Package ‘BGLR’

October 12, 2022

Version 1.1.0
Title Bayesian Generalized Linear Regression
Author Gustavo de los Campos, Paulino Perez Rodriguez
Maintainer Paulino Perez Rodriguez <perpdgo@colpos.mx>
Depends R (>= 3.5.0)
Imports truncnorm, MASS, methods
Description Bayesian Generalized Linear Regression.
License GPL-3
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-05-11 18:20:02 UTC

R topics documented:

BFDR .. 2
BGLR .. 3
BLR ... 6
BLRCross .. 11
BLRXy .. 16
getGcovar ... 18
getVariances .. 19
mice ... 20
mice.A .. 20
mice.map ... 21
mice.pheno .. 21
mice.X ... 21
Multitrait .. 22
plot.BGLR .. 25
predict.BGLR 26
readBinMat ... 27
readBinMatMultitrait 28
read_bed ... 29
BFDR

Description
Convert probabilities to Bayesian false discovery rates.

Usage
BFDR(prob)

Arguments

prob (numeric), the vector of probabilities.

Value
A numeric vector of Bayesian false discovery rates.
Bayesian Generalized Linear Regression

Description

The BGLR (‘Bayesian Generalized Linear Regression’) function fits various types of parametric and semi-parametric Bayesian regressions to continuous (censored or not), binary and ordinal outcomes.

Usage

BGLR(y, response_type = "gaussian", a = NULL, b = NULL, ETA = NULL, nIter = 1500,
burnIn = 500, thin = 5, saveAt = "", S0 = NULL,
df0 = 5, R2 = 0.5, weights = NULL,
verbose = TRUE, rmExistingFiles = TRUE, groups = NULL)

Arguments

y (numeric, n) the data-vector (NAs allowed).
response_type (string) admits values "gaussian" or "ordinal". The Gaussian outcome may be censored or not (see below). If response_type="gaussian", y should be coercible to numeric. If response_type="ordinal", y should be coercible to character, and the order of the outcomes is determined based on the alphanumeric order (0<1<2<..<a<b...). For ordinal traits the probit link is used.
a, b (numeric, n) only required for censored outcomes, a and b are vectors specifying lower and upper bounds for censored observations, respectively. The default value, for non-censored and ordinal outcomes, is NULL (see details).
ETA (list) This is a two-level list used to specify the regression function (or linear predictor). By default the linear predictor (the conditional expectation function in case of Gaussian outcomes) includes only an intercept. Regression on covariates and other types of random effects are specified in this two-level list. For instance:

ETA=list(list(X=W, model="FIXED"),
 list(X=Z, model="BL"),
 list(K=G, model="RKHS")),

specifies that the linear predictor should include: an intercept (included by default) plus a linear regression on W with regression coefficients treated as fixed effects (i.e., flat prior), plus regression on Z, with regression coefficients modeled as in the Bayesian Lasso of Park and Casella (2008) plus a random effect with co-variance structure G.

For linear regressions the following options are implemented: FIXED (Flat prior), BRR (Gaussian prior), BayesA (scaled-t prior), BL (Double-Exponential prior), BayesB (two component mixture prior with a point of mass at zero and a scaled-t slab), BayesC (two component mixture prior with a point of mass at zero and a Gaussian slab). In linear regressions X can be the incidence matrix.
for effects or a formula (e.g. `{factor(sex) + age}`) in which case the incidence matrix is created internally using the `model.matrix` function of R. For Gaussian processes (RKHS) a co-variance matrix (K) must be provided. Further details about the models implemented in BGLR see the vignettes in the package.

weights (numeric, n) a vector of weights, may be NULL. If weights is not NULL, the residual variance of each data-point is set to be proportional to the inverse of the squared-weight. Only used with Gaussian outcomes.

nIter, burnIn, thin (integer) the number of iterations, burn-in and thinning.

saveAt (string) this may include a path and a pre-fix that will be added to the name of the files that are saved as the program runs.

S0, df0 (numeric) The scale parameter for the scaled inverse-chi squared prior assigned to the residual variance, only used with Gaussian outcomes. In the parameterization of the scaled-inverse chi square in BGLR the expected values is $S0/(df0-2)$. The default value for the df parameter is 5. If the scale is not specified a value is calculated so that the prior mode of the residual variance equals $\text{var}(y) \times R^2$ (see below). For further details see the vignettes in the package.

R2 (numeric, $0 < R^2 < 1$) The proportion of variance that one expects, a priori, to be explained by the regression. Only used if the hyper-parameters are not specified; if that is the case, internally, hyper-parameters are set so that the prior modes are consistent with the variance partition specified by R2 and the prior distribution is relatively flat at the mode. For further details see the vignettes in the package.

verbose (logical) if TRUE the iteration history is printed, default TRUE.

rmExistingFiles (logical) if TRUE removes existing output files from previous runs, default TRUE.

groups (factor) a vector of the same length of `y` that associates observations with groups, each group will have an associated variance component for the error term.

Details

BGLR implements a Gibbs sampler for a Bayesian regression model. The linear predictor (or regression function) includes an intercept (introduced by default) plus a number of user-specified regression components (X) and random effects (u), that is:

$$\eta = 1 \mu + X_1 \beta_1 + ... + X_p \beta_p + u_1 + ... + u_q$$

The components of the linear predictor are specified in the argument ETA (see above). The user can specify as many linear terms as desired, and for each component the user can choose the prior density to be assigned. The distribution of the response is modeled as a function of the linear predictor.

For Gaussian outcomes, the linear predictor is the conditional expectation, and censoring is allowed. For censored data points the actual response value (y_i) is missing, and the entries of the vectors a and b (see above) give the lower an upper bound for y_i. The following table shows the configuration of the triplet (y, a, b) for un-censored, right-censored, left-censored and interval censored.
Internally, censoring is dealt with as a missing data problem.

Ordinal outcomes are modelled using the probit link, implemented via data augmentation. In this case the linear predictor becomes the mean of the underlying liability variable which is normal with mean equal to the linear predictor and variance equal to one. In case of only two classes (binary outcome) the threshold is set equal to zero, for more than two classes thresholds are estimated from the data. Further details about this approach can be found in Albert and Chib (1993).

Value

A list with estimated posterior means, estimated posterior standard deviations, and the parameters used to fit the model. See the vignettes in the package for further details.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

References

Examples

```R
## Not run:
#Demos
library(BGLR)

#BayesA
demo(BA)
```
Description

The BLR (‘Bayesian Linear Regression’) function was designed to fit parametric regression models using different types of shrinkage methods. An earlier version of this program was presented in de los Campos et al. (2009).

Usage

BLR(y, XF, XR, XL, GF, prior, nIter, burnIn, thin, thin2, saveAt, minAbsBeta, weights)

Arguments

- **y** (numeric, n) the data-vector (NAs allowed).
- **XF** (numeric, n × pF) incidence matrix for \(\beta_F\), may be NULL.
- **XR** (numeric, n × pR) incidence matrix for \(\beta_R\), may be NULL.
- **XL** (numeric, n × pL) incidence matrix for \(\beta_L\), may be NULL.
GF (list) providing an ID (integer, n) linking observations to groups (e.g., lines or sires) and a (co)variance structure (A, numeric, \(p_U \times p_U\)) between effects of the grouping factor (e.g., line or sire effects). Note: ID must be an integer taking values from 1 to \(p_U\); ID[i]=q indicates that the ith observation in \(y\) belongs to cluster q whose (co)variance function is in the qth row (column) of A. GF may be NULL.

weights (numeric, n) a vector of weights, may be NULL.

nIter, burnIn, thin (integer) the number of iterations, burn-in and thinning.

saveAt (string) this may include a path and a pre-fix that will be added to the name of the files that are saved as the program runs.

prior (list) containing the following elements,

- prior$varE, prior$varBR, prior$varU: (list) each providing degree of freedom (df) and scale ($S). These are the parameters of the scaled inverse-\(\chi^2 \) distributions assigned to variance components, see Eq. (2) below. In the parameterization used by BLR() the prior expectation of variance parameters is \(S/(df - 2)\).
- prior$lambda: (list) providing $value (initial value for \(\lambda\)); $type (‘random’ or ‘fixed’) this argument specifies whether \(\lambda\) should be kept fixed at the value provided by $value or updated with samples from the posterior distribution; and, either $shape and $rate (this when a Gamma prior is desired on \(\lambda^2\)) or $shape1, $shape2 and $max, in this case \(p(\lambda|\text{max}, \alpha_1, \alpha_2) \propto \text{Beta}(\lambda_{\text{max}}|\alpha_1, \alpha_2)\). For detailed description of these priors see de los Campos et al. (2009).

thin2 This value controls whether the running means are saved to disk or not. If thin2 is greater than nIter the running means are not saved (default, thin2=1 \times 10^{10}).

minAbsBeta The minimum absolute value of the components of \(\beta_L\) to avoid numeric problems when sampling from \(\tau^2\), default 1 \times 10^{-9}.

Details

The program runs a Gibbs sampler for the Bayesian regression model described below.

Likelihood. The equation for the data is:

\[y = \mu + X_F\beta_F + X_R\beta_R + X_L\beta_L + Zu + \varepsilon \quad (1) \]

where \(y\), the response is a \(n \times 1\) vector (NA allowed); \(\mu\) is an intercept; \(X_F, X_R, X_L\) and \(Z\) are incidence matrices used to accommodate different types of effects (see below), and; \(\varepsilon\) is a vector of model residuals assumed to be distributed as \(\varepsilon \sim N(0, \text{Diag}(\sigma^2_\varepsilon/w_i^2))\), here \(\sigma^2_\varepsilon\) is an (unknown) variance parameter and \(w_i\) are (known) weights that allow for heterogeneous-residual variances.

Any of the elements in the right-hand side of the linear predictor, except \(\mu\) and \(\varepsilon\), can be omitted; by default the program runs an intercept model.

Prior. The residual variance is assigned a scaled inverse-\(\chi^2 \) prior with degree of freedom and scale parameter provided by the user, that is, \(\sigma^2_\varepsilon \sim \chi^{-2}(\sigma^2_\varepsilon|df_\varepsilon, S_\varepsilon)\). The regression coefficients \(\{\mu, \beta_F, \beta_R, \beta_L, u\}\) are assigned priors that yield different type of shrinkage. The intercept and
The vector of regression coefficients β_F are assigned flat priors (i.e., estimates are not shrunk). The vector of regression coefficients β_R is assigned a Gaussian prior with variance common to all effects, that is, $\beta_{R,j} \sim N(0, \sigma^2_{\beta_R,j})$. This prior is the Bayesian counterpart of Ridge Regression. The variance parameter $\sigma^2_{\beta_R}$ is treated as unknown and it is assigned a scaled inverse-χ^2 prior, that is, $\sigma^2_{\beta_R} \sim \chi^{-2}(\sigma^2_{\beta_R} | df_{\beta_R}, S_{\beta_R})$ with degrees of freedom df_{β_R}, and scale S_{β_R} provided by the user.

The vector of regression coefficients β_L is treated as in the Bayesian LASSO of Park and Casella (2008). Specifically,

$$
p(\beta_L, \tau^2, \lambda | \sigma^2_x) = \left\{ \prod_k N(\beta_{L,k} | 0, \sigma^2_{\epsilon_k} | \lambda^2) \right\} p(\lambda),$$

where, $Exp(\cdot | \cdot)$ is an exponential prior and $p(\lambda)$ can either be: (a) a mass-point at some value (i.e., fixed λ); (b) $p(\lambda^2) \sim Gamma(r, \delta)$ this is the prior suggested by Park and Casella (2008); or, (c) $p(\lambda | max, \alpha_1, \alpha_2) \propto Beta(\frac{\lambda}{\alpha_{max}} | \alpha_1, \alpha_2)$, see de los Campos et al. (2009) for details. It can be shown that the marginal prior of regression coefficients $\beta_{L,k}$, $\int N(\beta_{L,k} | 0, \sigma^2_{\epsilon_k} | \lambda^2) \partial \sigma^2_{\epsilon_k}$, is Double-Exponential. This prior has thicker tails and higher peak of mass at zero than the Gaussian prior used for β_R, inducing a different type of shrinkage.

The vector u is used to model the so called ‘infinitesimal effects’, and is assigned a prior $u \sim N(0, A\sigma^2_u)$, where, A is a positive-definite matrix (usually a relationship matrix computed from a pedigree) and σ^2_u is an unknown variance, whose prior is $\sigma^2_u \sim \chi^{-2}(\sigma^2_u | df_u, S_u)$.

Collecting the above mentioned assumptions, the posterior distribution of model unknowns, $\theta = \{\mu, \beta_F, \beta_R, \sigma^2_{\beta_R}, \beta_L, \tau^2, \lambda, u, \sigma^2_u, \sigma^2_x\}$, is,

$$
p(\theta | y) \propto N(y | 1\mu + X_F\beta_F + X_R\beta_R + X_L\beta_L + Zu; Diag\left\{ \frac{\sigma^2_x}{u^2} \right\})$$

$$\times \left\{ \prod_j N(\beta_{R,j} | 0, \sigma^2_{\beta_R}) \right\} \chi^{-2}(\sigma^2_{\beta_R} | df_{\beta_R}, S_{\beta_R})$$

$$\times \left\{ \prod_k N(\beta_{L,k} | 0, \sigma^2_{\epsilon_k}) \right\} Exp(\tau^2_k | \lambda^2) p(\lambda)$$

$$\times N(u | 0, A\sigma^2_u) \chi^{-2}(\sigma^2_u | df_u, S_u) \chi^{-2}(\sigma^2_x | df_x, S_x)$$

(2)

Value

A list with posterior means, posterior standard deviations, and the parameters used to fit the model:

- \texttt{yHat} the posterior mean of $1\mu + X_F\beta_F + X_R\beta_R + X_L\beta_L + Zu + \epsilon$.
- $\texttt{SD.yHat}$ the corresponding posterior standard deviation.
- \texttt{mu} the posterior mean of the intercept.
- \texttt{varE} the posterior mean of σ^2_{ϵ}.
- \texttt{bR} the posterior mean of β_R.
- $\texttt{SD.bR}$ the corresponding posterior standard deviation.
- \texttt{varBr} the posterior mean of $\sigma^2_{\beta_R}$.
- \texttt{bL} the posterior mean of β_L.
- $\texttt{SD.bL}$ the corresponding posterior standard deviation.
τ^2 the posterior mean of τ^2.
λ the posterior mean of λ.
u the posterior mean of u.
$SD.u$ the corresponding posterior standard deviation.
$\text{var}U$ the posterior mean of σ^2_u.
fit a list with evaluations of effective number of parameters and DIC (Spiegelhalter et al., 2002).
whichNa a vector indicating which entries in y were missing.
prior a list containing the priors used during the analysis.
weights vector of weights.
fit list containing the following elements,
- logLikAtPostMean: log-likelihood evaluated at posterior mean.
- postMeanLogLik: the posterior mean of the Log-Likelihood.
- pD: estimated effective number of parameters, Spiegelhalter et al. (2002).
- DIC: the deviance information criterion, Spiegelhalter et al. (2002).
$nIter$ the number of iterations made in the Gibbs sampler.
burnIn the number of iterations used as burn-in.
thin the thin used.
y original data-vector.

The posterior means returned by BLR are calculated after burnIn is passed and at a thin as specified by the user.

Save. The routine will save samples of μ, variance components and λ and running means (rm*.dat). Running means are computed using the thinning specified by the user (see argument thin above); however these running means are saved at a thinning specified by argument thin2 (by default, thin2=1 \times 1010 so that running means are computed as the sampler runs but not saved to the disc).

Author(s)
Gustavo de los Campos, Paulino Perez Rodriguez,

References

Examples

Not run:
##
Example 1:
##

rm(list=ls())
setwd(tempdir())
library(BGLR)
data(wheat) # Loads the wheat dataset

y=wheat.Y[,1]
Creates a testing set with 100 observations
whichNa<-sample(1:length(y),size=100,replace=FALSE)
yNa<y
yNa[whichNa]<-NA

Runs the Gibbs sampler
fm<-BLR(y=yNa,XL=wheat.X,GF=list(ID=1:nrow(wheat.A),A=wheat.A),
 prior=list(varE=list(df=3,S=0.25),
 varU=list(df=3,S=0.63),
 lambda=list(shape=0.52,rate=1e-4,
 type="random",value=30)),
 nIter=5500,burnIn=500,thin=1)

MSE.tst<-mean((fm$yHat[whichNa]-y[whichNa])^2)
MSE.tst
MSE.trn<-mean((fm$yHat[-whichNa]-y[-whichNa])^2)
MSE.trn
COR.tst<-cor(fm$yHat[whichNa],y[whichNa])
COR.tst
COR.trn<-cor(fm$yHat[-whichNa],y[-whichNa])
COR.trn

plot(fm$yHat~y,xlab="Phenotype",
 ylab="Pred. Gen. Value",cex=.8)
points(x=y[whichNa],y=fm$yHat[whichNa],col=2,cex=.8,pch=19)
x11()
plot(scan('varE.dat'),type="o",
 ylab=expression(paste(sigma[epsilon]^2)))

##
Example 2: Ten fold, Cross validation, environment 1,
##

rm(list=ls())
setwd(tempdir())
library(BGLR)
data(wheat) # Loads the wheat dataset

nIter<-1500 # For real data sets more samples are needed
burnIn<-500
thin<-10
folds<-10
y<-wheat.Y[,1]
A<-wheat.A

priorBL<-list(
 varE=list(df=3,S=2.5),
 varU=list(df=3,S=0.63),
 lambda = list(shape=0.52,rate=1e-5,value=20,type='random')
)

set.seed(123) #Set seed for the random number generator
sets<-rep(1:10,60)[-1]
sets<-sets[order(runif(nrow(A)))]
COR.CV<-rep(NA,times=(folds+1))
names(COR.CV)<-c(paste("PM_BL",fold,sep=''),'Pooled')
w<-rep(1/nrow(A),folds) ## weights for pooled correlations and MSE
yHatCV<-numeric()

for(fold in 1:folds)
{
yNa<-y
whichNa<-which(sets==fold)
yNa[whichNa]<-NA
prefix<-paste("PM_BL","_fold_",fold,sep='')
fm<-BLR(y=yNa,XL=wheat.X,GF=list(ID=(1:nrow(wheat.A)),A=wheat.A),prior=priorBL,
 nIter=nIter,burnIn=burnIn,thin=thin)
yHatCV[whichNa]<-fm$yHat[fm$whichNa]
w[fold]<-w[fold]*length(fm$whichNa)
COR.CV[fold]<-cor(fm$yHat[fm$whichNa],y[whichNa])
}
COR.CV

##
End(Not run)

BLR Cross

Bayesian Linear Regression

Description

The BLR (‘Bayesian Linear Regression’) function fits various types of parametric Bayesian regressions to continuous outcomes.

Usage
BLRCross(y,XX,Xy,nIter=1500,burnIn=500,
thin=5,R2=0.5,
S0=NULL,df0=5,
priors=NULL,
idPriors=NULL,
verbose=TRUE,
saveAt = '',
rmExistingFiles=TRUE)

Arguments

y A numeric vector of length n.

XX A matrix, XX=\text{crossprod}(X), with X an incidence matrix of dimen-
sion n times p.

Xy A numeric vector of length p, Xy=\text{crossprod}(X,y).

nIter,burnIn, thin (integer) the number of iterations, burn-in and thinning.

R2 (numeric, 0<R2<1) The proportion of variance that one expects, a priori, to be explained by the regression. Only used if the hyper-parameters are not specified; if that is the case, internally, hyper-parameters are set so that the prior modes are consistent with the variance partition specified by R2 and the prior distribution is relatively flat at the mode.

S0, df0 (numeric) The scale parameter for the scaled inverse-chi squared prior assigned to the residual variance. In the parameterization of the scaled-inverse chi square in BLRCross the expected values is $S0/(df0-2)$. The default value for the df parameter is 5. If the scale is not specified a value is calculated so that the prior mode of the residual variance equals $\text{var}(y) \ast R2$.

priors (list) This is a two-level list used to specify the regression function (or linear predictor). Regression on covariates and other types of random effects are specified in this two-level list.

For linear regressions the following options are implemented: FIXED (Flat prior), BayesA, BayesB, BRR (Gaussian prior), BayesC and SSVS.

idPriors (numeric) an integer vector that allow us to specify the priors for the columns of matrix X.

verbose (logical) if TRUE the iteration history is printed, default TRUE.

saveAt (string) this may include a path and a pre-fix that will be added to the name of the files that are saved as the program runs.

rmExistingFiles (logical) if TRUE removes existing output files from previous runs, default TRUE.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez.
References

Examples

```r
## Not run:

library(BGLR)

p=1000
n=1500
data(mice)
X=scale(mice.X[1:n,1:p],center=TRUE)
QTL=seq(from=50,to=p-50,by=80)
b=rep(0,p)
b[QTL]=1
signal=as.vector(X%*%b)
error=rnorm(sd=sd(signal),n=n)
y=error+signal
y=y-mean(y)
XX=crossprod(X)
Xy=as.vector(crossprod(X,y))

#Example 1

#BayesA
priors=list(list(model="BayesA"))
idPriors=rep(1,p)
fm1=BLRCross(y=y,XX=XX,Xy=Xy,nIter=1000,priors=priors,idPriors=idPriors)
pplot(as.vector(X%*%fm1$ETA[[1]]$b),y)

#BayesB
priors=list(list(model="BayesB"))
idPriors=idPriors=rep(1,p)
fm1=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,burnIn=5000,priors=priors,idPriors=idPriors)
pplot(as.vector(X%*%fm1$ETA[[1]]$b),y)
pplot(fm1$ETA[[1]]$b)
points(QTL,b[QTL],col="red")

#BayesC
priors=list(list(model="BayesC",R2=NULL,df0=NULL,S0=NULL,probIn=1/100,counts=1E6))
```
idPriors=rep(1,p)

fm1=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,priors=priors,idPriors=idPriors)
plot(as.vector(X%*%fm1$ETA[[1]]$b),y)
plot(fm1$ETA[[1]]$b)
points(QTL,b[QTL],col="red")

plot(fm1$ETA[[1]]$d)
points(QTL,b[QTL],col="red")

SSVS (Absolutely Continuous Spike Slab)
priors=list(list(model="SSVS",R2=NULL,df0=NULL,S0=NULL,probIn=NULL,counts=NULL))
idPriors=rep(1,p)

fm1=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,priors=priors,idPriors=idPriors)
plot(as.vector(X%*%fm1$ETA[[1]]$b),y)
plot(fm1$ETA[[1]]$b)
priors=list(list(model="SSVS",R2=NULL,df0=NULL,S0=NULL,probIn=NULL,
 counts=NULL,cprobIn=0.5,ccounts=2))
idPriors=rep(1,p)

fm1=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,priors=priors,idPriors=idPriors)
plot(as.vector(X%*%fm1$ETA[[1]]$b),y)
plot(fm1$ETA[[1]]$b)

Ridge Regression
priors=list(list(model="BRR",R2=NULL,df0=NULL,S0=NULL))
idPriors=rep(1,p)

fm1=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,priors=priors,idPriors=idPriors)
plot(as.vector(X%*%fm1$ETA[[1]]$b),y)

Example 2
priors=list(list(model="BayesC",R2=NULL,df0=NULL,S0=NULL,probIn=NULL,counts=NULL),
 list(model="BayesC",R2=NULL,df0=NULL,S0=NULL,probIn=NULL,counts=NULL))
idPriors=c(rep(1,p/2),rep(2,p/2))

fm2=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,priors=priors,idPriors=idPriors)
bHat=c(fm2$ETA[[1]]$b,fm2$ETA[[2]]$b)
plot(as.vector(X%*%bHat),y)
plot(bHat)

Example 3
priors=list(list(model="BayesC",R2=NULL,df0=NULL,S0=NULL,probIn=NULL,counts=NULL),
 list(model="BRR",R2=NULL,df0=NULL,S0=NULL))
idPriors=c(rep(1,p/2),rep(2,p/2))

fm3=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,priors=priors,idPriors=idPriors)
bHat=c(fm3$ETA[[1]]$b,fm3$ETA[[2]]$b)
plot(as.vector(X%*%bHat),y)
plot(bHat)
Example 4 Fixed effects

\[y = y + 3 \]

\[X = \text{cbind}(1, X) \]

\[XX = \text{crossprod}(X) \]

\[Xy = \text{as.vector(crossprod}(X, y)) \]

\[\text{priors} = \text{list(list(model="FIXED"),} \]
\[\text{list(model="BayesC", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL, probIn=1/100, counts=1e6},} \]
\[\text{list(model="BRR", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL}}})} \]

\[\text{idPriors} = \text{c(1, rep(2, p/2), rep(3, p/2))} \]

\[\text{fm0 = BLRCross}(y = y, XX = XX, Xy = Xy, nIter = 10000, burnIn = 5000, priors = \text{priors}, idPriors = \text{idPriors}) \]

\[\text{bHat} = \text{c(fm0$ETA[[1]]$b, fm0$ETA[[2]]$b, fm0$ETA[[3]]$b)} \]

\[\text{plot}(y, X \ast bHat) \]

\[\text{plot(bHat)} \]

\[\text{priors} = \text{list(list(model="FIXED"),} \]
\[\text{list(model="BayesC", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL, probIn=1/100, counts=1e6},} \]
\[\text{list(model="BRR", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL}}),} \]
\[\text{list(model="BayesA"})} \]

\[\text{idPriors} = \text{c(1, rep(2, 333), rep(3, 333), rep(4, 334))} \]

\[\text{fm0 = BLRCross}(y = y, XX = XX, Xy = Xy, nIter = 10000, burnIn = 5000, priors = \text{priors}, idPriors = \text{idPriors}) \]

\[\text{bHat} = \text{c(fm0$ETA[[1]]$b, fm0$ETA[[2]]$b, fm0$ETA[[3]]$b, fm0$ETA[[4]]$b)} \]

\[\text{plot}(y, X \ast bHat) \]

\[\text{plot(bHat)} \]

\[\text{priors} = \text{list(list(model="FIXED"),} \]
\[\text{list(model="BayesC", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL, probIn=1/100, counts=1e6},} \]
\[\text{list(model="BRR", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL}}),} \]
\[\text{list(model="BayesA"),} \]
\[\text{list(model="BayesB"})} \]

\[\text{idPriors} = \text{c(1, rep(2, 250), rep(3, 250), rep(4, 250), rep(5, 250))} \]

\[\text{fm0 = BLRCross}(y = y, XX = XX, Xy = Xy, nIter = 10000, burnIn = 5000, priors = \text{priors}, idPriors = \text{idPriors}) \]

\[\text{bHat} = \text{c(fm0$ETA[[1]]$b, fm0$ETA[[2]]$b, fm0$ETA[[3]]$b, fm0$ETA[[4]]$b, fm0$ETA[[5]]$b)} \]

\[\text{plot}(y, X \ast bHat) \]

\[\text{plot(bHat)} \]

\[\text{priors} = \text{list(list(model="FIXED"),} \]
\[\text{list(model="BayesC", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL, probIn=1/100, counts=1e6},} \]
\[\text{list(model="BRR", R2=\text{NULL, df0=\text{NULL, S0=\text{NULL}}),} \]
\[\text{list(model="BayesA"),} \]
\[\text{list(model="BayesB"),} \]
\[\text{list(model="SSVS"})} \]
idPriors=c(1,rep(2,200),rep(3,200),rep(4,200),rep(5,200),rep(6,200))

fm0=BLRCross(y=y,XX=XX,Xy=Xy,nIter=10000,burnIn=5000,priors=priors,idPriors=idPriors)
bHat=c(fm0$ETA[[1]]$b,fm0$ETA[[2]]$b,fm0$ETA[[3]]$b,fm0$ETA[[4]]$b,fm0$ETA[[5]]$b,fm0$ETA[[6]]$b)

plot(y,X%*%bHat)
plot(bHat)

End(Not run)

BLRXy

Bayesian Linear Regression

Description

The BLRXy('Bayesian Linear Regression') function fits various types of parametric Bayesian regressions to continuous outcomes. This is a wrapper for function BLRCross.

Usage

```r
BLRXy(y, intercept=TRUE, ETA,
       nIter = 1500, burnIn = 500, thin = 5,
       S0 = NULL, df0 = 5, R2 = 0.5,
       verbose = TRUE, saveAt="",
       rmExistingFiles = TRUE)
```

Arguments

- `y` (numeric, n) the data-vector (NAs allowed).
- `intercept` (logical) indicates if an intercept is included.
- `ETA` (list) This is a two-level list used to specify the regression function (or linear predictor). Regression on covariates and other types of random effects are specified in this two-level list. For instance:
  ```r
  ETA=list(list(X=W, model="FIXED"),
           list(X=Z,model="BRR")),
  ```
 specifies that the linear predictor should include: an intercept (included by default), a linear regression on W with regression coefficients treated as fixed effects (i.e., flat prior), plus regression on Z, with regression coefficients modeled as in the Bayesian Ridge Regression.

 The following options are implemented for linear regressions: FIXED (Flat prior), BayesA, BayesB, BRR (Gaussian prior), BayesC and SSVS.
nIter, burnIn, thin
(integer) the number of iterations, burn-in and thinning.

saveAt
(string) this may include a path and a prefix that will be added to the name of
the files that are saved as the program runs.

S0, df0
(numeric) The scale parameter for the scaled inverse-chi squared prior assigned
to the residual variance, only used with Gaussian outcomes. In the parameterization of the scaled-inverse chi square in BGLR the expected values is
$S0/(df0-2)$. The default value for the df parameter is 5. If the scale is not
specified a value is calculated so that the prior mode of the residual variance
equals $\text{var}(y)*R2$ (see below). For further details see the vignettes in the package.

R2
(numeric, $0<R2<1$) The proportion of variance that one expects, a priori, to be
explained by the regression. Only used if the hyper-parameters are not specified;
if that is the case, internally, hyper-parameters are set so that the prior modes are
consistent with the variance partition specified by R2 and the prior distribution
is relatively flat at the mode. For further details see the vignettes in the package.

verbose
(logical) if TRUE the iteration history is printed, default TRUE.

rmExistingFiles
(logical) if TRUE removes existing output files from previous runs, default
TRUE.

Author(s)
Gustavo de los Campos, Paulino Perez Rodriguez.

References

Examples

Not run:
library(BGLR)
p=1000
n=1500
data(mice)
X=scale(mice.X[1:n,1:p],center=TRUE)
QTL=seq(from=50,to=p-50,by=80)
b=rep(0,p)
b[QTL]=1
signal=as.vector(X%*%b)

error=rnorm(sd=sd(signal),n=n)
y=error+signal
y=2+y

#Example 1

#BayesA
ETA=list(list(X=X,model="BayesA"))

fm1=BLRXy(y=y,ETA=ETA)
plot(fm1$yHat,y)

End(Not run)

getG Covar

Description

Genetic co-variance matrix using MCMC samples.

Usage

getG Covar(X,B)

Arguments

- **X** (numeric) matrix of covariates.
- **B** (numeric) matrix that contains samples for regression coefficients, 3D array, with dim=c(nRow,p,traits), where nRow number of MCMC samples saved, p is the number of predictors and traits is the number of traits.

Value

Genetic co-variance matrix.

Author(s)

Gustavo de los Campos.

References

getVariances

Description

Computes the sample-variance (\text{var}()) for sets of markers as well as the total variance.

Usage

getVariances(X, B, sets, verbose=TRUE)

Arguments

- \textbf{X} (numeric, $n \times p$) incidence matrix for β.
- \textbf{B} (numeric), object returned by the function readBinMat().
- \textbf{sets} (numeric).
- \textbf{verbose} (logical), if TRUE it shows progress information in the console.

Value

A matrix with variances for markers as well as the total.

Author(s)

Gustavo de los Campos.

Examples

```r
# Not run:
# Demos
library(BGLR)
data(wheat)
y=wheat.Y[,1] ; X=scale(wheat.X)
dir.create("test_saveEffects")
setwd("test_saveEffects")
fm=BGLR(y=y,ETA=list(list(X=X,model='BayesB',saveEffects=TRUE)),nIter=12000,thin=2,burnIn=2000)
B=readBinMat('ETA_1_b.bin')
plot(B[,1],type='o',col=4)
VAR=getVariances(B=B,X=X,sets=sample(1:20,size=1279,replace=T))
head(VAR)
plot(VAR[,"total"])
```

End(Not run)
mice dataset

Description

The mice data comes from an experiment carried out to detect and locate QTLs for complex traits in a mice population (Valdar et al. 2006a; 2006b). This data has already been analyzed for comparing genome-assisted genetic evaluation methods (Legarra et al. 2008). The data file consists of 1814 individuals, each genotyped for 10,346 polymorphic markers. The information is related to obesity and biochemistry and other covariates related to the traits.

Usage

data(mice)

Format

Matrix mice.A contains the pedigree. The matrix mice.X contains the markes information and the map data.frame contains information for the genetic map. The data.frame mice.pheno contains phenotypical information.

References

mice.A

Pedigree info for the mice dataset

Description

Is a numerator relationship matrix (1814 x 1814) computed from a pedigree that traced back many generations.

References

mice.map

Genetic map info for the mice dataset

Description

Is a data.frame with 10436 rows and 4 columns: chr, snp_id, mbp and alleles.

The data can be downloaded from http://mtweb.cs.ucl.ac.uk/mus/www/GSCAN/HS_GENOTYPES/.

mice.pheno

Phenotypical data for the mice dataset

Description

The data can be downloaded from http://mtweb.cs.ucl.ac.uk/mus/www/GSCAN/HS_PHENOTYPES/.

mice.X

Molecular markers

Description

Is a matrix (1814 x 10346) with SNP markers.

The data can be downloaded from http://mtweb.cs.ucl.ac.uk/mus/www/GSCAN/HS_GENOTYPES/.
Description

The Multitrait function fits Bayesian multitrait models with arbitrary number of random effects using a Gibbs sampler. The data equation is as follows:

\[y_j = \mu_j + X_{Fj} \beta_j + X_1 \beta_{j1} + \ldots + X_k \beta_{jk} + u_j + \ldots + u_{jq} + e_j, \]

where:

- \(y_j \) is a \(n \)-dimensional response vector of phenotypes (NAs allowed) with \(y_{ij} \) representing the phenotypic record of the \(i \)-th subject for the \(j \)-th trait.
- \(\mu_j \) is an intercept.
- \(X_{Fj} \) is a matrix of fixed effects.
- \(\beta_j \) is a vector of fixed effects.
- \(X_s \) is an incidence matrix for predictors that are common for all the individuals (e.g. markers), \(s=1,\ldots,k \).
- \(\beta_{js} \) is a vector of regression coefficients, \(s=1,\ldots,k \). Different priors can be assigned to these regression coefficients (spike-slab and Gaussian) and regression coefficients are correlated across traits.
- \(u_{jr} \) is a \(n \)-dimensional vector of random effects.
- \(e_j \) is a \(n \)-dimensional vector of residuals.

Usage

```r
Multitrait(y, ETA, intercept=TRUE, resCov = list(df0=5, S0=NULL, type="UN"), R2=0.5, nIter=1000, burnIn=500, thin=10, saveAt="", verbose=TRUE)
```

Arguments

\(y \)

(a matrix of dimension \(n \times t \), where \(n \) is the number of individuals in each trait, \(t \) is the number of traits, NAs are allowed.

\(ETA \)

(list) This is a two-level list used to specify the regression function (or linear predictor). Regression on covariates and other types of random effects are specified in this two-level list. For instance:

```r
ETA=list(list(X=W, model="FIXED"),
        list(X=Z, model="BRR"),
        list(K=G, model="RKHS"))
```

specifies that the linear predictor should include: a linear regression on \(W \) with regression coefficients treated as fixed effects (i.e., flat prior), plus regression on \(Z \), with regression coefficients modeled as in the Ridge Regression plus and a random effect with co-variance structure \(G \).
Multitrait

intercept logical, if TRUE (default) an intercept is included.
nIter, burnIn, thin (integer) the number of iterations, burn-in and thinning.

resCov A list used to define the co-variance matrix for model residuals (R). Four co-

variance structures are supported: i) Unstructured ("UN"), ii)Diagonal ("DIAG"),

iii) Factor Analytic ("FA") and iv) Recursive ("REC"), for example:

resCov=list(type="UN", df0=4, S0=V)

specifies an UN-structured covariance matrix, with an Inverse Wishart prior

with degree of freedom df0 (scalar) and scale matrix (t x t) V.

saveAt (string) this may include a path and a pre-fix that will be added to the name of

the files that are saved as the program runs.

R2 (numeric, 0<R2<1) The proportion of co-variance that one expects, a priori, to

be explained by the regression. Only used if the hyper-parameters are not speci-

fied; if that is the case, internally, hyper-parameters are set so that the prior modes

are consistent with the co-variance partition specified by R2 and the prior distri-

bution is relatively flat at the mode.

verbose (logical) if TRUE the iteration history is printed, default TRUE.

Details

Conditional distribution of the data

Model residuals are assumed to follow a multivariate normal distribution, with null mean and co-

variance matrix \(Cov((e'_1, ..., e'_n)') = R_0 \otimes I \) where \(R_0 \) is a t x t (within-subject) covariance matrix

of model residuals and n-dimensional identity matrix. Therefore:

\[
p(y_{i1}, ..., y_{it} | \theta) = MN(\eta_i, R_0)
\]

where \(MN(.,.) \), denotes the multivariate normal distribution with mean \(\eta_i \) and covariance matrix

\(R_0 \); here \(\eta_i \) is a t-dimensional vector whose entries are the expected values of the response variable

for the i-th individual.

Prior distribution

The prior distribution is structured hierarchically. The first level of the prior specifies the distribution

of the fixed and random effects given the codispersion parameters (the covariance matrices of the

random effects, see below). The priors for the codispersion parameters are specified in a deeper

level of the hierarchy.

The intercepts and vectors of fixed effects are assigned flat prior (each unknown is assigned a

Gaussian prior with null mean and very large variance).

The vectors of random effects \(u_r \) are assigned independent multivariate normal priors with null

mean and covariance matrices \(Cov(u_{ij}) = G_r \otimes K_r \), \(u_r \) represent the vector of effects for the r-

th random effects (sorted by subject first and trait within subject), \(G_r \) is an t x t (within-subject)

covariance matrix of the r-th random effect and \(K_r \) is a user defined (between subjects) covariance

matrix for the r-th random effect, for instance, may be a pedigree or marker-based relationship

matrix. The covariance matrix of random effects are assigned Inverse Wishart priors (for the case
of unstructured options) or priors that are structured according to some model (diagonal, factor analytic or recursive).

The vector or regression coefficients β_s are assigned Gaussian and Spike Slab priors whose covariance matrixes depend on a Ω_s covariance matrix of dimensions $t \times t$ (within subject). The covariance matrix of random effects are assigned Inverse Wishart priors (for the case of unstructured options) or priors that are structured according to some model (diagonal, factor analytic or recursive).

Algorithm

Internally, samples from all the model unknowns are drawn using a Gibbs sampler (i.e., based on fully conditional distributions).

Value

List containing estimated posterior means and estimated posterior standard deviations.

Author(s)

Gustavo de los Campos, Paulino Perez-Rodriguez

References

Examples

```r
## Not run:
library(BGLR)
data(wheat)
X<-wheat.X
K<-wheat.A
y<-wheat.Y

#Example 1, Spike Slab regression
ETA1<-list(list(X=X,model="SpikeSlab"))

fm1<-Multitrait(y=y,ETA=ETA1,nIter=1000,burnIn=500)

#Example 2, Ridge Regression
ETA2<-list(list(X=X,model="BRR"))
```
fm2<-Multitrait(y=y,ETA=ETA2,nIter=1000,burnIn=500)

#Example 3, Random effects with user defined covariance structure
#for individuals derived from pedigree
ETA3<-list(list(K=K,model="RKHS"))
fm3<-Multitrait(y=y,ETA=ETA3,nIter=1000,burnIn=500)

#Example 4, Markers and pedigree
ETA4<-list(list(X=X,model="BRR"), list(K=K,model="RKHS"))
fm4<-Multitrait(y=y,ETA=ETA4,nIter=1000,burnIn=500)

#Example 5, recursive structures for within subject covariance matrix
M1 <- matrix(nrow = 4, ncol = 4, FALSE)
M1[3, 2] <- M1[4, 2] <- TRUE # Adding recursion from trait 2 onto traits 3 and 4
M1[4, 3] <- TRUE # Adding recursion from trait 3 on trait 4
ETA5<-list(list(K=K,model="RKHS",Cov=list(type="REC",M=M1)))
fm5<-Multitrait(y=y,ETA=ETA5,nIter=1000,burnIn=500)

#Example 6, diagonal residual covariance matrix with the predictor
#used in example 5
residual1<-list(type="DIAG")
fm6<-Multitrait(y=y,ETA=ETA5,resCov=residual1,nIter=1000,burnIn=500)

End(Not run)

plot.BGLR

Plots for BGLR Analysis

Description

Plots observed vs predicted values for objects of class BGLR.

Usage

```r
## S3 method for class 'BGLR'
plot(x, ...)
```

Arguments

- `x` An object of class BGLR.
- `...` Further arguments passed to or from other methods.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,
See Also

BGLR.

Examples

```r
## Not run:
setwd(tempdir())
library(BGLR)
data(wheat)
out=BLR(y=wheat.Y[,1],XL=wheat.X)
plot(out)

## End(Not run)
```

Model Predictions

Description

extracts predictions from the results of BGLR function.

Usage

```r
## S3 method for class 'BGLR'
predict(object, newdata, ...)
```

Arguments

- **object**: An object of class BGLR.
- **newdata**: Currently not supported, for new data you should assign missing value indicator (NAs) to the corresponding entries in the response vector (y).
- **...**: Further arguments passed to or from other methods.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

See Also

BGLR.
readBinMat

Examples

Not run:

```r
cwd(tempdir())
library(BGLR)
data(wheat)
out=BLR(y=wheat.Y[,1],XL=wheat.X)
predict(out)
```

End(Not run)

readBinMat readBinMat

Description

Function to read effects saved by BGLR when ETA[[j]]$saveEffects=TRUE.

Usage

```r
readBinMat(filename,byrow=TRUE,storageMode="double")
```

Arguments

- `filename` (string), the name of the file to be read.
- `byrow` (logical), if TRUE the matrix is created by filling its corresponding elements by rows.
- `storageMode` (character), the storage mode used to save effects via ETA[[j]]$storageMode: 'double' (default) or 'single'.

Value

A matrix with samples of regression coefficients.

Author(s)

Gustavo de los Campos.
Examples

Not run:

```r
library(BGLR)
data(wheat)
y = wheat.Y[, 1]; X = scale(wheat.X)
dir.create('test_saveEffects')
setwd('test_saveEffects')
f = BGLR(y = y, ETA = list(list(X = X, model = 'BayesB', saveEffects = TRUE)), nIter = 12000, thin = 2, burnIn = 2000)
B = readBinMat('ETA_1_b.bin')
```

End(Not run)

readBinMatMultitrait

Description

Function to read effects saved by Multitrait when ETA[[j]]$saveEffects=TRUE.

Usage

```r
readBinMatMultitrait(filename, storageMode = "double")
```

Arguments

- `filename` (string), the name of the file to be read.
- `storageMode` (character), the storage mode used to save effects via ETA[[j]]$storageMode: 'double' (default) or 'single'.

Value

A 3D array, with dim=c(nRow, p, traits), where nRow number of MCMC samples saved, p is the number of predictors and traits is the number of traits.

Author(s)

Gustavo de los Campos, Paulino Perez-Rodriguez.
Examples

```r
## Not run:
library(BGLR)

data(wheat)
y<-wheat.Y
X<-wheat.X

fm<-Multitrait(y=y, ETA=list(list(X=X, model='BRR', saveEffects=TRUE)),
nIter=1000, thin=10, burnIn=500)

B<-readBinMatMultitrait('ETA_1_beta.bin')

## End(Not run)
```

Description

This function reads genotype information stored in binary PED (BED) files used in plink. These files save space and time. The pedigree/phenotype information is stored in a separate file (*.fam) and the map information is stored in an extended MAP file (*.bim) that contains information about the allele names, which would otherwise be lost in the BED file. More details http://zzz.bwh.harvard.edu/plink/binary.shtml.

Usage

```r
read_bed(bed_file, bim_file, fam_file, na.strings, verbose)
```

Arguments

- `bed_file`: binary file with genotype information.
- `bim_file`: text file with pedigree/phenotype information.
- `fam_file`: text file with extended map information.
- `na.strings`: missing value indicators, default=c("0", "-9").
- `verbose`: logical, if true print hex dump of bed file.

Value

The routine will return a vector of dimension n*p (n=number of individuals, p=number of snps), with the snps(individuals) stacked, depending whether the BED file is in SNP-major or individual-major mode.

The vector contains integer codes:
<table>
<thead>
<tr>
<th>Integer code</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00 Homozygote "1"/"1"</td>
</tr>
<tr>
<td>1</td>
<td>01 Heterozygote</td>
</tr>
<tr>
<td>2</td>
<td>10 Missing genotype</td>
</tr>
<tr>
<td>3</td>
<td>11 Homozygote "2"/"2"</td>
</tr>
</tbody>
</table>

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

Examples

```r
## Not run:

library(BGLR)
demo(read_bed)

## End(Not run)
```

Description

This function reads genotype information stored in PED format used in plink.

Usage

```r
read_ped(ped_file)
```

Arguments

- `ped_file` : ASCII file with genotype information.

Details

The PED file is a white-space (space or tab) delimited file: the first six columns are mandatory:

- Family ID
- Individual ID
- Paternal ID
- Maternal ID
- Sex (1=male; 2=female; other=unknown)
- Pheno-type

The IDs are alphanumeric: the combination of family and individual ID should uniquely identify a person. A PED file must have 1 and only 1 phenotype in the sixth column. The phenotype can be either a quantitative trait or an affection status column.
Value

The routine will return a vector of dimension n*p (n=number of individuals, p=number of snps), with the snps stacked.

The vector contains integer codes:

<table>
<thead>
<tr>
<th>Integer code</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00 Homozygote "1"/"1"</td>
</tr>
<tr>
<td>1</td>
<td>01 Heterozygote</td>
</tr>
<tr>
<td>2</td>
<td>10 Missing genotype</td>
</tr>
<tr>
<td>3</td>
<td>11 Homozygote "2"/"2"</td>
</tr>
</tbody>
</table>

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

Examples

```r
## Not run:
library(BGLR)
demo(read_ped)

## End(Not run)
```

residuals.BGLR Extracts models residuals

Description

extracts model residuals from objects returned by BGLR function.

Usage

```r
## S3 method for class 'BGLR'
residuals(object, ...)
```

Arguments

- **object**: An object of class BGLR.
- **...**: Further arguments passed to or from other methods.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

See Also

BGLR.

Examples

```r
## Not run:

setwd(tempdir())
library(BGLR)
data(wheat)
out=BLR(y=wheat.Y[,1],XL=wheat.X)
residuals(out)

## End(Not run)
```

simulated3t
simulated data for 3 traits

Description

Simulated dataset for three traits. Markers, QTL and phenotypes are simulated for three traits. Here we extend the simulation scheme described by Cheng et al. (2018) for the case of three traits. So we simulated 100 evenly spaced loci on each of 4 chromosomes of length 10 cM. We selected 10 loci on each chromosome as QTL. We sampled states from Bernoulli distribution with p=0.5. After that we simulated 500 generations to obtain linkage disequilibrium using 500 males and 500 females that were mated at random. Random mating was continued for 5 more generations and population size was increased to 4000 males and 4000 females. The QTL on chromosome 1 has effect on trait 1, whereas chromosomes 1 and 2 had effects on traits 2 and 3 respectively. The QTL on chromosome 4 had effects on the 3 traits. The effects of QTL on chromosome 4 were simulated from a multivariate normal distribution with null mean and variance covariance matrix:

\[
\begin{bmatrix}
1.00 & 0.75 & 0.50 \\
0.75 & 1.00 & 0.75 \\
0.50 & 0.75 & 1.00 \\
\end{bmatrix}
\]

The genetic values were scaled to have variance 1.0. The phenotypes for these traits were obtained by adding residuals to genetic values, residuals were simulated from a multivariate normal distribution with null mean and covariance matrix:

\[
\begin{bmatrix}
6.0 & 6.0 & 1.0 \\
6.0 & 8.0 & 2.0 \\
1.0 & 2.0 & 1.0 \\
\end{bmatrix}
\]
In total, 8000 individuals were simulated and the genetic covariance matrix is:

\[
\begin{bmatrix}
1.00 & 0.34 & 0.07 \\
0.34 & 1.00 & 0.21 \\
0.07 & 0.21 & 1.00 \\
\end{bmatrix}
\]

Usage

```
data(simulated3t)
```

Format

Matrix `simulated3t.X` contains the marker information. Matrix `simulated3t.pheno` contains the phenotypical information.

References

simulated3t.pheno
Phenotypical data for simulated dataset with 3 traits

Description

A matrix with 8000 rows and 6 columns. Columns 1 to 3 corresponds to simulated phenotypes for 3 traits, columns 4-6 corresponds to true simulated genetic values for 3 traits.

simulated3t.X
Molecular markers

Description

Is a matrix (8000 x 327) with recoded SNP markers for additive effects as 0, 1, 2.
summary.BGLR

summary.BGLR

summary for BGLR fitted models

Description

Gives a summary for a fitted model using BGLR function.

Usage

S3 method for class 'BGLR'
summary(object, ...)

Arguments

object An object of class BGLR.

... Further arguments passed to or from other methods.

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

See Also

BGLR.

Examples

Not run:

setwd(tempdir())
library(BGLR)
data(wheat)
out=BLR(y=wheat.Y[,1],XL=wheat.X)
summary(out)

End(Not run)
Description

This function takes a symmetric matrix and extracts a list of all lower triangular elements.

Usage

vech(x)

Arguments

x A symmetric matrix.

Details

This function checks to make sure the matrix is square, but it does not check for symmetry (it just pulls the lower triangular elements). The elements are stored in column major order. The original matrix can be restored using the `xpnd` command.

Value

A list of the lower triangular elements.

See Also

`xpnd`

Examples

```r
symmat <- matrix(c(1,2,3,4,2,4,5,6,3,5,7,8,4,6,8,9),4,4)
vech(symmat)
```
Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous international trials across a wide variety of wheat-producing environments. The environments represented in these trials were grouped into four basic target sets of environments comprising four main agro-climatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Program. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the International Crop Information System (ICIS), as described in https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3488/72673.pdf (McLaren et al. 2000, 2005) was used for deriving the relationship matrix A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated by Triticarte Pty. Ltd. (Canberra, Australia; https://www.diversityarrays.com). The DArT markers may take on two values, denoted by their presence or absence. Markers with a minor allele frequency lower than 0.05 were removed, and missing genotypes were imputed with samples from the marginal distribution of marker genotypes, that is, \(x_{ij} = \text{Bernoulli}(\hat{p}_j) \), where \(\hat{p}_j \) is the estimated allele frequency computed from the non-missing genotypes. The number of DArT MMs after edition was 1279.

Usage

data(wheat)

Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on. The matrix A contains additive relationship computed from the pedigree and matrix X contains the markers information.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

Pedigree info for the wheat dataset

Description

Is a numerator relationship matrix (599 x 599) computed from a pedigree that traced back many generations. This relationship matrix was derived using the Browse application of the International Crop Information System (ICIS), as described in https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3488/72673.pdf (McLaren *et al.* 2000, 2005).

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

Sets for cross validation (CV)

Description

Is a vector (599 x 1) that assigns observations to 10 disjoint sets; the assignment was generated at random. This is used later to conduct a 10-fold CV.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.
wheat.X Molecular markers

Description

Is a matrix (599 x 1279) with DArT genotypes; data are from pure lines and genotypes were coded as 0/1 denoting the absence/presence of the DArT. Markers with a minor allele frequency lower than 0.05 were removed, and missing genotypes were imputed with samples from the marginal distribution of marker genotypes, that is, $x_{ij} = \text{Bernoulli}(\hat{p}_j)$, where \hat{p}_j is the estimated allele frequency computed from the non-missing genotypes. The number of DArT MMs after edition was 1279.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

wheat.Y Grain yield

Description

A matrix (599 x 4) containing the 2-yr average grain yield of each of these lines in each of the four environments (phenotypes were standardized to a unit variance within each environment).

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

write_bed write_bed

Description

This function writes genotype information into a binary PED (BED) file used in plink. For more details about this format see http://zzz.bwh.harvard.edu/plink/binary.shtml.

Usage

```
write_bed(x,n,p,bed_file)
```
xpnd

Expand a Vector into a Symmetric Matrix

Description

This function takes a vector of appropriate length (typically created using `vech`) and creates a symmetric matrix.

Usage

`xpnd(x, nrow = NULL)`

Arguments

- `n` integer, number of individuals.
- `p` integer, number of SNPs.
- `x` integer vector that contains the genotypic information coded as 0,1,2 and 3 (see details below). The information must be in snp major order. The vector should be of dimension `n*p` with the snps stacked.
- `bed_file` output binary file with genotype information.

Details

The vector contains integer codes:

<table>
<thead>
<tr>
<th>Integer code</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00 Homozygote "1"/"1"</td>
</tr>
<tr>
<td>1</td>
<td>01 Heterozygote</td>
</tr>
<tr>
<td>2</td>
<td>10 Missing genotype</td>
</tr>
<tr>
<td>3</td>
<td>11 Homozygote "2"/"2"</td>
</tr>
</tbody>
</table>

Author(s)

Gustavo de los Campos, Paulino Perez Rodriguez,

Examples

```r
## Not run:
library(BGLR)
demo(write_bed)
```

```r
## End(Not run)
```
Arguments

- `x`: A list of elements to expand into symmetric matrix.
- `nrow`: The number of rows (and columns) in the returned matrix. Look into the details.

Details

This function is particularly useful when dealing with variance covariance matrices. Note that R stores matrices in column major order, and that the items in `x` will be recycled to fill the matrix if need be.

The number of rows can be specified or automatically computed from the number of elements in a given object via \((-1 + \sqrt{1 + 8 \times \text{length}(x)})/2\).

Value

An \((\text{nrows} \times \text{nrows})\) symmetric matrix.

See Also

- `vech`

Examples

```r
xpnd(c(1, 2, 3, 4, 5, 6, 7, 8, 9), 4)
xpnd(c(1, 2, 3, 4, 5, 6, 7, 8, 9))
```
Index

* datasets
 mice, 20
 mice.A, 20
 mice.map, 21
 mice.pheno, 21
 mice.X, 21
 simulated3t, 32
 simulated3t.pheno, 33
 simulated3t.X, 33
 wheat, 36
 wheat.A, 37
 wheat.sets, 37
 wheat.X, 38
 wheat.Y, 38
* manip
 vech, 35
 xpnd, 39
* models
 BGLR, 3
 BLR, 6
 BLRCross, 11
 BLRXy, 16
 getVariances, 19
 Multitrait, 22
 readBinMat, 27
 readBinMatMultitrait, 28
* plot
 plot.BGLR, 25
* residuals
 residuals.BGLR, 31
* summary
 summary.BGLR, 34
 getGCovar, 18
 BFD, 2
 BGLR, 3
 BLR, 6
 BLRCross, 11
 BLRXy, 16
 getVariances, 19
 mice, 20
 mice.A, 20
 mice.map, 21
 mice.pheno, 21
 mice.X, 21
 Multitrait, 22
 plot.BGLR, 25
 predict.BGLR, 26
 read_bed, 29
 read_ped, 30
 readBinMat, 27
 readBinMatMultitrait, 28
 residuals.BGLR, 31
 simulated3t, 32
 simulated3t.pheno, 33
 simulated3t.X, 33
 summary.BGLR, 34
 vech, 35, 40
 wheat, 36
 wheat.A, 37
 wheat.sets, 37
 wheat.X, 38
 wheat.Y, 38
 write_bed, 38
 xpnd, 35, 39