August 29, 2016

Author Anton Gagin and Igor Levin with contributions from Charles R. Hogg III
Maintainer Anton Gagin <av.gagin@gmail.com>
Version 0.1-6
Type Package
Title Bayesian Estimation of Incoherent Neutron Scattering Backgrounds
Description We implemented a Bayesian-statistics approach for subtraction of incoherent scattering from neutron total-scattering data. In this approach, the estimated background signal associated with incoherent scattering maximizes the posterior probability, which combines the likelihood of this signal in reciprocal and real spaces with the prior that favors smooth lines.
Date 2016-03-09
License GPL-3
Imports DEoptim, wmtsa, grid, ggplot2, reshape2, shiny, methods
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-03-09 18:55:20

R topics documented:

BBEST-package .. 2
calc.Gr ... 3
do.fit .. 4
do.fit.banks .. 6
do.iter .. 7
fix.merge ... 8
guide .. 8
mPlot.results ... 9
mPlot.results.banks .. 9
mPlot.sqa ... 10
prepare.banks.data .. 10
BBEST-package

Bayesian Background Estimation.

Description

In this package we implemented a Bayesian-statistics approach for subtraction of incoherent scattering from neutron total-scattering data. In this approach, the estimated background signal associated with incoherent scattering maximizes the posterior probability, which combines the likelihood of this signal in reciprocal and real spaces with the prior that favors smooth lines.

To cite the BBEST package type: ‘citation("BBEST")’ (without the single quotes).

For a listing of all routines in the BBEST package type: ‘library(help="BBEST")’

To start the Graphical User Interface type: ‘runUI()’

To start a simple command-line guide type: ‘guide()’

Details

Package: BBEST
Type: Package
Version: 0.1-0
Date: 2014-08-11
License: GPL-3
calc.Gr

Author(s)

Anton Gagin and Igor Levin with contributions from Charles R. Hogg III
Maintainer: Anton Gagin <anton.gagin@nist.gov>

References

BBEST-package

calc.Gr

Calculate and plot the Pair Distribution Function

Description

Calculates and plots the corrected Pair Distribution Function.

Usage

calc.Gr(fit.results, rho.0, plot=TRUE, r.min = 0, r.max = 5,
 dr = 0.01, Q.min = NA, Q.max = NA, nsd = 2, gr.compare=NA)

Arguments

fit.results the return value of do.fit.
plot logical, whether to plot the PDF.
rho.0 numeric, the atomic number density of the material: the number of atoms per
unit cell divided by a volume of the unit cell.
r.min, r.max, dr numerics. Function is plotted in the region [r.min, r.max].
Q.min, Q.max numerics. To calculate the sine-Fourier transform, the total scattering function
S(Q) is "terminated" at a certain Q=Qmax point. The best Qmax point to terminate
S(Q) (that corresponds to the value of S(Q)-1 closest to zero) is sought in the
[Q.min,Q.max] region.
nsd numeric, the number of standard deviations to plot the uncertainty.
gr.compare numeric vector. If not NA, specifies the function to add to the plot. Should
correspond to the same grid ([r.min, r.max, dr]).

Details

The function uses ggplot2 package for plotting. ggplot2 package can be installed by typing
install.packages("ggplot2").
do.fit

Value
A list with elements:

- *r* numeric vector of grid points
- *gr* numeric vector, indicates the corrected Pair Distribution Function.
- *stdev* numeric vector, indicates estimated standard deviation.

See Also
- do.fit

do.fit

Estimate background

Description

do.fit estimates the background using the Bayesian approach and Differential Evolution algorithm.

Usage

```r
do.fit(data, bounds.lower, bounds.upper, scale=c(1,1), knots.x=NA,
       knots.n=NA, analytical=FALSE, stdev=TRUE, control=list(), p.bkg=.5,
       save.to="")
```

Arguments

- **data** an object of type data. See `set.data` for details.
- **bounds.lower, bounds.upper** numerics specifying the lower and upper bounds for the fitted spline values.
- **scale** numeric vector which, if applicable, determines the bounds for the fitted scale parameter. The default value of c(1,1) means a no-scale fit. See details.
- **knots.x** numeric vector which, if not NA, specifies the knot positions.
- **knots.n** numeric, the number of knots. If `knots.x` is NA then `knots.n` equidistant knots will be created.
- **analytical** logical. If TRUE background is approximated by an analytical function $f(x) = P_1 \exp(-P_2 x) + P_4 / [(x - P_5)^2 + P_6^2]$.
- **stdev** logical, whether to calculate the uncertainty for the estimated background. Should be set to FALSE if analytical=TRUE.
- **control** list, the return value of `set.control`. Specifies various parameters of the Differential Evolution optimization algorithm implemented in DEoptim.
- **p.bkg** numeric, the probability that a single pixel contains "only" a background.
- **save.to** character, a filename for saving the results.
do.fit

Details

If information on the low-r behavior of G(r) is provided, the global intensity scale and atomic displacement parameters can be fitted along with the positions of the knots, (set.Gr). To fit normalization parameter set bounds in scale for the desired values. To fit Atomic Displacement Parameters see set.SB.

In most cases p.bkg should be set to its default value 0.5.

For further details see BBEST-package.

Value

A list with elements:

- \texttt{x} numeric vector of grid points
- \texttt{curves} list, see below.
- \texttt{uncrt} list, see below.
- \texttt{knots} list with elements \texttt{x} and \texttt{y} that specify the positions of the knots and the corresponding fitted intensity values, respectively.
- \texttt{pars} numeric vector. If the background is approximated using the analytical function, contains all the relevant parameters \(P \).
- \texttt{scale} fitted value of the scale parameter, if used.
- \texttt{ADP} fitted values of the atomic displacement parameters, if applicable.
- \texttt{fit.details} list, see below.

Element \texttt{curves} is a list with sub-elements:

- \texttt{y} numeric vector of the (normalized) function values.
- \texttt{bkg} numeric vector, the estimated background.
- \texttt{SB} numeric vector, the (fitted) coherent baseline.

Element \texttt{uncrt} is a list with sub-elements:

- \texttt{stdev} numeric vector, indicates estimated standard deviations for the reconstructed signal.
- \texttt{stdev.r} numeric vector, indicates estimated standard deviations for a reconstructed signal in r-space.
- \texttt{hess} Hessian matrix for a \(\psi(c) \) function.
- \texttt{cov.matrix} covariance matrix, i.e. the inverse of the Hessian.
- \texttt{cov.matrix.r} covariance matrix in r-space.

Element \texttt{fit.details} is a list with sub-elements:

- \texttt{lambda} numeric vector, the estimated mean magnitude of the signal.
- \texttt{sigma} numeric vector, the estimated Gaussian noise.
- \texttt{knots.n} the number of knots used in the fit.
- \texttt{knots.x} knot positions used in the fit.
do.fit.banks

Estimate the background for individual banks

Description

do.fit estimates the background for individual banks according to the Bayesian approach using the Differential Evolution algorithm.

Usage

```r
do.fit.banks(data, bounds.lower, bounds.upper, knots.n.left, knots.n.right, x.boundary, analytical=FALSE, control, save.to="")
```

Arguments

- `data` an object of type data. See *set.data* for details.
- `bounds.lower`, `bounds.upper` numerics, lower and upper bounds for the fitted spline values.
- `knots.n.left`, `knots.n.right`, `x.boundary` numerics that specify the number of knots. `knots.n.left` and `knots.n.right` knots are created on the left and on the right of `x.boundary` point, respectively.
- `analytical` logical. If TRUE background is approximated by an analytical function \(f(x) = P_1 \exp(-P_2 x) x^{P_3} + P_4 / [(x - P_5)^2 + P_6^2] \).
- `control` list, the return value of *set.control*. Specifies various parameters of the Differential Evolution optimization algorithm implemented in DEoptim.
- `save.to` character, a filename for saving the results.

References

control see the control argument.

Gr list contacting information on the low-r behaviour of G(r). See *set.Gr* for details.

n.atoms numeric vector, number of different atoms per unit cell.

scatter.length numeric vector, atomic scattering factors.
do.iter

Details
This function simplifies the procedure for estimating the background for several detector banks by a multiple call of do.fit. Other relevant parameters are set to: stdev=FALSE, scale=NA, p.bkg=.5.
For neutron scattering, the incoherent background exhibits a broad peak at low Q and decays gradually at higher Q. Hence, we suggest to use different numbers of knots for the low- and high-Q regions. See BBEST-package for details.

Value
A list of elements. Each element contains a return value of do.fit for the corresponding data bank.

See Also
do.fit, BBEST-package

do.iter Estimate the background

Description
do.iter performs adaptive Bayesian estimation of the background.

Usage
do.iter(fit.results, local = TRUE, eps = 1e-04, n.iter = 10000, save.to = "")

Arguments
fit.results list. The return value of do.fit.
local logical. If TRUE, gradient descent method is used to find background estimation. If FALSE, Differential Evolution is used.
eps numeric, the desired accuracy for spline values.
n.iter numeric, number of iterations for a gradient descent method, see details.
save.to character, the filename for saving the results.

Details
An adaptation of neutron scattering data for a Bayesian background separation procedure. The method is detailed elsewhere*
First, use the function do.fit to estimate the background from the low-r information in G(r). do.iter procedure estimates the background without low-r information, calculates the difference between the two estimates, subtracts this difference from the scattering data and finds the new estimate of the background.
Value

An object fit.results with modified elements fit.results$curves$bkg, fit.results$curves$y and fit.results$curves$corr. See do.fit for details.

References

fix.merge Merge .fix files

Description

fix.merge merges several .fix files into a specified file in a form suitable for PDFgetN.

Usage

fix.merge(outfile, infile1, infile2, ...)

Arguments

outfile character, the filename for saving the data.
infile1, infile2, ... files to merge.

See Also

write.fix, read.sqa, do.fit.banks, BBEST-package

guide BBEST guide

Description

guide is a function that guides through the Bayesian procedure for estimating the background

Usage

guide()

Value

A list with elements:

fit.res the return value of do.fit.
data an object of type data, see set.data.
gr the return value of calc.Gr.
mPlot.results

Plot the background estimate

Description

Plots the estimated background and the corrected function.

Usage

```r
mPlot.results(fit.results, label.x = "x", label.y = "y",
               xlim=NA, ylim=NA)
```

Arguments

- `fit.results`: the return value of `do.fit`.
- `label.x`, `label.y`: characters, titles for x and y axes.
- `xlim`, `ylim`: numeric vectors with two entries. If not NA, specify x- and y-axis limits.

Details

The function uses `ggplot2` and `gridExtra` packages for plotting. Packages can be installed by typing `install.packages("ggplot2")` and `install.packages("gridExtra")`.

See Also

- `do.fit`

mPlot.results.banks

Plot the background estimate for individual banks

Description

Plots the background estimate for individual detector banks.

Usage

```r
mPlot.results.banks(fit.results, label.x = "x", label.y = "y",
                    xlim=NA, ylim=NA)
```

Arguments

- `fit.results`: the return value of `do.fit.banks`.
- `label.x`, `label.y`: characters, titles for x and y axes.
- `xlim`, `ylim`: numeric matrices of size (NB, 2), where NB is the number of data banks. If not NA, specify x- and y-axis limits.
See Also

do.fit.banks

mPlot.sqa

Plot the total normalized scattering intensity function $S(Q)$ for individual detector banks

Description

The function plots the total scattering functions $S(Q)$ returned by PDFgetN in read.sqa.

Usage

mPlot.sqa(data)

Arguments

data list, the return value of read.sqa.

See Also

read.sqa

prepare.banks.data

Prepare data for estimating the background

Description

prepare.banks.data sets all the fit parameters, such as sigma, lambda and SB for a set of detector banks.

Usage

prepare.banks.data(data, n.banks=4, lambda_1, lambda_2, lambda_0,
 x_1, x_2, n.atoms, scatter.length, ADP, n.regions)

Arguments

data list of objects of type data. See read.sqa and set.data for details.
n.banks numeric, number of banks.
lambda_1, lambda_2, lambda_0, x_1, x_2
 parameters to be passed to set.lambda.
n.atoms, scatter.length, ADP
 parameters to be passed to set.SB.
n.regions parameter to be passed to set.sigma.
Details

This function simplifies setting the fit parameters for a set of detector banks by a multiple call of `set.sigma`, `set.SB`, and `set.lambda`.

Value

A list of objects of type data suitable for `do.fit.banks`.

See Also

`set.sigma`, `set.SB`, `set.lambda`

read.data | Read data from file

Description

Reads data from a text file with columns "x", "y", and, optionally, "lambda", "sigma" and "SB".

Usage

`read.data(file = stop("'file' must be specified"), ...)`

Arguments

- `file` | character, the name of the file which the data are to be read from.
- `...` | further arguments to be passed to `read.table` (optional).

Details

This function implements one of the ways to load experimental data. The `file` must consist of a header with column names and several columns below. First two columns in `file` must be `x` and `y` values. The others could specify `lambda`, `sigma` and `SB`.

Value

An object of type data. See `set.data` for details.
Description
This function reads .sqa-files generated by PDFgetN, which contain corrected total-scattering functions bank by bank.

Usage
read.sqa(file = stop("'file' must be specified"))

Arguments
file character, the name of the file which the data are to be read from.

Value
List those elements are objects of type data. See set.data for details.

References

See Also
mPlot.sqa

Description
This function reads .sqb-files generated by PDFgetN, which contain the corrected and blended total-scattering function S(Q).

Usage
read.sqb(file = stop("'file' must be specified"))
runUI

Arguments

file character, the name of the file which the data are to be read from.

Value

An object of type data. See `set.data` for details.

References

runUI Start the GUI

Description

Starts the application and opens up the default web browser to view it.

Usage

runUI()

Details

Runs a Shiny application. This function normally does not return; interrupt R to stop the application (usually by pressing Ctrl+C or Esc).

set.control Set controls for the Differential Evolution Algorithm

Description

Specifies various parameters of the Differential Evolution optimization algorithm implemented in DEoptim.

Usage

set.control(CR=.85, F=.7, NP=300, itermax=2000, parallelType=1)
Arguments

CR numeric, crossover probability from interval [0,1].
F numeric, differential weighting factor from interval [0,2].
NP numeric, number of population members
itermax numeric, the number of iterations
parallelType numeric, defines the type of parallelization to employ. 0 for a single-core run. If parallelType=1 the program will use all the available cores, via the parallel package.

Details

For the most tasks, it is best to set NP to at least 10-15 times the length of the parameter vector.

Value

a list of elements suitable for do.fit and do.fit.banks.

References

Description

The function sets key parameters necessary for the fit, such as sigma, lambda and SB

Usage

set.data(x, y, sigma=NA, lambda=NA, SB=NA)

Arguments

x numeric vector, specifies grid points.
y numeric vector, specifies function values.
sigma numeric vector, if not NA, specifies estimated noise.
lambda numeric vector, if not NA, specifies estimated mean signal magnitude.
SB numeric vector, if not NA, specifies estimated coherent baseline.
Details

One way (not the simplest) to prepare experimental data for the fit. This function returns a list of the above parameters – an object of type data. Objects of that type are used as arguments for some functions implemented in the package. In most cases only the elements x and y are required in the object data. However, all 5 elements (and one optional, see set.Gr) must be specified to execute the fit, i.e. prior to the do.fit call.

The object of that type can also be created via read.data, read.sqa and read.sqb. Parameters "sigma", "lambda" and "SB" can be determined automatically, see set data keyword.

The general recipe for setting an object data is the following. If vectors x and y are stored in the text file, use read.data. If they are stored in a .sqb-file, call read.sqb. If they are stored in the memory, use set.data. Then use functions set.sigma, set.lambda, and set.SB to specify the remaining parameters.

Value

A list with elements

- x numeric vector, specifies gridpoints.
- y numeric vector, specifies function values.
- sigma numeric vector, specifies estimated noise.
- lambda numeric vector, specifies estimated mean signal magnitude.
- SB numeric vector, specifies estimated coherent baseline.

set.Gr

Add information on the low-r behaviour of $G(r)$

Description

Function to incorporate information on the low-r behaviour of $G(r)$ into the Bayesian model.

Usage

```
set.Gr(data, r1=seq(0, 1, 0.005), r2=NA, rho.0,
       type1="gaussianNoise", type2=NA, sigma.f=NA, l=NA)
```

Arguments

- data an object of type data. See set.data for details.
- r1, r2 numeric vectors, specify grids on which the $G(r)$ behaviour is controlled.
- rho.0 numeric, atomic number density of the material: a number of atoms per unit cell divided by a volume of the unit cell.
- type1, type2 characters, specify the way to control the behavior of $G(r)$. See details.
- sigma.f, l numerics or numeric vectors, specify parameters for a squared-exponential covariance function.
set.lambda

Details

type1 can be either "gaussianNoise" or "correlatedNoise". G(r) is restricted to the $-4\pi\rho.0r1$ line plus independent Gaussian noise or correlated Gaussian noise, respectively.

type2 can be either "secondDeriv" or "gaussianProcess" to impose smoothness conditions over the interval r2. If type2 is "secondDeriv", a minimum of the second derivative is sought. If type2 is "gaussianProcess", the smoothness is controlled via the Gaussian process using parameters sigma.f and l.

According to our experience, the most efficient way is to impose type1="gaussianNoise" and type2=NA conditions.

Value

An object of type data.

Description

set.lambda sets the mean height of the peaks over region x.

Usage

```r
set.lambda(data, lambda=NA, lambda_1=NA, lambda_2=NA,
lambda_0=NA, x_1=NA, x_2=NA)
```

Arguments

data an object of type data. See `set.data` for details.

lambda numeric vector. If not NA, specifies (approximate) the mean magnitude of the signal. This estimate does not need to be accurate. lambda can be estimated as a smooth function that crosses centres of the signal peaks.

lambda_1, lambda_2, lambda_0, x_1, x_2 numerics. If lambda is NA help to estimate lambda. See details.

Details

lambda is calculated as a linear piecewise function which is equal to lambda_0 outside the $[x_1, x_2]$ region. Inside this region, lambda is approximated by a line connecting points (x_1, λ_1) and (x_2, λ_2).

Value

An object of type data. Element

lambda numeric vector containing an approximate mean magnitude of the signal. is replaced with its new value.
set.SB

Set the coherent baseline

Description

`set.SB` sets the baseline, describing coherent neutron scattering caused by uncorrelated atomic motion or any other baseline that needs to be preserved in the recovered signal.

Usage

```r
set.SB(data, SB=NA, n.atoms=NA, scatter.length=NA, ADP=NA,
       fit=FALSE, oneADP=TRUE, ADP.lim = c(0, 0.05))
```

Arguments

- `data` an object of type data. See `set.data` for details.
- `SB` numeric vector which, if not NA, determines the baseline. See `BBEST-package` for details.
- `n.atoms`, `scatter.length`, `ADP` numerics. Specify the number of atoms of each atomtype in the unit cell, atomic scattering factors and atomic displacement parameters (ADP), respectively.
- `fit` logical, whether to fit ADP.
- `oneADP` logical. If TRUE a single parameter is used for all the APDs.
- `ADP.lim` numeric vector that specifies the lower and upper bounds for the fitted ADP.

Details

Baseline `SB` has to be specified. If no baseline is needed fill `SB` with zeroes. If `n.atoms`, `scatter.length` and `ADP` parameters are specified, the baseline is calculated according to

\[
SB(x) = 1 - \frac{\sum_i N_i f_i^2 e^{-ADP_i x^2}}{N \langle f^2 \rangle} (1 - \frac{(\langle f^2 \rangle - \langle f^2 \rangle)}{\langle f^2 \rangle}).
\]

If ADP parameters are to be fitted, indicate `n.atoms`, `scatter.length` and set parameter `fit` to TRUE. Set `oneADP` to the desired value.

Value

An object of type data. Element

- `SB` numeric vector containing the baseline.

is replaced with its new value. Element

- `fitADP` a list of values.

might be added to describe the fit details.
Description

This function either sets the pointwise experimental uncertainty or estimates it using wmtsa library.

Usage

```
set.sigma(data, sigma=NA, x.bkg.only=NA, n.regions=10, thresh.scale=1)
```

Arguments

- `data`: an object of type `data`. See `set.data` for details.
- `sigma`: numeric vector which, if not `NA`, determines the pointwise experimental uncertainty.
- `x.bkg.only`: if parameter `sigma` is `NA`, determines the peak-free region used to estimate the noise.
- `n.regions`: if both parameters `sigma` and `x.bkg.only` are `NA`, the grid is split into `n.regions` equal regions. The noise is then estimated for each of these regions. See details
- `thresh.scale`: numeric vector or scalar which is used to amplify or attenuate the threshold values for a wavelet shrinkage.

Details

We assume the experimental uncertainty to have a Gaussian distribution with x-dependent amplitude. Splitting the grid into `n.regions` segments and estimating Gaussian standard deviations over each of these segments allows us to approximate the true distribution.

The function uses wavShrink package that performs a decimated discrete wavelet transform for signal smoothing. The use of `thresh.scale` argument signifies a departure from a model driven estimate of the thresholds and can be used to tweak the levels to obtain a smoother or rougher result.

Value

An object of type `data`. Elements

- `sigma`: numeric vector containing the estimated noise level.
- `smoothed`: if both parameters `sigma` and `x.bkg.only` are `NA` contains a smoothed estimate of the regression function.

are replaced with their new values.

References

Examples

```r
# Setting x and y
x <- seq(.7, 30, 0.01)
y <- sin(x)
# Adding x-dependent noise
y <- y + rnorm(sd=0.05+x/240, n=length(x))

# estimating noise
dat <- list(x=x, y=y)
dat <- set.sigma(dat, n.regions=1)
# use
# dat <- set.sigma(dat, n.regions=5)
# to see the difference

# Plotting results: noisy function and a
# smoothed estimate +/- 2 standard deviations
plot(x, y, t='l')
lines(dat$x, dat$smoothed, col=3, lwd=2)
lines(dat$x, dat$smoothed+2*dat$sigma, col=2)
lines(dat$x, dat$smoothed-2*dat$sigma, col=2)
abline(v=seq(min(x), max(x), length=5), col=4)
```

sqa.split
Sqa file into individual files for each databank

Description

`sqa.split` splits PDFgetN .sqa-file into individual files for each databank.

Usage

```r
sqa.split(file = stop("'file' must be specified"))
```

Arguments

- `file` character, name of the source file.

See Also

`read.sqa, do.fit.banks, BBEST-package`
Description

test.signal creates a random function that consists of peaks, a smooth background, and a Gaussian noise.

Usage

test.signal(x, lambda, sigma, x.delta, knots.n, peaks.widthRange, peaks.n)

Arguments

x numeric vector, the x-points where data should be generated.
lambda numeric, the mean signal magnitude.
sigma numeric, the noise level.
x.delta numeric, the minimum spacing allowed between spline knots. Defines background smoothness.
knots.n numeric, a number of spline knots to generate.
peaks.widthRange numeric vector, specifies range in peak widths.
peaks.n numeric, the number of peaks to generate.

Details

The background is calculated as a sum of fundamental splines on the randomly generated knots. The function is a sum of the background, random peaks, and Gaussian noise.

Value

An object of type data (see set.data) with the following elements added:
knots list with elements x and y that specify the knot positions and knot values, respectively.
bkg numeric vector containing the generated background.

Examples

1. Create test function
f <- test.signal(x=seq(0,30,0.01), lambda=5, sigma=0.1, x.delta=1.0, knots.n=5, peaks.widthRange=c(0.1, 0.3), peaks.n=7)

2. Plot results
plot(fx, fy, t="l", xlab="x", ylab="f")
trim.data

lines(fx, fbkg, col=2)
lines(fx, fy - f$bkg, col="gray")
legend(20, .9*max(f$y), c("test function", "background", "peaks+noise"), lty=1, col=c(1,2,"gray"))

trim.data

Description
The function truncaes the data (deletes low- and high-x information).

Usage

trim.data(data, x.min, x.max)

Arguments

data an object of type data. See set.data for details.
x.min, x.max numeric values determining the region to keep.

Details
Frequently, the experimental data need to be truncated to remove unwanted ranges.

Value
an object of type data with all functions cropped to the region [x.min, x.max]

Examples

prepare data
x <- seq(0, 50, 0.01)
y <- .8*exp(-x)*x^4
dat <- list(x=x, y=y)
truncate
dat <- trim.data(dat, 1, 25)
plot results
plot(x,y,t="l",lwd=4, col=4)
lines(datx, daty, lwd=4, col=2)
legend(15,3,c("initial", "truncated"), lty=1, col=c(4,2))
write.fit.results \hspace{1em} \textit{Save results of the fit}

\underline{Description}
write.fit.results writes the returned value of \texttt{do.fit} to a specified text file.

\underline{Usage}
\begin{verbatim}
write.fit.results(fit.results, file = stop("'file' must be specified"))
\end{verbatim}

\underline{Arguments}
- \texttt{fit.results} : list, the return value of \texttt{do.fit}.
- \texttt{file} : character, the filename for saving the data.

\underline{See Also}
\texttt{do.fit,BBEST-package}

write.fix \hspace{1em} \textit{Save a correction file for individual detector banks}

\underline{Description}
write.fix writes corrections obtained using \texttt{do.fit.banks} to a specified file in a form suitable for \texttt{PDFgetN}.

\underline{Usage}
\begin{verbatim}
write.fix(fit.results, file = stop("'file' must be specified"))
\end{verbatim}

\underline{Arguments}
- \texttt{fit.results} : list, the return value of \texttt{do.fit.banks}.
- \texttt{file} : character, the filename for saving the data.

\underline{See Also}
\texttt{read.sqa,do.fit.banks,BBEST-package}
Index

*Topic **GUI**
 runUI, 13
*Topic **PDFgetN**
 fix.merge, 8
 mPlot.sqa, 10
 read.sqa, 12
 read.sqb, 12
 sqa.split, 19
 write.fix, 22
*Topic **banks**
 fix.merge, 8
 read.sqa, 12
 read.sqb, 12
 sqa.split, 19
 write.fix, 22
*Topic **fit**
 do.fit, 4
 do.fit.banks, 6
 do.iter, 7
 mPlot.results, 9
 mPlot.results.banks, 9
 set.control, 13
*Topic **plot**
 calc.Gr, 3
 mPlot.results, 9
 mPlot.results.banks, 9
 mPlot.sqa, 10
*Topic **read data**
 read.data, 11
 read.sqa, 12
 read.sqb, 12
*Topic **save data**
 fix.merge, 8
 sqa.split, 19
 write.fit.results, 22
 write.fix, 22
*Topic **set data**
 prepare.banks.data, 10
 set.data, 14
 set.Gr, 15
 set.lambda, 16
 set.SB, 17
 set.sigma, 18
 trim.data, 21
BBEST (BBEST-package), 2
BBEST-package, 2
calc.Gr, 3, 8
do.fit, 3, 4, 4, 7–9, 14, 15, 22
do.fit.banks, 6, 8–11, 14, 19, 22
do.iter, 7
fix.merge, 8
guide, 8
mPlot.results, 9
mPlot.results.banks, 9
mPlot.sqa, 10, 12
prepare.banks.data, 10
read.data, 11, 15
read.sqa, 8, 10, 12, 15, 19, 22
read.sqb, 12, 15
runUI, 13
set.control, 4, 6, 13
set.data, 4, 6, 8, 10–13, 14, 15–18, 20, 21
set.Gr, 5, 6, 15, 15
set.lambda, 10, 11, 15, 16
set.SB, 5, 10, 11, 15, 17
set.sigma, 10, 11, 15, 18
sqa.split, 19
test.signal, 20
trim.data, 21
write.fit.results, 22
write.fix, 8, 22