Package ‘BGPhazard’

June 4, 2020

Version 2.0.1
Title Markov Beta and Gamma Processes for Modeling Hazard Rates
Author L. E. Nieto-Barajas, J. A. Garcia Bueno and E.A. Morones Ishikawa
Maintainer Emilio Akira Morones Ishikawa <emiliomorones@gmail.com>
Depends R (>= 3.5.0)
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports magrittr, dplyr, purrr, tibble, ggplot2, ggthemes, gridExtra,
 readr, survival, rlang
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-04 17:00:07 UTC
RoxygenNote 6.1.1

R topics documented:

BeMRes .. 2
BePlotDiag ... 4
BePlotth ... 5
BGPHazard ... 6
BMTKleinbook .. 7
CCuMRes .. 8
CCuPlotDiag ... 10
CCuPlotth .. 12
CGaMRes .. 13
CGaPlotDiag ... 15
CGaPlotth .. 17
cpo .. 18
Markov Beta Model

Description

Posterior inference for the Bayesian non-parametric Markov beta model for discrete survival times.

Usage

\begin{verbatim}
BeMRes(times, delta = rep(1, length(times)), alpha = rep(1e-04, K),
 beta = rep(1e-04, K), c.r = rep(0, K - 1), a.eps = 0.1,
 b.eps = 0.1, type.c = 4, epsilon = 1, iterations = 2000,
 burn.in = floor(iterations * 0.2), thinning = 5, printtime = TRUE)
\end{verbatim}

Arguments

- **times**: Numeric positive vector. Failure times.
- **delta**: Logical vector. Status indicator. TRUE (1) indicates exact lifetime is known, FALSE (0) indicates that the corresponding failure time is right censored.
- **alpha**: Nonnegative vector. Small entries are recommended in order to specify a non-informative prior distribution.
- **beta**: Nonnegative vector. Small entries are recommended in order to specify a non-informative prior distribution.
- **c.r**: Nonnegative vector. The higher the entries, the higher the correlation of two consecutive failure times.
- **a.eps**: Numeric. Shape parameter for the prior gamma distribution of epsilon when type.c = 4.
- **b.eps**: Numeric. Scale parameter for the prior gamma distribution of epsilon when type.c = 4.
- **type.c**: Integer. 1=defines c.r as a zero-entry vector; 2=lets the user define c.r freely; 3=assigns c.r an exponential prior distribution with mean epsilon; 4=assigns c.r an exponential hierarchical distribution with mean epsilon which in turn has a a Ga(a.eps, b.eps) distribution.
epsilon

Double. Mean of the exponential distribution assigned to c.r

iterations

Integer. Number of iterations including the burn.in and thining to be computed for the Markov chain.

burn.in

Integer. Length of the burn-in period for the Markov chain.

thinning

Integer. Factor by which the chain will be thinned. Thinning the Markov chain is to reduces autocorrelation.

printtime

Logical. If TRUE, prints out the execution time.

Details

Computes the Gibbs sampler given by the full conditional distributions of u and Pi (Nieto-Barajas & Walker, 2002) and arranges the resulting Markov chain into a tibble which can be used to obtain posterior summaries.

Note

It is recommended to verify chain’s stationarity. This can be done by checking each partition element individually. See BePlotDiag.

References

See Also

BePlotDiag, BePloth

Examples

```r
## Simulations may be time intensive. Be patient.
## Example 1
# data(psych)
# timesP <- psych$time
# deltaP <- psych$death
# BEX1 <- BeMRes(timesP, deltaP, iterations = 3000, burn.in = 300, thinning = 1)

## Example 2
# data(gehan)
# timesG <- gehan$time[gehan$treat == "control"]
# deltaG <- gehan$cens[gehan$treat == "control"]
# BEX2 <- BeMRes(timesG, deltaG, type.c = 2, c.r = rep(50, 22))
```
BePlotDiag

Diagnosis plots for PI, U, C and Epsilon

Description
Diagnostic plots for hazard rate (PI), latent variable (U), dependence parameter (C) and parameter of the hierarchical model (Epsilon).

Usage
BePlotDiag(M, variable = "PI", pos = 1)

Arguments
- M: Tibble. Contains the output by BeMRes
- variable: Either "PI", "U", "C" or "Epsilon". Variable for which diagnostic plot will be shown.
- pos: Positive integer. Position of the selected variable to be plotted.

Details
This function returns a diagnostics plot for the chain of the selected variable. The diagnostics includes trace, ergodic mean, autocorrelation function and histogram.

References

See Also
- BeMRes

Examples

```r
## Simulations may be time intensive. Be patient.
## Example 1
# data(psych)
# timesP <- psych$time
# deltaP <- psych$death
# BEX1 <- BeMRes(timesP, deltaP, iterations = 3000, burn.in = 300, thinning = 1)
# BePlotDiag(BEX1, variable = "PI", pos = 2)
# BePlotDiag(BEX1, variable = "U", pos = 3)
```
Example 2
```r
# data(gehan)
# timesG <- gehan$time[gehan$treat == "control"]
# deltaG <- gehan$cens[gehan$treat == "control"]
# BEX2 <- BeMRes(timesG, deltaG, type.c = 2, c.r = rep(50, 22))
# BePlotDiag(BEX2, variable = "PI", pos = 5)
# BePlotDiag(BEX2, variable = "U", pos = 4)
```

BePloth

Plots for the discrete Hazard and Survival Function Estimates

Description
Plots the resulting hazard function along with the survival function estimates defined by the Markov beta process (Nieto-Barajas and Walker, 2002).

Usage
```
BePloth(M, type.h = "dot", add.survival = T, intervals = T,
        confidence = 0.95, summary = FALSE)
```

Arguments
- **M**
tibble. Contains the output generated by BeMRes.
- **type.h** character. "line" = plots the hazard rate of each interval joined by a line, "dot" = plots the hazard rate of each interval with a dot.
- **add.survival** logical. If TRUE, plots the Nelson-Aalen based estimate in the same graphic of the hazard rate and the Kaplan-Meier estimates of the survival function.
- **intervals** logical. If TRUE, plots confidence bands for the selected functions including Nelson-Aalen and/or Kaplan-Meier estimate.
- **confidence** Numeric. Confidence band width.
- **summary** Logical. If TRUE, a summary for hazard and survival functions is returned as a tibble.

Details
This function returns estimators plots for the hazard rate as computed by BeMRes together with the Nelson-Aalen estimate along with their confidence intervals for the data set given. Additionally, it plots the survival function and the Kaplan-Meier estimate with their corresponding credible intervals.
Value

SUM.h Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each failure time of the hazard function.

SUM.S Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each failure time of the survival function.

References

See Also

BeMRes, BePlotDiag

Examples

```r
## Example 1
# data(psych)
# timesP <- psych$time
# deltaP <- psych$death
# BEX1 <- BeMRes(timesP, deltaP, iterations = 3000, burn.in = 300, thinning = 1)
# BePloth(BEX1)
# sum <- BePloth(BEX1, type.h = "line", summary = T)
```

```r
## Example 2
# data(gehan)
# timesG <- gehan$time[gehan$treat == "control"]
# deltaG <- gehan$cens[gehan$treat == "control"]
# BEX2 <- BeMRes(timesG, deltaG, type.c = 2, c.r = rep(50, 22))
# BePloth(BEX2)
```

BGPHazard

BGPHazard: A package bayesian nonparametric inference in survival analysis.

Description

The BGPHazard package provides three categories of important functions: simulating, diagnostic and result.
Simulating functions

The simulating functions are used to make posterior inference for the bayesian survival semiparametric models as described by Nieto-Barajas and Walker (2002), Nieto-Barajas (2003) and Nieto-Barajas, L. E., & Yin, G. (2008).

Diagnostic functions

The diagnostic functions are used to make convergence diagnosics plots about the simulations of the parameters/variables.

Result functions

The result functions are used to produce estimators plots of the hazard function along with the survival function defined by the model.

BMTKleinbook

Times to death or relapse (in days) for patients with bone marrow transplants for Hodgkin and non-Hodgkin lymphoma

Description

Was collected on 43 bone marrow transplant patients at The Ohio State University Bone Marrow Transplant Unit. Details of this study can be found in Avalos et al. (1993).

Usage

data(BMTKleinbook)

Format

A data frame with 43 observations containing:

times time to death or relapse in days
delta Status indicator: 1 = death or relapse; 0 = otherwise
tTransplant Allogeneic transplant from an HLA match sibling donor (1) or an autogeneic transplant (0)
hodgkin Hodgkin disease (1), or non-Hodgkin lymphoma (0)
karnofsky The pretransplant Karnofsky score
waiting Waiting time to transplant

Source

References

Examples

Cox Cure Gama Process Example 1

```r
# data(BMTKleinbook)
# res <- CCuMRes(BMTKleinbook, covs.x = c("tTransplant","hodgkin","karnofsky","waiting"),
# covs.y = c("tTransplant","hodgkin","karnofsky","waiting"),
# type.t = 2, K = 72, length = 30,
# alpha = rep(2,72), beta = rep(2,72), c.r = rep(50, 71), type.c = 2,
# var.delta.str = .1, var.theta.str = 1,
# var.delta.ini = 100, var.theta.ini = 100,
# iterations = 100, burn.in = 10, thinning = 1)
```

CCuMRes

Bayesian Semiparametric Cure Rate Model with an Unknown Threshold and Covariate Information

Description

Posterior inference for the bayesian semiparametric cure rate model with covariates in survival analysis.

Usage

```r
CCuMRes(data, covs.x = names(data)[seq.int(3, ncol(data))],
        covs.y = names(data)[seq.int(3, ncol(data))], type.t = 3, length,
        K = 50, alpha = rep(0.01, K), beta = rep(0.01, K), c.r = rep(0, K
        - 1), c.nu = 1, var.theta.str = 25, var.delta.str = 25,
        var.theta.ini = 100, var.delta.ini = 100, type.c = 4,
        a.eps = 0.1, b.eps = 0.1, epsilon = 1, iterations = 5000,
        burn.in = floor(iterations * 0.2), thinning = 3, printtime = TRUE)
```

Arguments

- **data**
 - Double tibble. Contains failure times in the first column, status indicator in the second, and, from the third to the last column, the covariate(s).

- **covs.x**
 - Character. Names of covariables to be part of the multiplicative part of the hazard

- **covs.y**
 - Character. Names of covariables to determine the cure threshold por each patient.

- **type.t**
 - Integer. 1=computes uniformly-dense intervals; 2=length intervals defined by the user and 3=same length intervals.
length Integer. Interval length of the partition.
K Integer. Partition length for the hazard function.
alpha Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.
beta Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.
c.r Nonnegative vector. The higher the entries, the higher the correlation of two consecutive intervals.
c.nu Tuning parameter for the proposal distribution for c. Only when type.c is 3 or 4.
var.delta.str Double. Variance of the proposal normal distribution for delta in the Metropolis-Hastings step.
var.theta.ini Double. Variance of the prior normal distribution for theta.
var.delta.ini Double. Variance of the prior normal distribution for delta. from the acceptance ratio in the Metropolis-Hastings algorithm for delta*.
type.c 1=defines c.r as a zero-entry vector; 2=lets the user define c.r freely; 3=assigns c.r an exponential prior distribution with mean 1; 4=assigns c.r an exponential hierarchical distribution with mean epsilon which in turn has a Ga(a.eps, b.eps) distribution.
a.eps Double. Shape parameter for the prior gamma distribution of epsilon when type.c = 4.
b.eps Double. Scale parameter for the prior gamma distribution of epsilon when type.c = 4.
epsilon Double. Mean of the exponential distribution assigned to c.r when type.c = 3.
iterations Integer. Number of iterations including the burn.in to be computed for the Markov chain.
burn.in Integer. Length of the burn-in period for the Markov chain.
thinning Integer. Factor by which the chain will be thinned. Thinning the Markov chain reduces autocorrelation.
printtime Logical. If TRUE, prints out the execution time.

Details
Computes the Gibbs sampler with the full conditional distributions of all model parameters (Nieto-Barajas & Yin, 2008) and arranges the resulting Markov chain into a tibble which can be used to obtain posterior summaries. Prior distributions for the regression coefficients Theta and Delta are assumed independent normals with zero mean and variance var.theta.ini, var.delta.ini, respectively.
Note
It is recommended to verify chain’s stationarity. This can be done by checking each element individually. See CCuPlotDiag.

References

See Also
CCuPlotDiag, CCuPloth

Examples

```r
# data(BMTKleinbook)
# res <- CCuMR(M, covs.x = c("tTransplant","hodgkin","karnofsky","waiting"),
# covs.y = c("tTransplant","hodgkin","karnofsky","waiting"),
# type.t = 2, K = 72, length = 30,
# alpha = rep(2,72), beta = rep(2,72), c.r = rep(50, 71), type.c = 2,
# var.delta.str = .1, var.theta.str = 1,
# var.delta.ini = 100, var.theta.ini = 100,
# iterations = 100, burn.in = 10, thinning = 1)
```

CCuPlotDiag

Diagnostics plots for Lambda, Theta, Delta, U, C, Pi, Z and Epsilon. Hazard function, cure proportion and cure time for the median observation.

Description
Diagnostic plots for hazard rate (Lambda), regression parameters for the hazard (Theta), regression parameters for the cure rate (Delta), latent variable (U), dependence parameter (C), mean of cure threshold (Mu), cure proportion (Pi), cure threshold (Z) and the parameter of the hierarchical prior (Epsilon).

Usage
CCuPlotDiag(M, variable = "Lambda", pos = 1)
Arguments

M tibble. Contains the output by CCuMRes.
variable Either "Lambda", "U", "C", "Mu", "Pi", "Z" or "Epsilon". Variable for which diagnostic plot will be shown.
pos Positive integer. Position of the selected variable to be plotted.

Details

This function returns a diagnostics plot for which the chain for the selected variable can be monitored. Diagnostics includes trace, ergodic mean, autocorrelation function and histogram.

References

See Also

CCuMRes

Examples

Simulations may be time intensive. Be patient.

Example 1
data(BMTKleinbook)
res <- CCuMRes(BMTKleinbook, covs.x = c("tTransplant","hodgkin","karnofsky","waiting"),
covs.y = c("tTransplant","hodgkin","karnofsky","waiting"),
type.t = 2, K = 72, length = 30,
alpha = rep(2,72), beta = rep(2,72), c.r = rep(50, 71), type.c = 2,
var.delta.str = .1, var.theta.str = 1,
var.delta.ini = 100, var.theta.ini = 100,
iterations = 100, burn.in = 10, thinning = 1)
CCuPlotDiag(M = res, variable = "Z")
CCuPlotDiag(M = res, variable = "Pi.m")
CCuPlotDiag(M = res, variable = "Lambda", pos = 2)
CCuPlotDiag(M = res, variable = "U", pos = 4)
CCuPloth

Plots for the Hazard and Survival Function Estimates

Description

Plots the resulting hazard function and the survival function estimates defined by the bayesian semi-parametric cure rate model with an unknown threshold (Nieto-Barajas & Yin, 2008).

Usage

```
CCuPloth(M, new_obs = NULL, type.h = "segment", qn = 0.5,
         intervals = T, confidence = 0.95, summary = FALSE)
```

Arguments

- **M**: tibble. Contains the output generated by CuMRres.
- **new_obs**: tibble. Contains the covariate information for new observations.
- **type.h**: character. "segment"= use segments to plot hazard rates, "line" = link hazard rates by a line.
- **qn**: Numeric. Quantile for Tao (cure time) that should be visualized on the plot.
- **intervals**: logical. If TRUE, plots credible intervals.
- **confidence**: Numeric. Confidence level.
- **summary**: Logical. If TRUE, a summary for the hazard and survival functions is returned as a tibble.

Details

This function returns estimators plots for the hazard rate as it is computed by CCuMRes and the cure time (quantile of Tao specified by the user) together with credible intervals. Additionally, it plots the survival function and the cure proportion estimates with their corresponding credible intervals.

Value

- **SUM.h**: Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each segment of the hazard function. If summary = TRUE
- **SUM.S**: Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each segment of the survival function. If summary = TRUE

References

CGaMRes

Markov Gamma Model with Covariates

Description

Posterior inference for the Bayesian non-parametric Markov gamma model with covariates in survival analysis.

Usage

CGaMRes(data, type.t = 2, length = 1, K = 5, alpha = rep(0.01, K),
 beta = rep(0.01, K), c.r = rep(1, K - 1), c.nu = 1,
 var.theta.str = 25, var.theta.ini = 100, a.eps = 0.1,
 b.eps = 0.1, type.c = 4, epsilon = 1, iterations = 1000,
 burn.in = floor(iterations * 0.2), thinning = 3, printtime = TRUE)
Arguments

data Double tibble. Contains failure times in the first column, status indicator in the second, and, from the third to the last column, the covariate(s).

type.t Integer. 1=computes uniformly-dense intervals; 2=length intervals defined by user and 3=same length intervals.

length Integer. Interval length of the partition.

K Integer. Partition length for the hazard function.

alpha Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.

beta Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.

c.r Nonnegative vector. The higher the entries, the higher the correlation of two consecutive intervals.

c.nu Tuning parameter for the proposal distribution for c.

var.theta.ini Double. Variance of the prior normal distribution for theta.

a.eps Double. Shape parameter for the prior gamma distribution of epsilon when type.c = 4.

b.eps Double. Scale parameter for the prior gamma distribution of epsilon when type.c = 4.

type.c 1=defines c.r as a zero-entry vector; 2=lets the user define c.r freely; 3=assigns c.r by computing an exponential prior distribution with mean 1; 4=assigns c.r an exponential hierarchical distribution with mean epsilon which in turn has a Ga(a.eps, b.eps) distribution.

epsilon Double. Mean of the exponential distribution assigned to c.r when type.c = 3.

iterations Integer. Number of iterations including the burn.in to be computed for the Markov chain.

burn.in Integer. Length of the burn-in period for the Markov chain.

thinning Integer. Factor by which the chain will be thinned. Thinning the Markov chain reduces autocorrelation.

printtime Logical. If TRUE, prints out the execution time.

Details

Computes the Gibbs sampler with the full conditional distributions of Lambda and Theta (Nieto-Barajas, 2003) and arranges the resulting Markov chain into a matrix which can be used to obtain posterior summaries. Prior distributions for the regression coefficients (Theta) are assumed independent normals with zero mean and variance var.theta.ini.

Note

It is recommended to verify chain’s stationarity. This can be done by checking each element individually. See CGaPlotDiag To obtain posterior summaries of the coefficients use function CGaPloth.
CGaPlotDiag

Diagnostics plots for lambda, U, Epsilon and Theta

References

See Also

CGaPlotDiag, CGaPloth

Examples

```r
## Simulations may be time intensive. Be patient.

## Example 1
# data(leukemiaFZ)
# leukemia1 <- leukemiaFZ
# leukemia1$wbc <- log(leukemiaFZ$wbc)
# CGEX1 <- CGaMRes(data = leukemia1, K = 10, iterations = 100, thinning = 1)

## Example 2. Refer to "Cox-gamma model example" section in package vignette for details.
# SampWeibull <- function(n, a = 10, b = 1, beta = c(1, 1)) {
#   M <- tibble(i = seq(n), x_i1 = runif(n), x_i2 = runif(n),
#             t_i = rweibull(n, shape = b, scale = 1 / (a * exp(x_i1*beta[1] + x_i2*beta[2]))),
#             c_i = rexp(n), delta = t_i > c_i,
#             `min(c_i, d_i)` = min(t_i, c_i))
#   return(M)
# }
# dat <- SampWeibull(100, 0.1, 1, c(1, 1))
# dat <- dat %>% select(4,6,2,3)
# CG <- CGaMRes(data = leukemia1, K = 10, iterations = 100, thinning = 1)
# CGaPloth(CG)
```

Description

Diagnostics plots for hazard rate (Lambda), latent variable (U), dependence variable (C), parameter of the hierarchical model (Epsilon) and regression coefficients (Theta).
Usage

CGaPlotDiag(M, variable = "Lambda", pos = 1)

Arguments

M Tibble. Contains the output by CGaMRes
variable Either "Lambda", "U", "C", "Epsilon" or "Theta". Variable for which diagnostics plot will be shown.
pos Positive integer. Position of the selected variable to be plotted.

Details

This function returns a diagnostics plot for the chain of the selected variable. The diagnostics includes trace, ergodic mean, autocorrelation function and histogram.

References

See Also

CGaMRes

Examples

```r
## Simulations may be time intensive. Be patient.
## Example 1
# data(leukemiaFZ)
# leukemia1 <- leukemiaFZ
# leukemia1$wbc <- log(leukemiaFZ$wbc)
# CGEX1 <- CGaMRes(data = leukemia1, K = 10, iterations = 1000, thinning = 1)
# CGaPlotDiag(CGEX1,variable="Theta",pos=1)
```
CGaPloth

Plots for the Hazard and Survival Function Estimates for the Bayesian non-parametric Markov gamma model with covariates in survival analysis.

Description

Plots the resulting hazard function along with the survival function estimate defined by the Markov gamma process with covariates (Nieto-Barajas, 2003).

Usage

```r
CGaPloth(M, new_obs = NULL, type.h = "segment", coxSurv = T, intervals = T, confidence = 0.95, summary = FALSE)
```

Arguments

- **M**: tibble. Contains the output generated by `CuMRres`.
- **new_obs**: tibble. The function calculates the hazard rates and survival function estimates for specific individuals expressed in a tibble, the names of the columns have to be the same as the data input.
- **type.h**: character. "segment" = use segments to plot hazard rates, "line" = link hazard rates by a line.
- **coxSurv**: logical. Add estimated Survival function with the Cox-Model.
- **intervals**: logical. If TRUE, plots confidence bands for the selected functions including Cox-Model.
- **confidence**: Numeric. Confidence level.
- **summary**: logical. If TRUE, a summary for hazard and survival functions is returned as a tibble.

Details

This function return plots for the resulting hazard rate as it is computed by `CGaMRes` and the quantile of Tao specified by the user as well as an annotation. In the same plot the credible intervals for both variables are plotted; The mean of Pi is also annotated. Additionally, it plots the survival function with their corresponding credible intervals.

Value

- **SUM.h**: Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each segment of the hazard function. If `summary = TRUE`
- **SUM.S**: Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each segment of the survival function. If `summary = TRUE`
References

- Nieto-Barajas, L. E. (2003). Discrete time Markov gamma processes and time dependent co-
 (CD-ROM).

See Also

CGaMRes,

Examples

```r
## ## Simulations may be time intensive. Be patient.
# # Example 1
# data(leukemiaFZ)
# leukemia1 <- leukemiaFZ
# leukemia1$wbc <- log(leukemiaFZ$wbc)
# CGEX1 <- CGaMRes(data = leukemia1, K = 10, iterations = 100, thinning = 1)
# CGaPloth(CGEX1)
```

cpo

Conditional Predictive Ordinate (CPO) Statistic

Description

Makes the CPO Plot and calculates the logarithm of the Pseudomarginal likelihood (LPML).

Usage

```r
cpo(res)
```

Arguments

- `res` tibble. The output from the *Res functions, where * could either be BeM, GaM, CGaM, CuM, CCuM

Details

Computes de CPO as a goodness of fit measure
Value

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPML</td>
<td>The value of the logarithm of the Pseudomarginal likelihood</td>
</tr>
<tr>
<td>plot</td>
<td>CPO Plot</td>
</tr>
</tbody>
</table>

References

See Geisser (1993); Gelfand, Dey, and Chang (1992); Dey, Chen, and Chang (1997); and Sinha and Dey (1997)

Examples

```r
## Example 1
# data(gehan)
# timesG <- gehan$time[gehan$treat == "6-MP"]
# deltaG <- gehan$cens[gehan$treat == "6-MP"]
# GEX1 <- GaMRes(timesG, deltaG, K = 8, iterations = 3000)
# cpo(GEX1)
```

crm3 Simulated data from the proportional hazards cure rate model of Yakolev & Tsodikov (1996) by taking a baseline density with a bounded support.

Description

Triangular distribution $\text{Tri}(a, c, b)$ as the baseline density, which puts a probability of one to the interval $[a, b]$ and the mode at c.

Usage

data("crm3")

Format

A data frame with 100 observations with the following 2 variables.

- **times** Simulated time
- **delta** Simulated censoring
Details

In particular we took, \(a = 0, c = 1 \) and \(b = 4 \). The censoring time was independently generated from a uniform distribution to yield a 30% censoring rate. Sample size \(n = 100 \) and the cure proportion \(\exp(-\theta) = 0.2 \).

Source

Examples

```r
## Cure Gamma model Example 1
# data(crm3)
# times<-crm3$times
# delta<-crm3$delta
# res <- CuMRes(times, delta, type.t = 2,
#                K = 100, length = .1, alpha = rep(1, 100 ),
#                beta = rep(1, 100), c.r = rep(50, 99),
#                iterations = 100, burn.in = 10, thinning = 1, type.c = 2)
```

CuMRes

Bayesian Semiparametric Cure Rate Model with an Unknown Threshold

Description

Posterior inference for the bayesian semiparametric cure rate model in survival analysis.

Usage

```
CuMRes(times, delta = rep(1, length(times)), type.t = 3,
       length = NULL, K = 50, alpha = rep(0.01, K), beta = rep(0.01, K),
       c.r = rep(1, (K - 1)), type.c = 4, epsilon = 1, c.nu = 1,
       a.eps = 0.1, b.eps = 0.1, a.mu = 0.01, b.mu = 0.01,
       iterations = 1000, burn.in = floor(iterations * 0.2), thinning = 5,
       printtime = TRUE)
```

Arguments

times Numeric positive vector. Failure times.
delta Logical vector. Status indicator. TRUE (1) indicates exact lifetime is known, FALSE (0) indicates that the corresponding failure time is right censored.
type.t Integer. 1=computes uniformly-dense intervals; 2=length intervals defined by the user and 3=same length intervals.
length Integer. Interval length for the partition.
K Integer. Partition length for the hazard function if type.t=1 or type.t=3.
alpha Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.

beta Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.

c.r Nonnegative vector. The higher the entries, the higher the correlation of two consecutive intervals.

type.c 1=defines c.r as a zero-entry vector; 2=lets the user define c.r freely; 3=assigns c.r by computing an exponential prior distribution with mean 1; 4=assigns c.r by computing an exponential hierarchical distribution with mean epsilon which in turn has a Ga(a.eps, b.eps) distribution.

epsilon Double. Mean of the exponential distribution assigned to c.r when type.c = 3. When type.c = 4, epsilon is assigned a Ga(a.eps, b.eps) distribution.

c.nu Tuning parameter for the proposal distribution for c.

a.eps Numeric. Shape parameter for the prior gamma distribution of epsilon when type.c = 4.

b.eps Numeric. Scale parameter for the prior gamma distribution of epsilon when type.c = 4.

a.mu Numeric. Shape parameter for the prior gamma distribution of mu

b.mu Numeric. Scale parameter for the prior gamma distribution of mu

iterations Integer. Number of iterations including the burn.in to be computed for the Markov Chain.

burn.in Integer. Length of the burn-in period for the Markov chain.

thinning Integer. Factor by which the chain will be thinned. Thinning the Markov chain is to reduces autocorrelation.

printtime Logical. If TRUE, prints out the execution time.

Details

Computes the Gibbs sampler with the full conditional distributions of all model parameters (Nieto-Barajas & Yin 2008) and arranges the resulting Markov chain into a tibble which can be used to obtain posterior summaries.

Note

It is recommended to verify chain’s stationarity. This can be done by checking each element individually. See CuPlotDiag.

Examples

```r
## Simulations may be time intensive. Be patient.
## Example 1
# data(crm3)
# times<-crm3$times
# delta<-crm3$delta
```
CuPlotDiag

Diagnosis plots for Lambda, U, C, Mu, Pi, Z and Epsilon

Description

Diagnostics plots for hazard rate (Lambda), latent variable (U), dependence variable (C), mean of cure threshold (Mu), cure proportion (Pi), cure threshold (Z) and the parameter of the hierarchical prior (Epsilon).

Usage

CuPlotDiag(M, variable = "Lambda", pos = 1)

Arguments

M List. Contains the output by CuMRes.

variable Either "Lambda", "U", "C", "Mu", "Pi", "Z" or "Epsilon". Variable for which diagnostic plot will be shown.

pos Positive integer. Position of the selected variable to be plotted.

Details

This function returns a diagnostics plot for which the chain for the selected variable can be monitored. Diagnostics includes trace, ergodic mean, autocorrelation function and histogram.

References

See Also

CuMRes
Examples

Simulations may be time intensive. Be patient.

Example 1
data(crm3)
times<-crm3$times
delta<-crm3$delta
res <- CuMRes(times, delta, type.t = 2,
K = 100, length = .1, alpha = rep(1, 100),
beta = rep(1, 100),c.r = rep(50, 99),
iterations = 100, burn.in = 10, thinning = 1, type.c = 2)
CuPlotDiag(M = res, variable = "Mu")
CuPlotDiag(M = res, variable = "Z")
CuPlotDiag(M = res, variable = "Pi")
CuPlotDiag(M = res, variable = "Lambda", pos = 2)
CuPlotDiag(M = res, variable = "U", pos = 4)
CuPlotDiag(M = res, variable = "C", pos = 3)

CuPloth

Plots for the Hazard and Survival Function Estimates

Description

Plots the hazard function and the survival function estimates defined by the bayesian semiparametric cure rate model with an unknown threshold (Nieto-Barajas & Yin, 2008).

Usage

\[
\text{CuPloth}(M, \text{type.h} = \text{"segment"}, \text{intervals} = \text{T}, \text{confidence} = 0.95, \\
\text{qn} = 0.5, \text{summary} = \text{FALSE}, \text{position_label} = \text{"right")}
\]

Arguments

- **M**
 - tibble. Contains the output generated by CuMRes.
- **type.h**
 - character. "segment"= use segments to plot hazard rates, "line" = link hazard rates by a line
- **intervals**
 - logical. If TRUE, plots credible intervals.
- **confidence**
 - Numeric. Confidence level.
- **qn**
 - Numeric. Quantile for Tao that should be visualized on the plot.
- **summary**
 - Logical. If TRUE, a summary for hazard and survival functions is returned as a tibble.
- **position_label**
 - character. Labels on the right or left side of the plot.
Details

This function return estimators plots for the resulting hazard rate as it is computed by CuMRes and the cure time (quantile of Tao specified by the user), together with credible intervals. Additionally, it plots the survival function and the cure proportion estimates with their corresponding credible intervals.

Value

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM.h</td>
<td>Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each segment of the hazard function. If summary = TRUE</td>
</tr>
<tr>
<td>SUM.S</td>
<td>Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for a grid of the survival function. If summary = TRUE</td>
</tr>
</tbody>
</table>

References

See Also

CuMRes,

Examples

```r
## Simulations may be time intensive. Be patient.

## Example 1
# data(crm3)
# times<-crm3$times
# delta<-crm3$delta
# res <- CuMRes(times, delta, type.t = 2, length = .1,
# K = 100, alpha = rep(1, 100 ),
# beta = rep(1, 100),c.r = rep(50, 99),
# iterations = 100, burn.in = 10, thinning = 1, type.c = 2)
# CuPloth(res, type.h = "segment",qn=.5, summary = T)
# CuPloth(res, type.h = "line",qn=.5)
```
GaMRes

Markov Gamma Model

Description

Computes the Gibbs sampler given by the full conditional distributions of U, Lambda, C and Epsilon (Nieto-Barajas & Walker, 2002) and arranges the resulting Markov chain into a tibble which can be used to obtain posterior summaries.

Usage

\[
\text{GaMRes}(\text{times}, \text{delta} = \text{rep}(1, \text{length}(\text{times})), \text{type.t} = 3, \\
\text{length} = \text{NULL}, K = 5, \text{alpha} = \text{rep}(0.01, K), \text{beta} = \text{rep}(0.01, K), \\
\text{c.r} = \text{rep}(1, (K - 1)), \text{c.nu} = 1, \text{a.eps} = 0.1, \text{b.eps} = 0.1, \\
\text{type.c} = 4, \text{epsilon} = 1, \text{iterations} = 1000, \\
\text{burn.in} = \text{floor}(\text{iterations} \times 0.2), \text{thinning} = 5, \text{printtime} = \text{TRUE})
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>times</code></td>
<td>Numeric positive vector. Failure times.</td>
</tr>
<tr>
<td><code>delta</code></td>
<td>Logical vector. Status indicator. \text{TRUE} (1) indicates exact lifetime is known, \text{FALSE} (0) indicates that the corresponding failure time is right censored.</td>
</tr>
<tr>
<td><code>type.t</code></td>
<td>Integer. 1=computes uniformly-dense intervals; 2=length intervals defined by the user and 3=same length intervals.</td>
</tr>
<tr>
<td><code>length</code></td>
<td>Integer. Interval length for the partition.</td>
</tr>
<tr>
<td><code>K</code></td>
<td>Integer. Partition length for the hazard function if \text{type.t}=1 or \text{type.t}=3.</td>
</tr>
<tr>
<td><code>alpha</code></td>
<td>Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.</td>
</tr>
<tr>
<td><code>beta</code></td>
<td>Nonnegative entry vector. Small entries are recommended in order to specify a non-informative prior distribution.</td>
</tr>
<tr>
<td><code>c.r</code></td>
<td>Nonnegative vector. The higher the entries, the higher the correlation of two consecutive intervals.</td>
</tr>
<tr>
<td><code>c.nu</code></td>
<td>Tuning parameter for the proposal distribution for c.</td>
</tr>
<tr>
<td><code>a.eps</code></td>
<td>Numeric. Shape parameter for the prior gamma distribution of epsilon when \text{type.c}=4.</td>
</tr>
<tr>
<td><code>b.eps</code></td>
<td>Numeric. Scale parameter for the prior gamma distribution of epsilon when \text{type.c}=4.</td>
</tr>
<tr>
<td><code>type.c</code></td>
<td>1=assigns \text{c.r} a zero-entry vector; 2=lets the user define \text{c.r} freely; 3=assigns \text{c.r} an exponential prior distribution with mean 1; 4=assigns \text{c.r} an exponential hierarchical distribution with mean epsilon which in turn has a \text{Ga}(a\text{.eps}, b\text{.eps}) distribution.</td>
</tr>
<tr>
<td><code>epsilon</code></td>
<td>Double. Mean of the exponential distribution assigned to \text{c.r} when \text{type.c}=3.</td>
</tr>
</tbody>
</table>
iterations | Integer. Number of iterations including the burn.in to be computed for the Markov chain.
burn.in | Integer. Length of the burn-in period for the Markov chain.
thinning | Integer. Factor by which the chain will be thinned. Thinning the Markov chain is to reduce autocorrelation.
printtime | Logical. If TRUE, prints out the execution time.

Details

Posterior inference for the Bayesian non-parametric Markov gamma model in survival analysis.

Examples

```r
## Simulations may be time intensive. Be patient.

## Example 1
data(gehan)
timesG <- gehan$time[gehan$treat == "6-MP"]
deltaG <- gehan$cens[gehan$treat == "6-MP"]
GEX1 <- GaMRes(timesG, deltaG, K = 8, iterations = 3000)

## Example 2
data(leukemiaFZ)
timesFZ <- leukemiaFZ$time
deltaFZ <- leukemiaFZ$delta
GEX2 <- GaMRes(timesFZ, deltaFZ, type.c = 4)
```

GaPlotDiag

Diagnosis plots for Lambda, U, C and Epsilon

Description

Diagnostics plots for hazard rate (Lambda), latent variable (U), dependence parameter (C) and the parameter of the hierarchical prior (Epsilon).

Usage

```r
GaPlotDiag(M, variable = "Lambda", pos = 1)
```

Arguments

- **M** List. Contains the output by GaMRes.
- **variable** Either "Lambda", "U", "C" or "Epsilon". Variable for which informative plot will be shown.
- **pos** Positive integer. Position of the selected variable to be plotted.
Details

This function returns a diagnostics plot for which the chain of the selected variable can be monitored. Diagnostics includes trace, ergodic mean, autocorrelation function and histogram.

References

See Also

GaMRes

Examples

```r
## Simulations may be time intensive. Be patient.
## Example 1
# data(gehan)
# timesG <- gehan$time[gehan$treat == "6-MP"]
# deltaG <- gehan$cens[gehan$treat == "6-MP"]
# GEX1 <- GaMRes(timesG, deltaG, K = 8, iterations = 3000)
# GaPlotDiag(GEX1, variable = "Lambda", pos = 2)
# GaPlotDiag(GEX1, variable = "U", pos = 5)

## Example 2
# data(leukemiaFZ)
# timesFZ <- leukemiaFZ$time
# deltaFZ <- leukemiaFZ$delta
# GEX2 <- GaMRes(timesFZ, deltaFZ, type.c = 4)
# GaPlotDiag(GEX2, variable = "Lambda", pos = 2)
# GaPlotDiag(GEX2, variable = "U", pos = 3)
```

Description

Plots the hazard function and with the survival function estimates defined by the Markov gamma process with and without covariates (Nieto-Barajas & Walker, 2002).
GaPloth(M, type.h = "segment", addSurvival = T, intervals = T, confidence = 0.95, summary = FALSE)

Arguments

M: tibble. Contains the output by CGaMMres and GaMRes.

type.h: character. "segment" = use segments to plot hazard rates, "line" = link hazard rates by a line.

addSurvival: Logical. If TRUE, Nelson-Aalen estimate is plotted over the hazard function and Kaplan-Meier estimate is plotted over the survival function.

intervals: logical. If TRUE, plots confidence bands for the selected functions including Nelson-Aalen and/or Kaplan-Meier estimate.

confidence: Numeric. Confidence level.

summary: Logical. If TRUE, a summary for hazard and survival functions is returned as a tibble.

Details

This function returns estimators plots for the resulting hazard rate as it is computed by GaMRes and CGaMMRes and the Nelson-Aalen estimate along with their confidence intervals for the data set given. Additionally, it plots the survival function and the Kaplan-Meier estimate with their corresponding credible/confidence intervals.

Value

SUM.h: Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for each segment of the hazard function. If summary = TRUE

SUM.S: Numeric tibble. Summary for the mean, median, and a confint / 100 confidence interval for a grid of the survival function. If summary = TRUE

References

See Also

GaMRes, CGaMMres, CGaPlotDiag, GaPlotDiag
Examples

Simulations may be time intensive. Be patient.

Example 1
data(gehan)
timesG <- gehan$time[gehan$treat == "6-MP"]
deltaG <- gehan$cens[gehan$treat == "6-MP"]
GEX1 <- GaMRes(timesG, deltaG, K = 8, iterations = 3000)
GaPloth(GEX1)

Example 2
data(leukemiaFZ)
timesFZ <- leukemiaFZ$time
deltaFZ <- leukemiaFZ$delta
GEX2 <- GaMRes(timesFZ, deltaFZ, type.c = 4)
GaPloth(GEX2)

Description

Freireich et al. (1963) report the results of a clinical trial of a drug 6-mercaptopurine (6-MP) versus a placebo (control) in 42 children with acute leukemia. The trial was conducted at 11 American hospitals. The trial was conducted by matching pairs of patients at a given hospital by remission status (complete or partial) and randomizing within the pair to either a 6-MP or placebo maintenance therapy. Patients were followed until their leukemia returned (relapse) or until the end of the study (in weeks). The data was taken from Klein & Moeschberger (2003) and is contained in the MASS package.

Usage

data(gehan)

Format

A data frame with 42 observations containing:

pair | Pair index.
time | Remission time (weeks).
leukemiaFZ

Survival Times of Patients with Leukemia (Feigl and Zelen)

Description

Survival times of 33 patients with leukemia (Feigl and Zeelen, 1965). Times are measured in weeks from diagnosis. Reported covariates are white blood cell counts (WBC) and a binary variable AG that indicates a positive or negative test related to the white blood cell characteristics. Three of the observations were censored. The data was taken from Lawless (2003).

Usage

data(leukemiaFZ)

Format

A data frame with 33 observations on the following 4 variables.

- **time** Weeks from diagnosis.
- **delta** Status indicator: 0=censored.
- **AG** Indicates a positive or negative test related to the white blood cell characteristics. (1=AG-positive, 2=AG-negative).
- **wbc** White blood cell counts in thousands (reported covariates).
Psychiatric Patients (Woolson)

Description

Woolson (1981) has reported survival data on 26 psychiatric inpatients admitted to the University of Iowa hospitals during the years 1935-1948. This sample is part of a larger study of psychiatric inpatients discussed by Tsuang and Woolson (1977) and it is contained in the KMsurv package.

Usage

data(psych)

Format

A data frame with 26 observations containing:

- sex Patient sex: 1=male, 2=female.
- age Age at first admission to the hospital.
- time Number of years of follow-up.
- death Patient status at the follow-up time: 0=alive, 1=dead.

Source

References

Examples

Beta Process Example 1
Example 1
data(psych)
timesP <- psych$time
deltaP <- psych$death
BEX1 <- BeMRes(timesP, deltaP, iterations = 3000, burn.in = 300, thinning = 1)
Index

*Topic datasets
 BMTKleinbook, 7
 crm3, 19
 gehan, 29
 leukemiaFZ, 30
 psych, 31

BeMRes, 2, 4–6
BePlotDiag, 3, 4, 6
BePloth, 3, 5
BGPHazard, 6
BGPHazard-package (BGPHazard), 6
BMTKleinbook, 7

CCuMRes, 8, 11–13
CCuPlotDiag, 10, 10
CCuPloth, 10, 12
CGaMRes, 13, 16–18, 28
CGaPlotDiag, 14, 15, 15, 28
CGaPloth, 14, 15, 17
cpo, 18
crm3, 19
CuMRes, 20, 22, 24
CuPlotDiag, 21, 22
CuPloth, 23

GaMRes, 25, 27, 28
GaPlotDiag, 26, 28
GaPloth, 27
gehan, 29

leukemiaFZ, 30
psych, 31