Package ‘BHTSpack’

October 12, 2022

Type Package

Title Bayesian Multi-Plate High-Throughput Screening of Compounds

Version 0.6

Description Can be used for joint identification of candidate compound hits from multiple assays, in drug discovery. This package implements the framework of I. D. Shterev, D. B. Dunson, C. Chan and G. D. Sempowski. "Bayesian Multi-Plate High-Throughput Screening of Compounds", Scientific Reports 8(1):9551, 2018. This project was funded by the Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract No. HHSN272201400054C entitled "Adjuvant Discovery For Vaccines Against West Nile Virus and Influenza", awarded to Duke University and lead by Drs. Herman Staats and Soman Abraham.

Depends R (>= 3.2.3), R2HTML (>= 2.3.2), xtable (>= 1.8-2)

VignetteBuilder knitr

License GPL-3

LazyLoad yes

NeedsCompilation yes

Author Ivo D. Shterev [aut, cre],
 David B. Dunson [aut],
 Cliburn Chan [aut],
 Gregory D. Sempowski [aut]

Maintainer Ivo D. Shterev <i.shterev@gmail.com>

Repository CRAN

Date/Publication 2021-02-08 16:30:13 UTC

R topics documented:

 BHTSpack-package .. 2
 abfun ... 3
 alpha.u .. 4
BHTSpack-package

Bayesian Multi-Plate High-Throughput Screening of Compounds

Description

Can be used for joint identification of candidate hits from multiple assays, in drug discovery. This package implements the framework of I. D. Shterev, D. B. Dunson, C. Chan and G. D. Sempowski. "Bayesian Multi Plate High Throughput Screening of Compounds", arXiv:1709.10041, September 2017. This project was funded by the Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract No. HHSN272201400054C entitled "Adjuvant Discovery For Vaccines Against West Nile Virus and Influenza", awarded to Duke University and lead by Drs. Herman Staats and Soman Abraham.

Details

The DESCRIPTION file:

Package: BHTSpack
Type: Package
Title: Bayesian Multi-Plate High-Throughput Screening of Compounds
Version: 0.6
Authors@R: c(person(c("Ivo", "D."), "Shterev", role = c("aut", "cre"), email = "i.shterev@gmail.com"), person(c("David", "B."), "Dunson", role = "aut"), person("Cliburn", "Chan", role = "aut"), person(c("Gregory", "D."), "Sempowski", role = "aut"))
Description: Can be used for joint identification of candidate compound hits from multiple assays, in drug discovery. This package implements the framework of I. D. Shterev, D. B. Dunson, C. Chan and G. D. Sempowski. "Bayesian Multi Plate High Throughput Screening of Compounds", arXiv:1709.10041, September 2017. This project was funded by the Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract No. HHSN272201400054C entitled "Adjuvant Discovery For Vaccines Against West Nile Virus and Influenza", awarded to Duke University and lead by Drs. Herman Staats and Soman Abraham.
Depends: R (>= 3.2.3), R2HTML (>= 2.3.2), xtable (>= 1.8-2)
Suggests: knitr
License: GPL-3
LazyLoad: yes
Author: Ivo D. Shterev [aut, cre], David B. Dunson [aut], Cliburn Chan [aut], Gregory D. Sempowski [aut]
Maintainer: Ivo D. Shterev <i.shterev@gmail.com>

Index of help topics:

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHTSpack</td>
<td>Bayesian Multi-Plate High-Throughput Screening of Compounds</td>
</tr>
<tr>
<td>abfun</td>
<td>package internal function</td>
</tr>
<tr>
<td>alpha.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>b.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>bhts</td>
<td>Bayesian High-Throughput Screening</td>
</tr>
<tr>
<td>bhts2HTML</td>
<td>Convert to HTML</td>
</tr>
<tr>
<td>data.create</td>
<td>Create Synthetic Data</td>
</tr>
<tr>
<td>fdr.r</td>
<td>package internal function</td>
</tr>
<tr>
<td>h.pr.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>hatpai.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>ind.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>lambda.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>lg.mu.sig</td>
<td>package internal function</td>
</tr>
<tr>
<td>mu.k.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>nu.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>pai.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>ptrace</td>
<td>Trace (ACF) Plots</td>
</tr>
<tr>
<td>r.fdr</td>
<td>Significant Hits</td>
</tr>
<tr>
<td>sig.k.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>tau.u</td>
<td>package internal function</td>
</tr>
<tr>
<td>z.pr.u</td>
<td>package internal function</td>
</tr>
</tbody>
</table>

Author(s)

I. D. Shterev, D. B. Dunson, C. Chan and G. D. Sempowski
Maintainer: I. D. Shterev <i.shterev@duke.edu>

References

abfun package internal function

Description

package internal function
Usage

\texttt{abfun(m, v)}

Arguments

\begin{itemize}
 \item \texttt{m} Description
 \item \texttt{v} Description
\end{itemize}

Examples

\texttt{abfun(0.26, 10^{-4})}

\texttt{alpha.u} \hspace{1cm} \textit{package internal function}

Description

package internal function

Usage

\texttt{alpha.u(nu, a0, b0, H)}

Arguments

\begin{itemize}
 \item \texttt{nu} Description
 \item \texttt{a0} Description
 \item \texttt{b0} Description
 \item \texttt{H} Description
\end{itemize}

Examples

\begin{verbatim}
M = 5
H = 10
a = 10^{-6}
b = 10^{-6}
nu = lapply(1:M, function(x){rbeta(H, a, b)})
alpha.u(nu, a, b, H)
\end{verbatim}
Description

package internal function

Usage

```
b.u(hatpai)
```

Arguments

- `hatpai`: Description

Examples

```r
pai = 0.5
M = 10
H = 10
K = 5
n = 100

z = abs(rnorm(n))

sigma1 = abs(rnorm(K))
sigma0 = abs(rnorm(K))

mu1 = abs(rnorm(K))
mu0 = abs(rnorm(K))

hk0 = matrix(sample(K, M*H, replace=TRUE), M, H)
hk1 = matrix(sample(K, M*H, replace=TRUE), M, H)

nu.h0 = lapply(1:H, function(x){rbeta(1,5,5)})
nu.h1 = lapply(1:H, function(x){rbeta(1,5,5)})

ph0 = lapply(nu.h0, lambda.u)
ph1 = lapply(nu.h1, lambda.u)

b.u(hatpai.u(z, hk1, hk0, ph1, ph0, sigma1, sigma0, mu1, mu0, pai, H, n))
```
bhts

Bayesian High-Throughput Screening

Description
This is the package main function.

Usage
bhts(Z, iters, H, K, mu00=NULL, mu10=NULL, a.alpha, b.alpha, a.tau, b.tau,
pxorm=FALSE, s=NULL, store=FALSE)

Arguments
Z A list of compounds.
iters Number of iterations to perform.
H Number of local DP components.
K Number of global DP components.
mu00 Activity level (mean) of non-hit compounds
mu10 Activity level (mean) of hit compounds
a.alpha Gamma shape parameter specifying local DP concentration prior.
b.alpha Gamma rate parameter specifying local DP concentration prior.
a.tau Gamma shape parameter specifying global DP concentration prior.
b.tau Gamma rate parameter specifying global DP concentration prior.
pnorm Plate normalization. If TRUE, each plate is normalized to zero mean and unit
variance, prior to analysis. Default is FALSE.
s Random seed (for reproducibility purposes). Default is NULL.
store If TRUE, all samples of certain latent variables are stored in the output object.
Default is FALSE.

Value
This function returns a list consisting of the following elements:

hatpai A list of vectors of posterior probabilities, estimating the probability of a com-

pound being a hit.
dat.store If store = TRUE (default is FALSE), the output contains a list of iters×K
matrices of samples. Each matrix contains the samples of a separate latent vari-
able. At each iteration, the following six variables are stored in a different row of
their corresponding matrix, \((\lambda_1^{(0)}, \ldots, \lambda_K^{(0)}), (\lambda_1^{(1)}, \ldots, \lambda_K^{(1)}), (\mu_{01}, \ldots, \mu_{0K}),
(\mu_{11}, \ldots, \mu_{1K}), (\sigma_{01}^2, \ldots, \sigma_{0K}^2)\) and \((\sigma_{11}^2, \ldots, \sigma_{1K}^2)\).
bhts2HTML

Examples

```
set.seed(1234)
Nmax = 100
M = 100
n = sample(Nmax, M, replace=TRUE)
Z = lapply(n, function(x){abs(rnorm(x))})
bhts(Z, iters=100, H=10, K=5, mu00=0, mu10=10, a.alpha=10, b.alpha=5, a.tau=10, b.tau=5)
```

Description

This function creates an HTML file.

Usage

```
bhts2HTML(dat, dir, fname, title=NULL, bgcolor="#BBBBEE")
```

Arguments

- `dat`: An object which is the output of `bhts()`.
- `dir`: Directory in which to store the file.
- `fname`: File name.
- `title`: The title of the html file.
- `bgcolor`: Color for the html background.

Examples

```
#See package vignette
```

data.create

Create Synthetic Data

Description

This function generates synthetic compound data.

Usage

```
data.create(N, nr, nc, M, p, s=NULL, covrow=NULL, covcol=NULL, c=0.0001, mat=FALSE)
```
Arguments

- **N**: Number of compounds per plate.
- **nr**: Number of plate rows.
- **nc**: Number of plate columns.
- **M**: Number of plates.
- **p**: Probability of a compound being a hit.
- **s**: Random seed (for reproducibility purposes). Default is `NULL`.
- **covrow**: Noise plate row-covariance matrix. Default is `NULL`.
- **covcol**: Noise plate column-covariance matrix. Default is `NULL`.
- **c**: Constant for scaling plate noise. Default is 0.0001.
- **mat**: Specifies a matrix (`TRUE`) or a vector (`FALSE`) plate format. Default is `FALSE`.

Value

This function returns a list consisting of the following elements:

- **Z**: A list of matrices (`mat = TRUE`) or vectors (`mat = FALSE`) of compounds.
- **B**: A list of compound indicators specifying a hit (1) or a non-hit (0).
- **I**: A list of compound indicators specifying the mixture component (from 1 to `K`).

Examples

```r
#See package vignette
```

fdr.r
package internal function

Description

package internal function

Usage

```r
fdr.r(r, hatpai, fdr)
```

Arguments

- **r**: Description
- **hatpai**: Description
- **fdr**: Description

Examples

```r
#See package vignette
```
h.pr.u

package internal function

Description

package internal function

Usage

h.pr.u(z, ih, mu, sigma, pk, K, H, n)

Arguments

- z
- ih
- mu
- sigma
- pk
- K
- H
- n

Examples

```
Nmax = 100
K = 5
H = 10
M = 20
n = sample(Nmax, M, replace=TRUE)

z = abs(rnorm(sum(n)))
mu = abs(rnorm(K))
sigma = 1/rgamma(n=K, shape=10, rate=10)

ih = sample(H, sum(n), replace=TRUE)

pk = lambda.u(rbeta(K, 1, 1))

h.pr.u(z, ih, mu, sigma, pk, K, H, n)
```
hatpai.u

package internal function

Description

package internal function

Usage

hatpai.u(z, hk1, hk0, ph1, ph0, sigma1, sigma0, mu1, mu0, pai, H, n)

Arguments

z
hk1
hk0
ph1
ph0
sigma1
sigma0
mu1
mu0
pai
H
n

Value

value

Examples

pai = 0.5
M = 10
H = 10
K = 5
n = 100
z = abs(rnorm(n))
sigma1 = abs(rnorm(K))
sigma0 = abs(rnorm(K))
mu1 = abs(rnorm(K))
mu0 = abs(rnorm(K))
\texttt{hk0} = \text{matrix(sample(K, M*H, replace=TRUE), M, H)} \\
\texttt{hk1} = \text{matrix(sample(K, M*H, replace=TRUE), M, H)} \\
\texttt{nu.h0} = \text{lapply(1:H, function(x){rbeta(1,5,5)})} \\
\texttt{nu.h1} = \text{lapply(1:H, function(x){rbeta(1,5,5)})} \\
\texttt{ph0} = \text{lapply(nu.h0, lambda.u)} \\
\texttt{ph1} = \text{lapply(nu.h1, lambda.u)} \\
\texttt{hatpai.u(z, hk1, hk0, ph1, ph0, sigma1, sigma0, mu1, mu0, pai, H, n)}

ind.u

package internal function

Description

package internal function

Usage

\texttt{ind.u(pr)}

Arguments

\texttt{pr}

Examples

\texttt{Nmax = 100}
\texttt{K = 5}
\texttt{H = 10}
\texttt{M = 20}
\texttt{n = sample(Nmax, M, replace=TRUE)}
\texttt{z = abs(rnorm(sum(n))}
\texttt{mu = abs(rnorm(K))}
\texttt{sigma = 1/rgamma(n=K, shape=10, rate=10)}
\texttt{hk = sample(K,M*H, replace=TRUE)}
\texttt{ph = as.vector(sapply(1:M, function(x){lambda.u(rbeta(H, 1, 1))}))}
\texttt{ind.u(z, hk, mu, sigma, ph, H, n)}
lambda.u

package internal function

Description

package internal function

Usage

lambda.u(nu)

Arguments

- **nu**

Examples

```r
H = 5
nu = rbeta(H, 1, 1)
lambda.u(nu)
```

lg.mu.sig

package internal function

Description

package internal function

Usage

lg.mu.sig(m, v)

Arguments

- **m**
 - Description
- **v**
 - Description

Examples

#See package vignette
mu.k.u

Description

package internal function

Usage

```r
descr = mu.k.u(k, ik, z, sigma, mu0)
```

Arguments

- `k`
- `ik`
- `z`
- `sigma`
- `mu0`

Value

Describe

Examples

```r
K = 5
n = 100
z = abs(rnorm(n))
sigma = sapply(1:K, function(x){1/rgamma(n=n, shape=10, rate=10)})
mu0 = 0
ik = sample(K, n, replace=TRUE)
sapply(1:K, mu.k.u, ik, z, sigma, mu0)
```

nu.u

Description

package internal function

Usage

```r
descr = nu.u(ind, tau, H)
```
Arguments

ind
tau
H

Value

Describe

Examples

H = 5
n = 100
tau = rgamma(1, 1, 1)
ind = sample(H, n, replace=TRUE)
nu.u(ind, tau, H)

pai.u package internal function

Description

package internal function

Usage

pai.u(b, a.pai, b.pai)

Arguments

b
a.pai
b.pai

Value

Describe

Examples

n = 100
b = rbinom(n, 1, 0.5)
a.pai = 10^-6
b.pai = 10^-6
pai.u(b, a.pai, b.pai)
ptrace Trace (ACF) Plots

Description
This function outputs trace plots of certain latent variables.

Usage
ptrace(res, var, ndisc, nr, nc, type="trace")

Arguments
res An output object from bhts().
var Variable for which to display convergence diagnostic plots. Current options are mu0 (displaying \(\mu_{01}, \ldots, \mu_{0K} \)), mu1 (displaying \(\mu_{11}, \ldots, \mu_{1K} \)), sigma0 (displaying \(\sigma_{01}^2, \ldots, \sigma_{0K}^2 \)), sigma1 (displaying \(\sigma_{11}^2, \ldots, \sigma_{1K}^2 \)), pk0 (displaying \(\lambda_1^{(0)}, \ldots, \lambda_K^{(0)} \)) and pk1 (displaying \(\lambda_1^{(1)}, \ldots, \lambda_K^{(1)} \)).
ndisc Number of iterations for which to discard samples.
nr Number of rows in the resulting composite plot.
nc Number of columns in the resulting composite plot.
type Type of convergence diagnostic. Currently implemented are trace plots (default type = "trace") and ACF plots (type = "acf")

Examples
#See package vignette

r.fdr Significant Hits

Description
This function determines significant hits, based on a specified expected FDR.

Usage
r.fdr(res, fdr=0.05)

Arguments
res An output object from bhts().
fdr Expected FDR (default is 0.05).
Value

This function returns a list consisting of the following elements:

res A data frame containing significant hits and their probabilities.
r The computed significant hit probability threshold.

Examples

See package vignette

```
sig.k.u
```

Description

package internal function

Usage

```
sig.k.u(k, ik, z, mu0, a0, b0)
```

Arguments

k

ik

z

mu0

a0

b0

Examples

```
K = 5
n = 100
z = abs(rnorm(n))
mu0 = 0
ik = sample(K, n, replace=TRUE)
a0 = 5
b0 = 5
sapply(1:K, sig.k.u, ik, z, mu0, a0, b0)
```
tau.u

Description

package internal function

Usage

\[
\text{tau.u}(\nu, a0, b0)
\]

Arguments

- **\(\nu \)** Description
- **\(a0 \)** Description
- **\(b0 \)** Description

Examples

\[
\begin{align*}
K &= 5 \\
a &= 10^{-6} \\
b &= 10^{-6} \\
\nu &= \text{rbeta}(K, a, b) \\
\text{tau.u}(\nu, a, b)
\end{align*}
\]

z.pr.u

Description

package internal function

Usage

\[
\text{z.pr.u}(z, hk, mu, sigma, ph, H, n)
\]

Arguments

- **\(z \)**
- **\(hk \)**
- **\(mu \)**
- **\(sigma \)**
- **\(ph \)**
- **\(H \)**
- **\(n \)**
Examples

Nmax = 100
K = 5
H = 10
M = 20
n = sample(Nmax, M, replace=TRUE)

z = abs(rnorm(sum(n)))
mu = abs(rnorm(K))
sigma = 1/rgamma(n=K, shape=10, rate=10)

hk = sample(K, M*H, replace=TRUE)

ph = as.vector(sapply(1:M, function(x){lambda.u(rbeta(H, 1, 1))))

z.pr.u(z, hk, mu, sigma, ph, H, n)
Index

* package
 BHTSpack-package, 2

abfun, 3
alpha.u, 4

b.u, 5
bhts, 6
bhts2HTML, 7
BHTSpack (BHTSpack-package), 2
BHTSpack-package, 2

data.create, 7
fdr.r, 8
h.pr.u, 9
hatpai.u, 10
ind.u, 11

lambda.u, 12
lg.mu.sig, 12
mu.k.u, 13
nu.u, 13
pai.u, 14
ptrace, 15
r.fdr, 15
sig.k.u, 16
tau.u, 17
z.pr.u, 17