Package ‘BESTree’

August 9, 2019

Type Package

Title Branch-Exclusive Splits Trees

Version 0.5.2

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports plyr, compiler, utils, stats

RoxygenNote 6.1.1

Suggests knitr, rmarkdown, testthat

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation no

Author Beaulac Cedric [aut, cre]

Maintainer Beaulac Cedric <cedric@utstat.toronto.edu>

Repository CRAN

Date/Publication 2019-08-09 11:00:02 UTC

R topics documented:

Acc ... 2
BaggedBEST .. 2
BEST ... 3
BESTForest ... 4
Data ... 5
Fit ... 5
ForgeVA ... 6
Acc

Computes the proportion of matching terms in two vectors of the same length. Used to compute the accuracy for prediction on test set.

Description

Computes the proportion of matching terms in two vectors of the same length. Used to compute the accuracy for prediction on test set.

Usage

Acc(Vec1, Vec2)

Arguments

Vec1 A vector of labels
Vec2 Another vector of labels

Value

Percentage of identical labels (accuracy)

Examples

Vec1 <- c(1,1,2,3,1)
Vec2 <- c(1,2,2,3,1)
Acc(Vec1,Vec2)

BaggedBEST

Performs Bootstrap Aggregating of BEST trees

Description

Performs Bootstrap Aggregating of BEST trees

Usage

BaggedBEST(Data, VA, NoT = 50, Size = 50)
BEST

Arguments

Data
A data set (Data Frame): Can take on both numerical and categorical predictors.
Last column of the data set must be the Repsonse Variable (Categorical Variables only)

VA
Variable Availability structure

NoT
Number of Trees in the bag

Size
Minimal Number of Observation within a leaf needed for partitionning (default is 50)

Value

A list of BEST Objects

Examples

n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BaggedBEST(Data,VA,NoT,Size)

BEST
Main function of the package. It produces Classification Trees with Branch-Exclusive variables.

Description

Main function of the package. It produces Classification Trees with Branch-Exclusive variables.

Usage

BEST(Data, Size, VA)

Arguments

Data
A data set (Data Frame): Can take on both numerical and categorical predictors.
Last column of the data set must be the Repsonse Variable (Categorical Variables only)

Size
Minimal Number of Observation within a leaf needed for partitionning

VA
Variable Availability structure

Value

A BEST object with is a list containing the resulting tree, row numbers for each regions and the split points
BESTForest

Generates a random forest of BEST trees

Usage

`BESTForest(Data, VA, NoT = 50, Size = 50)`

Arguments

- **Data**: A data set (Data Frame): Can take on both numerical and categorical predictors. Last column of the data set must be the Response Variable (Categorical Variables only)
- **VA**: Variable Availability structure
- **NoT**: Number of Trees in the bag
- **Size**: Minimal Number of Observation within a leaf needed for partitioning (default is 50)

Value

A list of BEST Objects (Random Forest)

Examples

```
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
Fit <- BESTree::BEST(Data,Size,VA)
```
Data

Description

Data generated according to decision tree for simulation purposes

Usage

Data

Format

A data frame with 10000 rows and 5 variables:

- **X_1** Binary predictor
- **X_2** Binary predictor
- **X_3** Continuous predictor between 0 and 1
- **X_4** Continuous predictor between 0 and 1
- **Y** The response variable ...

Fit

Description

Data generated according to decision tree for simulation purposes

Usage

Fit

Format

A typical list produced by the BEST function:

1. Tree structure indicating splitting variables, impurity of the region and split variable
2. List of splitting values
3. Observation numbers in the respective regions ...
ForgeVA | *Quickly build the Available Variable list necessary for BEST This list contains details as to which variables is available for the partitioning. It also contains which variables are gating variables.*

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

Quickly build the Available Variable list necessary for BEST This list contains details as to which variables is available for the partitioning. It also contains which variables are gating variables.

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
</table>

ForgeVA(d, GV, BEV, Thresh = 0.5, Direc = 0)

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
</table>

- **d**: Number of predictors
- **GV**: Gating variables
- **BEV**: Branch-Exclusive Variables
- **Thresh**: Threshold for Gates
- **Direc**: Direction of Gates (1 means add variable if bigger than thresh)

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
</table>

The list containing the Variable Availability structure

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
</table>

#This function can be used to set up the variable availability structure.
#Suppose we want to fit a regular decision tree on a data set containing d predictors
d <- 10
VA <- ForgeVA(d,1,0,0,0)
#Suppose now that predictor x5 is a binary gating variable for x4
#such that x4 is available if x5 = 1
GV <- 5 #The gating variable
BEV <- 4 #The Branch-Exclusive variable
Tresh = 0.5 #Value between 0 and 1
Direc = 1 #X4 is available if X5 is bigger than Tresh
VA <- ForgeVA(d,GV,BEV,Tresh,Direc)
FPredict

Emits prediction from a forest of BEST’s

Description

Emits prediction from a forest of BEST’s

Usage

\[
\text{FPredict}(M, \text{LFit})
\]

Arguments

- **M**
 A matrix of new observations where one row is one observation
- **LFit**
 A list of BEST Objects (Usually produced by RBEST or BESTForest)

Value

A vector of predictions

Examples

```r
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
NewPoints <- BESTree::Data[(n+1):(n+11),1:d]
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BaggedBEST(Data,VA,NoT,Size)
Predictions <- BESTree::FPredict(NewPoints,Fit)
```

MPredict

Classify a set of new observation points

Description

Classify a set of new observation points

Usage

\[
\text{MPredict}(M, \text{Fit})
\]

Arguments

- **M**
 A matrix of new observations where one row is one observation
- **Fit**
 A BEST object
Predict

Value

The predicted class

Examples

```r
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
NewPoints <- BESTree::Data[(n+1):(n+11),1:d]
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
Fit <- BESTree::BEST(Data,Size,VA)
Predictions <- BESTree::MPredict(NewPoints,Fit)
```

Description

Classify a new observation point

Usage

`Predict(Point, Fit)`

Arguments

- **Point** A new observation
- **Fit** A BEST object

Value

The predicted class

Examples

```r
n <- 500
Data <- BESTree::Data[1:n,]
NewPoint <- BESTree::Data[n+1,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
Fit <- BESTree::BEST(Data,Size,VA)
BESTree::Predict(NewPoint[1:d],Fit)
```
TreePruning

Uses a Validation Set to select the best trees within the list of pruned trees.

Description
Uses a Validation Set to select the best trees within the list of pruned trees.

Usage
TreePruning(Fit, VSet)

Arguments
- Fit: A BEST object
- VSet: A Validation Set (Can also be used in CV loop)

Value
The shallower trees among trees with highest accuracy. This replaces the first element in the BEST object list.

Examples
nv <- 50
ValData <- BESTree::Data[(1000+1):nv,]
Fit <- BESTree::Fit
Fit[[1]] <- BESTree::TreePruning(Fit, ValData)

VI

Produces a variable important analysis using the mean decrease in node impurity.

Description
Produces a variable important analysis using the mean decrease in node impurity.

Usage
VI(Forest)

Arguments
- Forest: A list of BEST Objects (Usually produced by RBEST or BESTForest)
Value

A vector of importance (size d)

Examples

n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
NewPoints <- BESTree::Data[(n+1):(n+11),1:d]
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BaggedBEST(Data,VA,NoT,Size)
VI <- BESTree::VI(Fit)
Index

*Topic datasets
 Data, 5
 Fit, 5

Acc, 2

BaggedBEST, 2
BEST, 3
BESTForest, 4

Data, 5
Fit, 5
ForgeVA, 6
FPredict, 7
MPredict, 7
Predict, 8
TreePruning, 9
VI, 9