Package ‘BKTR’

October 20, 2023

Version 0.1.1

Title Bayesian Kernelized Tensor Regression

Description Facilitates scalable spatiotemporally varying coefficient modeling with Bayesian kernelized tensor regression. The important features of this package are:
(a) Enabling local temporal and spatial modeling of the relationship between the response variable and covariates.
(b) Implementing the model described by Lei et al. (2023) <doi:10.48550/arXiv.2109.00046>.
(c) Using a Bayesian Markov Chain Monte Carlo (MCMC) algorithm to sample from the posterior distribution of the model parameters.
(d) Employing a tensor decomposition to reduce the number of estimated parameters.
(e) Accelerating tensor operations and enabling graphics processing unit (GPU) acceleration with the ‘torch’ package.

Depends R (>= 4.0.0)

Encoding UTF-8

Imports torch, R6, R6P, ggplot2, ggmap, data.table

License MIT + file LICENSE

RooxygenNote 7.2.3

Collate 'samplers.R' 'tensor_ops.R' 'result_logger.R'
'likelihood_evaluator.R' 'distances.R' 'kernels.R' 'bktr.R'
'examples.R' 'plots.R' 'utils.R'

Suggests knitr, rmarkdown, R.rsp

LazyData true

VignetteBuilder knitr, rmarkdown, R.rsp

BugReports https://github.com/julien-hec/BKTR/issues

NeedsCompilation no

Author Julien Lanthier [aut, cre, cph]
 (<https://orcid.org/0000-0008-8728-4996>),
Mengying Lei [aut] (<https://orcid.org/0000-0001-7343-3323>),
Aurélie Labbe [aut] (<https://orcid.org/0000-0002-4207-8143>),
Lijun Sun [aut] (<https://orcid.org/0000-0001-9488-0712>)
Maintainer Julien Lanthier <julien.lanthier@hec.ca>
Repository CRAN
Date/Publication 2023-10-20 11:50:02 UTC

R topics documented:

- *.Kernel .. 3
- +.Kernel .. 3
- BixiData .. 4
- bixi_spatial_features 5
- bixi_spatial_locations 6
- bixi_station_departures 7
- bixi_temporal_features 8
- bixi_temporal_locations 9
- BKTRRegressor 9
- CompositionOps .. 15
- Kernel .. 15
- KernelAddComposed 17
- KernelComposed 18
- KernelMatern ... 20
- KernelMulComposed 21
- KernelParameter 22
- KernelPeriodic .. 24
- KernelRQ ... 26
- KernelSE .. 27
- KernelWhiteNoise 28
- plot_beta_dists 30
- plot_covariates_beta_dists 31
- plot_hyperparams_dist 32
- plot_hyperparams_traceplot 33
- plot_spatial_betas 35
- plot_temporal_betas 36
- plot_y_estimates 37
- print.BKTRRegressor 38
- reshape_covariate_dfs 39
- simulate_spatiotemporal_data 40
- summary.BKTRRegressor 41
- TensorOperator 42
- TSR ... 47

Index 48
Description

Operator overloading for kernel multiplication

Usage

S3 method for class 'Kernel'
k1 * k2

Arguments

k1
Kernel: The left kernel to use for composition

k2
Kernel: The right kernel to use for composition

Value

A new KernelMulComposed object.

Examples

Create a new locally periodic kernel
k_loc_per <- KernelSE$new() * KernelPeriodic$new()
Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_loc_per$set_positions(positions_df)
Generate the kernel's covariance matrix
k_loc_per$kernel_gen()

Description

Operator overloading for kernel addition

Usage

S3 method for class 'Kernel'
k1 + k2
Arguments

k1 Kernel: The left kernel to use for composition
k2 Kernel: The right kernel to use for composition

Value

A new KernelAddComposed object.

Examples

```r
# Create a new additive kernel
k_rq_plus_per <- KernelRQ$new() + KernelPeriodic$new()
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_rq_plus_per$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_rq_plus_per$kernel_gen()
```

BixiData BIXI Data Class

Description

R6 class encapsulating all BIXI dataframes. It is also possible to use a light version of the dataset by using the `is_light` parameter. In this case, the dataset is reduced to its first 25 stations and first 50 days. The light version is only used for testing and short examples.

Public fields

departure_df The departure dataframe
spatial_features_df The spatial features dataframe
temporal_features_df The temporal features dataframe
spatial_positions_df The spatial positions dataframe
temporal_positions_df The temporal positions dataframe
data_df The data dataframe
is_light Whether the light version of the dataset is used

Methods

Public methods:

• BixiData$new()
• BixiData$clone()

Method `new()`: Initialize the BIXI data class
Usage:
BixiData$new(is_light = FALSE)

Arguments:
is_light Whether the light version of the dataset is used, defaults to FALSE.

Returns: A new BIXI data instance

Method clone(): The objects of this class are cloneable with this method.

Usage:
BixiData$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Create a light BIXI data collection instance containing multiple dataframes
This only uses the first 25 stations and 50 days of the full dataset
bixi_data <- BixiData$new(is_light = TRUE)
Dataframe containing the position (latitude and longitude) of M stations
bixi_data$spatial_positions_df
Dataframe containing the time position of N days (0 to N-1)
bixi_data$temporal_positions_df
Dataframe with spatial and temporal features for each day and station (M x N rows)
bixi_data$data_df

bixi_spatial_features Spatial Features of Montreal BIXI Stations in 2019

Description

These data represent 14 spatial features (columns) for 587 bike sharing stations (rows) located at
different geographical coordinates (longitude, latitude) in Montreal. The Montreal based bike shar-
ing company is named BIXI. The first column contains the descriptive label affected to each station
and the other columns contain information about the infrastructure, points of interests, walkscore
and population surrounding each station for 2019.

Usage
data("bixi_spatial_features")

Format

A data frame with 587 observations on the following 14 variables.

location a character vector
area_park a numeric vector
len_cycle_path a numeric vector
len_major_road a numeric vector
len_minor_road a numeric vector
num.Metro_stations a numeric vector
num_other_commercial a numeric vector
num_restaurants a numeric vector
num_university a numeric vector
num_pop a numeric vector
num_bus_stations a numeric vector
num_bus_routes a numeric vector
walscose a numeric vector
capacity a numeric vector

Source

References

The population information comes from the 2016 Canada census data at a dissemination block level.
bixi_station_departures

Format

A data frame with 587 observations on the following 3 variables.

- location: a character vector
- latitude: a numeric vector
- longitude: a numeric vector

Source

References

bixi_station_departures

Daily Departure from BIXI Stations in 2019

Description

These data capture the number of daily departure for 587 bike sharing stations (rows) through 197 days (columns). The data is limited to the 2019 season of a Montreal based bike sharing company named BIXI.

Usage

```r
data("bixi_station_departures")
```

Format

A data frame with 587 rows and 197 columns.

Source

References

bixi_temporal_features

Temporal Features in Montreal applicable to BIXI for 2019

Description

These data represent the temporal features in Montreal applicable to a Montreal based bike sharing company named BIXI. The data include six features (columns) for 196 days (rows). The time column represent the label associated to each captured time for the 2019 season of BIXI. The other columns contain information about Montréal weather and applicable holidays for each day.

Usage

data("bixi_temporal_features")

Format

A data frame with 196 observations on the following 6 variables.

time a IDate
humidity a numeric vector
max_temp_f a numeric vector
mean_temp_c a numeric vector
total_precip_mm a numeric vector
holiday a numeric vector

Source

References

The weather data is sourced from the Environment and Climate Change Canada Historical Climate Data website.

The holiday column is specifying if a date is a holiday or not, according to the Quebec government.
bixi_temporal_locations

Temporal indices for the 2019 BIXI season

Description

These data represent 196 temporal indices (rows) related to each day of the 2019 season of Montreal based bike sharing company named BIXI. The time column represent the label associated to each day and the time_index column represent the location in time space of each day when compared to each other. Since no days are missing and they are all spaced by exactly one day, the time_index is simply a range from 0 to 195.

Usage

```r
data("bixi_temporal_locations")
```

Format

A data frame with 196 observations on the following 2 variables.

- `time` a IDate
- `time_index` a numeric vector

Source

BKTRRegressor

R6 class encapsulating the BKTR regression elements

Description

A BKTRRegressor holds all the key elements to accomplish the MCMC sampling algorithm (Algorithm 1 of the paper).

Public fields

- `data_df` The dataframe containing all the covariates through time and space (including the response variable)
- `y` The response variable tensor
- `omega` The tensor indicating which response values are not missing
- `covariates` The tensor containing all the covariates
- `covariates_dim` The dimensions of the covariates tensor
logged_params_tensor The tensor containing all the sampled hyperparameters
tau The precision hyperparameter
spatial_decomp The spatial covariate decomposition
temporal_decomp The temporal covariate decomposition
covs_decomp The feature covariate decomposition
result_logger The result logger instance used to store the results of the MCMC sampling
has_completed_sampling Boolean showing whether the MCMC sampling has been completed
spatial_kernel The spatial kernel used
temporal_kernel The temporal kernel used
spatial_positions_df The dataframe containing the spatial positions
temporal_positions_df The dataframe containing the temporal positions
spatial_params_sampler The spatial kernel hyperparameter sampler
temporal_params_sampler The temporal kernel hyperparameter sampler
tau_sampler The tau hyperparameter sampler
precision_matrix_sampler The precision matrix sampler
spatial_ll_evaluator The spatial likelihood evaluator
temporal_ll_evaluator The temporal likelihood evaluator
rank_decomp The rank of the CP decomposition
burn_in_iter The number of burn in iterations
sampling_iter The number of sampling iterations
max_iter The total number of iterations
a_0 The initial value for the shape in the gamma function generating tau
b_0 The initial value for the rate in the gamma function generating tau
formula The formula used to specify the relation between the response variable and the covariates
spatial_labels The spatial labels
temporal_labels The temporal labels
feature_labels The feature labels
geo_coords_projector The geographic coordinates projector

Active bindings

summary A summary of the BKTRRegressor instance
beta_covariates_summary A dataframe containing the summary of the beta covariates
y_estimates A dataframe containing the y estimates
imputed_y_estimates A dataframe containing the imputed y estimates
beta_estimates A dataframe containing the beta estimates
hyperparameters_per_iter_df A dataframe containing the beta estimates per iteration
decomposition_tensors List of all used decomposition tensors
Methods

Public methods:

• `BKTRRegressor$new()`
• `BKTRRegressor$mcmc_sampling()`
• `BKTRRegressor$predict()`
• `BKTRRegressor$get_iterations_betas()`
• `BKTRRegressor$get_beta_summary_df()`
• `BKTRRegressor$clone()`

Method `new()`: Create a new BKTRRegressor object.

Usage:

```r
BKTRRegressor$new(
  data_df,
  spatial_positions_df,
  temporal_positions_df,
  rank_decomp = 10,
  burn_in_iter = 500,
  sampling_iter = 500,
  formula = NULL,
  spatial_kernel = KernelMatern$new(smoothness_factor = 3),
  temporal_kernel = KernelSE$new(),
  sigma_r = 0.01,
  a_0 = 1e-06,
  b_0 = 1e-06,
  has_geo_coords = TRUE,
  geo_coords_scale = 10
)
```

Arguments:

data_df data.table: A dataframe containing all the covariates through time and space. It is important that the dataframe has a two indexes named `location` and `time` respectively. The dataframe should also contain every possible combinations of `location` and `time` (i.e. even missing rows should be filled present but filled with NaN). So if the dataframe has 10 locations and 5 time points, it should have 50 rows (10 x 5). If formula is None, the dataframe should contain the response variable `Y` as the first column. Note that the covariate columns cannot contain NaN values, but the response variable can.

spatial_positions_df data.table: Spatial kernel input tensor used to calculate covariates’ distance. Vector of length equal to the number of location points.

temporal_positions_df data.table: Temporal kernel input tensor used to calculate covariate distance. Vector of length equal to the number of time points.

burn_in_iter Integer: Number of iteration before sampling (Paper – K_1). Defaults to 500.

tsampling_iter Integer: Number of sampling iterations (Paper – K_2). Defaults to 500.

formula A Wilkinson R formula to specify the relation between the response variable `Y` and the covariates. If Null, the first column of the data frame will be used as the response variable and all the other columns will be used as the covariates. Defaults to Null.
spatial_kernel Kernel: Spatial kernel Used. Defaults to a KernelMatern(smoothness_factor=3).
temporal_kernel Kernel: Temporal kernel used. Defaults to KernelSE()
sigma_r Numeric: Variance of the white noise process (τ^{-1}) defaults to 1E-2.
a_0 Numeric: Initial value for the shape (α) in the gamma function generating tau defaults to 1E-6.
b_0 Numeric: Initial value for the rate (β) in the gamma function generating tau defaults to 1E-6.
has_geo_coors Boolean: Whether the spatial positions df use geographic coordinates (latitude, longitude). Defaults to TRUE.
geo_coors_scale Numeric: Scale factor to convert geographic coordinates to euclidean 2D space via Mercator projection using x & y domains of [-scale/2, +scale/2]. Only used if has_geo_coors is TRUE. Defaults to 10.

Returns: A new BKTRRegressor object.

Method `mcmc_sampling()`: Launch the MCMC sampling process.
For a predefined number of iterations:
1. Sample spatial kernel hyperparameters
2. Sample temporal kernel hyperparameters
3. Sample the precision matrix from a wishart distribution
4. Sample a new spatial covariate decomposition
5. Sample a new feature covariate decomposition
6. Sample a new temporal covariate decomposition
7. Calculate respective errors for the iterations
8. Sample a new tau value
9. Collect all the important data for the iteration

Usage:
BKTRRegressor$mcmc_sampling()

Returns: NULL Results are stored and can be accessed via summary()

Method `predict()`: Use interpolation to predict betas and response values for new data.

Usage:
BKTRRegressor$predict(
 new_data_df,
 new_spatial_positions_df = NULL,
 new_temporal_positions_df = NULL,
 jitter = 1e-05
)

Arguments:
new_data_df data.table: New covariates. Must have the same columns as the covariates used to fit the model. The index should contain the combination of all old spatial coordinates with all new temporal coordinates, the combination of all new spatial coordinates with all old temporal coordinates, and the combination of all new spatial coordinates with all new temporal coordinates.
new_spatial_positions_df data.table or NULL: A data frame containing the new spatial positions. Defaults to NULL.
new_temporal_positions_df data.table or NULL: A data frame containing the new temporal positions. Defaults to NULL.
jitter Numeric or NULL: A small value to add to the diagonal of the precision matrix. Defaults to NULL.

Returns: List: A list of two dataframes. The first represents the beta forecasted for all new spatial locations or temporal points. The second represents the forecasted response for all new spatial locations or temporal points.

Method get_iterations_betas(): Return all sampled betas through sampling iterations for a given set of spatial, temporal and feature labels. Useful for plotting the distribution of sampled beta values.

Usage:
BKTRRegressor$get_iterations_betas(
 spatial_label,
 temporal_label,
 feature_label
)

Arguments:
spatial_label String: The spatial label for which we want to get the betas
temporal_label String: The temporal label for which we want to get the betas
feature_label String: The feature label for which we want to get the betas

Returns: A list containing the sampled betas through iteration for the given labels

Method get_beta_summary_df(): Get a summary of estimated beta values. If no labels are given, then the summary is for all the betas. If labels are given, then the summary is for the given labels.

Usage:
BKTRRegressor$get_beta_summary_df(
 spatial_labels = NULL,
 temporal_labels = NULL,
 feature_labels = NULL
)

Arguments:
spatial_labels vector: The spatial labels used in summary. If NULL, then all spatial labels are used. Defaults to NULL.
temporal_labels vector: The temporal labels used in summary. If NULL, then all temporal labels are used. Defaults to NULL.
feature_labels vector: The feature labels used in summary. If NULL, then all feature labels are used. Defaults to NULL.

Returns: A new data.table with the beta summary for the given labels.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BKTRRegressor$clone(deep = FALSE)

Arguments:

depth Whether to make a deep clone.

Examples

Create a BIXI data collection instance containing multiple dataframes
bixi_data <- BixiData$new(is_light = TRUE) # Use light version for example

Create a BKTRRegressor instance
bktr_regressor <- BKTRRegressor$new(
 formula = nb_departure ~ 1 + mean_temp_c + area_park,
 data_df <- bixi_data$data_df,
 spatial_positions_df = bixi_data$spatial_positions_df,
 temporal_positions_df = bixi_data$temporal_positions_df,
 burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)

Launch the MCMC sampling
bktr_regressor$mcmc_sampling()

Get the summary of the bktr regressor
summary(bktr_regressor)

Get estimated response variables for missing values
bktr_regressor$imputed_y_estimates

Get the list of sampled betas for given spatial, temporal and feature labels
bktr_regressor$get_iterations_betas(
 spatial_label = bixi_data$spatial_positions_df$location[1],
 temporal_label = bixi_data$temporal_positions_df$time[1],
 feature_label = 'mean_temp_c')

Get the summary of all betas for the 'mean_temp_c' feature
bktr_regressor$get_beta_summary_df(feature_labels = 'mean_temp_c')

PREDICTION EXAMPLE

Create a light version of the BIXI data collection instance
bixi_data <- BixiData$new(is_light = TRUE)

Simplify variable names
data_df <- bixi_data$data_df
spa_pos_df <- bixi_data$spatial_positions_df
temp_pos_df <- bixi_data$temporal_positions_df

Keep some data aside for prediction
new_spa_pos_df <- spa_pos_df[1:2,]
new_temp_pos_df <- temp_pos_df[1:5,]
reg_spa_pos_df <- spa_pos_df[-(1:2),]
reg_temp_pos_df <- temp_pos_df[-(1:5),]
reg_data_df_mask <- data_df$location %in% reg_spa_pos_df$location &
data_df$time %in% reg_temp_pos_df$time
reg_data_df <- data_df[reg_data_df_mask,]
new_data_df <- data_df[!reg_data_df_mask,]

Launch mcmc sampling on regression data
bktr_regressor <- BKTRRegressor$new(
 formula = nb_departure ~ 1 + mean_temp_c + area_park,
 data_df = reg_data_df,
 spatial_positions_df = reg_spa_pos_df,
 temporal_positions_df = reg_temp_pos_df,
 burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

Predict response values for new data
bktr_regressor$predict(
 new_data_df = new_data_df,
 new_spatial_positions_df = new_spa_pos_df,
 new_temporal_positions_df = new_temp_pos_df)

CompositionOps

Kernel Composition Operations

Description

Kernel Composition Operations Enum. Possibilities of operation between two kernels to generate a new composed kernel. The values are: MUL and ADD.

Usage

CompositionOps

Format

An object of class list of length 2.

Kernel

Base R6 class for Kernels

Description

Abstract base class for kernels (Should not be instantiated)
Public fields

kernel_variance The variance of the kernel
jitter_value The jitter value to add to the kernel matrix
distance_matrix The distance matrix between points in a tensor format
name The kernel’s name
parameters The parameters of the kernel (list of KernelParameter)
covariance_matrix The covariance matrix of the kernel in a tensor format
positions_df The positions of the points in a dataframe format
has_dist_matrix Identify if the kernel has a distance matrix or not

Methods

Public methods:

• Kernel$new()
• Kernel$core_kernel_fn()
• Kernel$add_jitter_to_kernel()
• Kernel$kernel_gen()
• Kernel$set_positions()
• Kernel$plot()
• Kernel$clone()

Method new(): Kernel abstract base constructor

Usage:
Kernel$new(kernel_variance, jitter_value)

Arguments:
kernel_variance Numeric: The variance of the kernel
jitter_value Numeric: The jitter value to add to the kernel matrix

Returns: A new Kernel object.

Method core_kernel_fn(): Abstract method to compute the core kernel’s covariance matrix

Usage:
Kernel$core_kernel_fn()

Method add_jitter_to_kernel(): Method to add jitter to the kernel’s covariance matrix

Usage:
Kernel$add_jitter_to_kernel()

Method kernel_gen(): Method to compute the kernel’s covariance matrix

Usage:
Kernel$kernel_gen()

Method set_positions(): Method to set the kernel’s positions and compute the distance matrix
KernelAddComposed

Usage:
Kernel$set_positions(positions_df)

Arguments:
positions_df Dataframe: The positions of the points in a dataframe format

Method plot(): Method to plot the kernel's covariance matrix

Usage:
Kernel$plot(show_figure = TRUE)

Arguments:
show_figure Boolean: If TRUE, the figure is shown, otherwise it is returned

Returns: If show_figure is TRUE, the figure is shown, otherwise it is returned

Method clone(): The objects of this class are cloneable with this method.

Usage:
Kernel$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

KernelAddComposed R6 class for Kernels Composed via Addition

Description

R6 class automatically generated when adding two kernels together.

Super classes

BKTR::Kernel -> BKTR::KernelComposed -> KernelAddComposed

Methods

Public methods:

• KernelAddComposed$new()
• KernelAddComposed$clone()

Method new(): Create a new KernelAddComposed object.

Usage:
KernelAddComposed$new(left_kernel, right_kernel, new_name)

Arguments:
left_kernel Kernel: The left kernel to use for composition
right_kernel Kernel: The right kernel to use for composition
new_name String: The name of the composed kernel
Returns: A new KernelAddComposed object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
KernelAddComposed$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples

Create a new additive kernel
k_rq_plus_per <- KernelAddComposed$new(
 left_kernel = KernelRQ$new(),
 right_kernel = KernelPeriodic$new(),
 new_name = 'SE + Periodic Kernel'
)
Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_rq_plus_per$set_positions(positions_df)
Generate the kernel's covariance matrix
k_rq_plus_per$kernel_gen()
Methods

Public methods:

• `KernelComposed$new()`
• `KernelComposed$core_kernel_fn()`
• `KernelComposed$set_positions()`
• `KernelComposed$clone()`

Method `new()`: Create a new KernelComposed object.

Usage:
`KernelComposed$new(left_kernel, right_kernel, new_name, composition_operation)`

Arguments:
- `left_kernel` Kernel: The left kernel to use for composition
- `right_kernel` Kernel: The right kernel to use for composition
- `new_name` String: The name of the composed kernel
- `composition_operation` CompositionOps: The operation to use for composition

Method `core_kernel_fn()`: Method to compute the core kernel’s covariance matrix

Usage:
`KernelComposed$core_kernel_fn()`

Returns: The core kernel’s covariance matrix

Method `set_positions()`: Method to set the kernel’s positions and compute the distance matrix

Usage:
`KernelComposed$set_positions(positions_df)`

Arguments:
- `positions_df` DataFrame: The positions of the points in a dataframe format

Returns: NULL, set the kernel’s positions and compute the distance matrix

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
`KernelComposed$clone(deep = FALSE)`

Arguments:
- `deep` Whether to make a deep clone.

Examples

```
# Create a new locally periodic kernel
k_loc_per <- KernelComposed$new(
  left_kernel = KernelSE$new(),
  right_kernel = KernelPeriodic$new(),
  new_name = "Locally Periodic Kernel",
  composition_operation = CompositionOps$MUL
```
) # Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_loc_per$set_positions(positions_df)
 # Generate the kernel's covariance matrix
k_loc_per$kernal_gen()

KernelMatern R6 class for Matern Kernels

Description

R6 class for Matern Kernels

Super class

BKTR::Kernel -> KernelMatern

Public fields

lengthscale The lengthscale parameter instance of the kernel
smoothness_factor The smoothness factor of the kernel
has_dist_matrix Identify if the kernel has a distance matrix or not

Methods

Public methods:

• KernelMatern$new()
• KernelMatern$get_smoothness_kernel_fn()
• KernelMatern$core_kernel_fn()
• KernelMatern$clone()

Method new(): Create a new KernelMatern object.

Usage:
KernelMatern$new(
 smoothness_factor = 5,
 lengthscale = KernelParameter$new(2),
 kernel_variance = 1,
 jitter_value = NULL
)

Arguments:

smoothness_factor Numeric: The smoothness factor of the kernel (1, 3 or 5)
lengthscale KernelParameter: The lengthscale parameter instance of the kernel
kernel_variance Numeric: The variance of the kernel
jitter_value Numeric: The jitter value to add to the kernel matrix

Method `get_smoothness_kernel_fn()`: Method to get the smoothness kernel function for a given integer smoothness factor

Usage:
```
KernelMatern$get_smoothness_kernel_fn()
```
Returns: The smoothness kernel function

Method `core_kernel_fn()`: Method to compute the core kernel's covariance matrix

Usage:
```
KernelMatern$core_kernel_fn()
```
Returns: The core kernel's covariance matrix

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```
KernelMatern$clone(deep = FALSE)
```
Arguments:
 - `deep` Whether to make a deep clone.

Examples

```r
# Create a new Matern 3/2 kernel
k_matern <- KernelMatern$new(smoothness_factor = 3)
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_matern$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_matern$kernel_gen()
```

KernelMulComposed

R6 class for Kernels Composed via Multiplication

Description

R6 class automatically generated when multiplying two kernels together.

Super classes

`BKTR::Kernel` -> `BKTR::KernelComposed` -> `KernelMulComposed`
Methods

Public methods:

• KernelMulComposed$new()
• KernelMulComposed$clone()

Method new(): Create a new KernelMulComposed object.

Usage:
KernelMulComposed$new(left_kernel, right_kernel, new_name)

Arguments:
left_kernel Kernel: The left kernel to use for composition
right_kernel Kernel: The right kernel to use for composition
new_name String: The name of the composed kernel

Method clone(): The objects of this class are cloneable with this method.

Usage:
KernelMulComposed$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Create a new locally periodic kernel
k_loc_per <- KernelMulComposed$new(
 left_kernel = KernelSE$new(),
 right_kernel = KernelPeriodic$new(),
 new_name = 'Locally Periodic Kernel'
)
Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_loc_per$set_positions(positions_df)
Generate the kernel's covariance matrix
k_loc_per$kernel_gen()

KernelParameter

R6 class for kernel's hyperparameter

Description

KernelParameter contains all information and behaviour related to a kernel parameters.
Public fields

value The hyperparameter mean’s prior value or its constant value
is_fixed Says if the kernel parameter is fixed or not (if fixed, there is no sampling)
lower_bound The hyperparameter's minimal value during sampling
upper_bound The hyperparameter's maximal value during sampling
slice_sampling_scale The sampling range's amplitude
hparam_precision Precision of the hyperparameter
kernel The kernel associated with the parameter (it is set at kernel instanciation)
name The kernel parameter's name

Active bindings

full_name The kernel parameter's full name

Methods

Public methods:

- `KernelParameter$new()`
- `KernelParameter$set_kernel()`
- `KernelParameter$clone()`

Method new(): Create a new `KernelParameter` object.

Usage:

```r
KernelParameter$new(
  value,
  is_fixed = FALSE,
  lower_bound = DEFAULT_LBOUND,
  upper_bound = DEFAULT_UBOUND,
  slice_sampling_scale = log(10),
  hparam_precision = 1
)
```

Arguments:

- `value` Numeric: The hyperparameter mean’s prior value (Paper - ϕ) or its constant value
- `is_fixed` Boolean: Says if the kernel parameter is fixed or not (if fixed, there is no sampling)
- `lower_bound` Numeric: Hyperparameter's minimal value during sampling (Paper - ϕ_{min})
- `upper_bound` Numeric: Hyperparameter's maximal value during sampling (Paper - ϕ_{max})
- `slice_sampling_scale` Numeric: The sampling range's amplitude (Paper - ρ)
- `hparam_precision` Numeric: The hyperparameter’s precision

Returns: A new `KernelParameter` object.

Method set_kernel(): Set Kernel for a given `KernelParameter` object.

Usage:

```r
KernelParameter$set_kernel(kernel, param_name)
```
Arguments:

kernel Kernel: The kernel to associate with the parameter
param_name String: The parameter’s name

Returns: NULL, set a new kernel for the parameter

Method clone(): The objects of this class are cloneable with this method.

Usage:
KernelParameter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

A kernel parameter can be a constant value
const_param <- KernelParameter$new(7, is_fixed = TRUE)
It can otherwise be sampled and have its value updated through sampling
samp_param <- KernelParameter$new(1, lower_bound = 0.1,
 upper_bound = 10, slice_sampling_scale = 4)

A kernel parameter can be associated with any type of kernel
KernelPeriodic$new(period_length = const_param, lengthscale = samp_param)
Methods

Public methods:

- `KernelPeriodic$new()`
- `KernelPeriodic$core_kernel_fn()`
- `KernelPeriodic$clone()`

Method new(): Create a new `KernelPeriodic` object.

Usage:

```r
KernelPeriodic$new(
    lengthscale = KernelParameter$new(2),
    period_length = KernelParameter$new(2),
    kernel_variance = 1,
    jitter_value = NULL
)
```

Arguments:

- `lengthscale` KernelParameter: The lengthscale parameter instance of the kernel
- `period_length` KernelParameter: The period length parameter instance of the kernel
- `kernel_variance` Numeric: The variance of the kernel
- `jitter_value` Numeric: The jitter value to add to the kernel matrix

Returns: A new `KernelPeriodic` object.

Method core_kernel_fn(): Method to compute the core kernel’s covariance matrix

Usage:

```r
KernelPeriodic$core_kernel_fn()
```

Returns: The core kernel’s covariance matrix

Method clone(): The objects of this class are cloneable with this method.

Usage:

```r
KernelPeriodic$clone(deep = FALSE)
```

Arguments:

- `deep` Whether to make a deep clone.

Examples

```r
# Create a new Periodic kernel
k_periodic <- KernelPeriodic$new()
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_periodic$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_periodic$kernel_gen()
```
R6 class for Rational Quadratic Kernels

Description

R6 class for Rational Quadratic Kernels

Super class

BKTR::Kernel -> KernelRQ

Public fields

lengthscale The lengthscale parameter instance of the kernel
alpha The alpha parameter instance of the kernel
has_dist_matrix The distance matrix between points in a tensor format
name The kernel’s name

Methods

Public methods:

• KernelRQ$new()
• KernelRQ$core_kernel_fn()
• KernelRQ$clone()

Method new(): Create a new KernelRQ object.

Usage:

KernelRQ$new(
 lengthscale = KernelParameter$new(2),
 alpha = KernelParameter$new(2),
 kernel_variance = 1,
 jitter_value = NULL
)

Arguments:

lengthscale KernelParameter: The lengthscale parameter instance of the kernel
alpha KernelParameter: The alpha parameter instance of the kernel
kernel_variance Numeric: The variance of the kernel
jitter_value Numeric: The jitter value to add to the kernel matrix

Returns: A new KernelRQ object.

Method core_kernel_fn(): Method to compute the core kernel’s covariance matrix

Usage:

KernelRQ$core_kernel_fn()
Returns: The core kernel’s covariance matrix

Method clone(): The objects of this class are cloneable with this method.

Usage:
KernelRQ$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Create a new RQ kernel
k_rq <- KernelRQ$new()
Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_rq$set_positions(positions_df)
Generate the kernel's covariance matrix
k_rq$kernel_gen()
KernelSE$new(
 lengthscale = KernelParameter$new(2),
 kernel_variance = 1,
 jitter_value = NULL
)

Arguments:
- `lengthscale` KernelParameter: The lengthscale parameter instance of the kernel
- `kernel_variance` Numeric: The variance of the kernel
- `jitter_value` Numeric: The jitter value to add to the kernel matrix

Returns: A new KernelSE object.

Method `core_kernel_fn()`: Method to compute the core kernel’s covariance matrix

Usage:
KernelSE$core_kernel_fn()

Returns: The core kernel’s covariance matrix

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
KernelSE$clone(deep = FALSE)

Arguments:
- `deep` Whether to make a deep clone.

Examples

```r
# Create a new SE kernel
k_se <- KernelSE$new()
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_se$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_se$kernel_gen()
```

Description

R6 class for White Noise Kernels

Super class

BKTR::Kernel -> KernelWhiteNoise
Public fields

has_dist_matrix Identify if the kernel has a distance matrix or not
name The kernel’s name

Methods

Public methods:

• KernelWhiteNoise$new()
• KernelWhiteNoise$core_kernel_fn()
• KernelWhiteNoise$clone()

Method new():

Usage:
KernelWhiteNoise$new(kernel_variance = 1, jitter_value = NULL)

Arguments:
kernel_variance Numeric: The variance of the kernel
jitter_value Numeric: The jitter value to add to the kernel matrix

Method core_kernel_fn(): Method to compute the core kernel’s covariance matrix

Usage:
KernelWhiteNoise$core_kernel_fn()

Returns: The core kernel’s covariance matrix

Method clone(): The objects of this class are cloneable with this method.

Usage:
KernelWhiteNoise$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples

Create a new white noise kernel
k_white_noise <- KernelWhiteNoise$new()
Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_white_noise$set_positions(positions_df)
Generate the kernel's covariance matrix
k_white_noise$kernel_gen()
plot_beta_dists

Plot Beta Coefficients Distribution

Description

Plot the distribution of beta values for a given list of labels.

Usage

plot_beta_dists(
 bktr_reg,
 labels_list,
 show_figure = TRUE,
 fig_width = 9,
 fig_height = 6,
 fig_resolution = 200
)

Arguments

- **bktr_reg**: BKTRRegressor: BKTRRegressor object.
- **labels_list**: List: List of labels tuple (spatial, temporal, feature) for which to plot the beta distribution through iterations
- **show_figure**: Boolean: Whether to show the figure. Defaults to True.
- **fig_width**: Integer: Figure width. Defaults to 9.
- **fig_height**: Integer: Figure height. Defaults to 6.
- **fig_resolution**: Numeric: Figure resolution PPI. Defaults to 200.

Value

ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.

Examples

```r
# Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
bktr_regressor <- BKTRRegressor$new(
  data_df <- bixi_data$data_df,
  spatial_positions_df = bixi_data$spatial_positions_df,
  temporal_positions_df = bixi_data$temporal_positions_df,
  burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

# Plot temporal beta coefficients for the first station and the first feature
spa_lab <- bixi_data$spatial_positions_df$location[3]
plot_beta_dists(
  bktr_regressor,  
  labels_list = list(spa_lab),  
  show_figure = TRUE,  
  fig_width = 9,  
  fig_height = 6,  
  fig_resolution = 200
)
```
Plot Beta Coefficients Distribution Regrouped by Covariates

Description
Plot the distribution of beta estimates regrouped by covariates.

Usage
plot_covariates_beta_dists(
 bktr_reg,
 feature_labels = NULL,
 show_figure = TRUE,
 fig_width = 9,
 fig_height = 6,
 fig_resolution = 200
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bktr_reg</td>
<td>BKTRRegressor: BKTRRegressor object.</td>
</tr>
<tr>
<td>feature_labels</td>
<td>Array or NULL: Array of feature labels for which to plot the beta estimates distribution. If NULL plot for all features.</td>
</tr>
<tr>
<td>show_figure</td>
<td>Boolean: Whether to show the figure. Defaults to True.</td>
</tr>
<tr>
<td>fig_width</td>
<td>Integer: Figure width. Defaults to 9.</td>
</tr>
<tr>
<td>fig_height</td>
<td>Integer: Figure height. Defaults to 6.</td>
</tr>
<tr>
<td>fig_resolution</td>
<td>Numeric: Figure resolution PPI. Defaults to 200.</td>
</tr>
</tbody>
</table>

Value

ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.
Examples

Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
bktr_regressor <- BKTRRegressor$new(
 formula = 'nb_departure ~ 1 + area_park + mean_temp_c + total_precip_mm',
 data_df <- bixi_data$data_df,
 spatial_positions_df = bixi_data$spatial_positions_df,
 temporal_positions_df = bixi_data$temporal_positions_df,
 burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

Plot beta estimates distribution for all features
plot_covariates_beta_dists(bktr_regressor)
Or plot for a subset of features
plot_covariates_beta_dists(bktr_regressor, c('area_park', 'mean_temp_c'))

plot_hyperparams_dists

Plot Hyperparameters Distributions

Description

Plot the distribution of hyperparameters through iterations

Usage

plot_hyperparams_dists(
 bktr_reg,
 hyperparameters = NULL,
 show_figure = TRUE,
 fig_width = 9,
 fig_height = 6,
 fig_resolution = 200
)

Arguments

bktr_reg BKTRRegressor: BKTRRegressor object.
hyperparameters Array or NULL: Array of hyperparameters to plot. If NULL, plot all hyperparameters. Defaults to NULL.
show_figure Boolean: Whether to show the figure. Defaults to True.
fig_width Integer: Figure width. Defaults to 9.
fig_height Integer: Figure height. Defaults to 6.
fig_resolution Numeric: Figure resolution PPI. Defaults to 200.
Value

`ggplot` or `NULL`: `ggplot` object or `NULL` if `show_figure` is set to `FALSE`.

Examples

```r
# Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
k_matern <- KernelMatern$new()
k_periodic <- KernelPeriodic$new()
bktr_regressor <- BKTRRegressor$new(
  data_df <- bixi_data$data_df,
  spatial_kernel = k_matern,
  temporal_kernel = k_periodic,
  spatial_positions_df = bixi_data$spatial_positions_df,
  temporal_positions_df = bixi_data$temporal_positions_df,
  burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

# Plot the distribution of all hyperparameters
plot_hyperparams_dists(bktr_regressor)

# Plot the distribution of the spatial kernel hyperparameters
spa_par_name <- paste0('Spatial - ', k_matern$parameters[[1]]$full_name)
plot_hyperparams_dists(bktr_regressor, spa_par_name)

# Plot the distribution of the temporal kernel hyperparameters
temp_par_names <- sapply(k_periodic$parameters, function(x) x$full_name)
temp_par_names <- paste0('Temporal - ', temp_par_names)
plot_hyperparams_dists(bktr_regressor, temp_par_names)
```

Description

Plot the evolution of hyperparameters through iterations. (Traceplot)

Usage

```r
plot_hyperparams_traceplot(
  bktr_reg,
  hyperparameters = NULL,
  show_figure = TRUE,
  fig_width = 9,
  fig_height = 5.5,
  fig_resolution = 200
)
```
Arguments

bktr_reg BKTRRegressor: BKTRRegressor object.

hyperparameters Array or NULL: Array of hyperparameters to plot. If NULL, plot all hyperparameters. Defaults to NULL.

show_figure Boolean: Whether to show the figure. Defaults to True.

fig_width Integer: Figure width. Defaults to 9.

fig_height Integer: Figure height. Defaults to 5.5.

fig_resolution Numeric: Figure resolution PPI. Defaults to 200.

Value
ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.

Examples

Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
kmatern <- KernelMatern$new()
periodic <- KernelPeriodic$new()
bktr_regressor <- BKTRRegressor$new(
 data_df <- bixi_data$data_df,
 spatial_kernel = kmatern,
 temporal_kernel = periodic,
 spatial_positions_df = bixi_data$spatial_positions_df,
 temporal_positions_df = bixi_data$temporal_positions_df,
 burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

Plot the traceplot of all hyperparameters
plot_hyperparams_traceplot(bktr_regressor)

Plot the traceplot of the spatial kernel hyperparameters
spa_par_name <- paste0('Spatial - ', kmatern$parameters[[1]]$full_name)
plot_hyperparams_traceplot(bktr_regressor, spa_par_name)

Plot the traceplot of the temporal kernel hyperparameters
temp_par_names <- sapply(periodic$parameters, function(x) x$full_name)
temp_par_names <- paste0('Temporal - ', temp_par_names)
plot_hyperparams_traceplot(bktr_regressor, temp_par_names)
plot_spatial_betas

Description

Create a plot of beta values through space for a given temporal point and a set of feature labels.

Usage

```r
plot_spatial_betas(
  bktr_reg,  
  plot_feature_labels,  
  temporal_point_label,  
  nb_cols = 1,  
  use_dark_mode = TRUE,  
  show_figure = TRUE,  
  zoom = 11,  
  google_token = NULL,  
  fig_width = 8.5,  
  fig_height = 5.5,  
  fig_resolution = 200
)
```

Arguments

- **bktr_reg**: BKTRRegressor: BKTRRegressor object.
- **plot_feature_labels**: Array: Array of feature labels to plot.
- **temporal_point_label**: String: Temporal point label to plot.
- **nb_cols**: Integer: The number of columns to use in the facet grid.
- **use_dark_mode**: Boolean: Whether to use a dark mode for the geographic map or not.
- **show_figure**: Boolean: Whether to show the figure. Defaults to True.
- **zoom**: Integer: Zoom level for the geographic map. Defaults to 11.
- **google_token**: String or NULL: Google API token to use for the geographic map. Defaults to NULL. If NULL, use Stamen maps.
- **fig_width**: Numeric: Figure width when figure is shown. Defaults to 8.5.
- **fig_height**: Numeric: Figure height when figure is shown. Defaults to 5.5.
- **fig_resolution**: Numeric: Figure resolution PPI. Defaults to 200.

Value

- ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.
Examples

```r
# Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
bktr_regressor <- BKTRRegressor$new(
  data_df = bixi_data$data_df,
  spatial_positions_df = bixi_data$spatial_positions_df,
  temporal_positions_df = bixi_data$temporal_positions_df,
  burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

# Plot spatial beta coefficients for the first time point and the two features
plot_spatial_betas(
  bktr_regressor,
  plot_feature_labels = c(’mean_temp_c’, ’area_park’),
  temporal_point_label = bixi_data$temporal_positions_df$time[1])

# We can also use light mode and plot the maps side by side
plot_spatial_betas(
  bktr_regressor,
  plot_feature_labels = c(’mean_temp_c’, ’area_park’, ’total_precip_mm’),
  temporal_point_label = bixi_data$temporal_positions_df$time[10],
  use_dark_mode = FALSE, nb_cols = 3)
```

plot_temporal_betas

Plot Temporal Beta Coefficients

Description

Create a plot of the beta values through time for a given spatial point and a set of feature labels.

Usage

```r
plot_temporal_betas(
  bktr_reg,
  plot_feature_labels,
  spatial_point_label,
  date_format = ”%Y-%m-%d”,
  show_figure = TRUE,
  fig_width = 8.5,
  fig_height = 5.5,
  fig_resolution = 200
)
```

Arguments

plot_y_estimates

plot_feature_labels
Array: Array of feature labels to plot.

spatial_point_label
String: Spatial point label to plot.

date_format
String: Format of the date to use in bktr dataframes for the time. Defaults to '%Y-%m-%d'.

show_figure
Boolean: Whether to show the figure. Defaults to True.

fig_width
Numeric: Figure width when figure is shown. Defaults to 8.5.

fig_height
Numeric: Figure height when figure is shown. Defaults to 5.5.

fig_resolution
Numeric: Figure resolution PPI. Defaults to 200.

Value

ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.

Examples

Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
bktr_regressor <- BKTRRegressor$new(
data_df <- bixi_data$data_df,
spatial_positions_df = bixi_data$spatial_positions_df,
temporal_positions_df = bixi_data$temporal_positions_df,
burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

Plot temporal beta coefficients for the first station and the two features
plot_temporal_betas(
bktr_regressor,
plot_feature_labels = c('mean_temp_c', 'area_park'),
spatial_point_label = bixi_data$spatial_positions_df$location[1])
fig_height = 5,
fig_resolution = 200,
fig_title = "y estimates vs observed y values"
)

Arguments

bktr_reg BKTRRegressor: BKTRRegressor object.
show_figure Boolean: Whether to show the figure. Defaults to True.
fig_width Numeric: Figure width when figure is shown. Defaults to 5.
fig_height Numeric: Figure height when figure is shown. Defaults to 5.
fig_resolution Numeric: Figure resolution PPI when figure is shown. Defaults to 200.
fig_title String or NULL: Figure title if provided. Defaults to ’y estimates vs observed y values’

Value

ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.

Examples

Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
bktr_regressor <- BKTRRegressor$new(
 data_df = bixi_data$data_df,
 spatial_positions_df = bixi_data$spatial_positions_df,
 temporal_positions_df = bixi_data$temporal_positions_df,
 burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()

Plot Y estimates vs observed y values
plot_y_estimates(bktr_regressor)

print.BKTRRegressor
Print the summary of a BKTRRegressor instance

Description

Print the summary of a BKTRRegressor instance

Usage

S3 method for class 'BKTRRegressor'
print(x, ...)

reshape_covariate_dfs

Function used to transform covariates coming from two dataframes one for spatial and one for temporal into a single dataframe with the right shape for the BKTR Regressor. This is useful when the temporal covariates do not vary through space and the spatial covariates do not vary through time (Like in the BIXI example). The function also adds a column for the target variable at the beginning of the dataframe.

Arguments

- x: A BKTRRegressor instance
- ...: Additional arguments to comply with generic function

Description

Function used to transform covariates coming from two dataframes one for spatial and one for temporal into a single dataframe with the right shape for the BKTR Regressor. This is useful when the temporal covariates do not vary through space and the spatial covariates do not vary through time (Like in the BIXI example). The function also adds a column for the target variable at the beginning of the dataframe.

Usage

```r
reshape_covariate_dfs(spatial_df, temporal_df, y_df, y_column_name = "y")
```

Arguments

- spatial_df: data.table: Spatial covariates dataframe with an index named location and a shape of (n_locations, n_spatial_covariates)
- temporal_df: data.table: Temporal covariates dataframe with an index named time and a shape of (n_times, n_temporal_covariates)
- y_df: data.table: The dataframe containing the target variable. It should have a shape of (n_locations, n_times). The columns and index names of this dataframe should be correspond to the one of the spatial_df and temporal_df.
- y_column_name: string: The name of the target variable column in y_df. Default to 'y'.

Value

data.table: The reshaped covariates dataframe with a shape of (n_locations * n_times, 1 + n_spatial_covariates + n_temporal_covariates). The first two columns are the indexes (location, time), the following column is the target variable and the other columns are the covariates.
Examples

Let's reshape the BIXI dataframes without normalization
new_data_df <- reshape_covariate_dfs(
 spatial_df = BKTR::bixi_spatial_features,
 temporal_df = BKTR::bixi_temporal_features,
 y_df = BKTR::bixi_station_departures,
 y_column_name = 'whole_nb_departure')
The resulting dataframe has the right shape to be a BKTRRegressor data_df
head(new_data_df)

simulate_spatiotemporal_data

Simulate Spatiotemporal Data Using Kernel Covariances.

Description

Simulate Spatiotemporal Data Using Kernel Covariances.

Usage

```r
simulate_spatiotemporal_data(
    nb_locations,
    nb_time_points,
    nb_spatial_dimensions,
    spatial_scale,
    time_scale,
    spatial_covariates_means,
    temporal_covariates_means,
    spatial_kernel,
    temporal_kernel,
    noise_variance_scale
)
```

Arguments

- `nb_locations` **Integer**: Number of spatial locations
- `nb_time_points` **Integer**: Number of time points
- `nb_spatial_dimensions` **Integer**: Number of spatial dimensions
- `spatial_scale` **Numeric**: Spatial scale
- `time_scale` **Numeric**: Time scale
- `spatial_covariates_means` **Vector**: Spatial covariates means
- `temporal_covariates_means` **Vector**: Temporal covariates means
- `spatial_kernel` **Vector**: Spatial kernel
- `temporal_kernel` **Vector**: Temporal kernel
- `noise_variance_scale` **Numeric**: Noise variance scale
temporal_covariates_means
Vector: Temporal covariates means

spatial_kernel Kernel: Spatial kernel

temporal_kernel
Kernel: Temporal kernel

noise_variance_scale
Numeric: Noise variance scale

Value
A list containing 4 dataframes: - 'data_df' contains the response variable and the covariates - 'spatial_positions_df' contains the spatial locations and their coordinates - 'temporal_positions_df' contains the time points and their coordinates - 'beta_df' contains the true beta coefficients

Examples

Simulate data with 20 locations, 30 time points, in 2D spatial dimensions
with 3 spatial covariates and 2 temporal covariates
simu_data <- simulate_spatiotemporal_data(
 nb_locations=20,
 nb_time_points=30,
 nb_spatial_dimensions=2,
 spatial_scale=10,
 time_scale=10,
 spatial_covariates_means=c(0, 2, 4),
 temporal_covariates_means=c(1, 3),
 spatial_kernel=KernelMatern$new(),
 temporal_kernel=KernelSE$new(),
 noise_variance_scale=1)

The dataframes are similar to bixi_data, we have:
- data_df
head(simu_data$data_df)
- spatial_positions_df
head(simu_data$spatial_positions_df)
- temporal_positions_df
head(simu_data$temporal_positions_df)
We also obtain the true beta coefficients used to simulate the data
head(simu_data$beta_df)

summary.BKTRRegressor Summarize a BKTRRegressor instance

Description
Summarize a BKTRRegressor instance
TensorOperator

Usage

```r
## S3 method for class 'BKTRRegressor'
summary(object, ...)
```

Arguments

- `object`: A BKTRRegressor instance
- `...`: Additional arguments to comply with generic function

Description

Tensor backend configuration and methods for all the tensor operations in BKTR

Super class

`R6P::Singleton` -> TensorOperator

Public fields

- `fp_type`: The floating point type to use for the tensor operations
- `fp_device`: The device to use for the tensor operations

Methods

Public methods:

- `TensorOperator$new()`
- `TensorOperator$set_params()`
- `TensorOperator$get_default_jitter()`
- `TensorOperator$tensor()`
- `TensorOperator$is_tensor()`
- `TensorOperator$eye()`
- `TensorOperator$ones()`
- `TensorOperator$zeros()`
- `TensorOperator$rand()`
- `TensorOperator$randn()`
- `TensorOperator$randn_like()`
- `TensorOperator$arange()`
- `TensorOperator$rand_choice()`
- `TensorOperator$kronecker_prod()`
- `TensorOperator$khatri_rao_prod()`
- `TensorOperator$clone()`
Method new(): Initialize the tensor operator with the given floating point type and device

Usage:
TensorOperator$new(fp_type = "float64", fp_device = "cpu")

Arguments:
fp_type The floating point type to use for the tensor operations (either "float64" or "float32")
fp_device The device to use for the tensor operations (either "cpu" or "cuda")

Returns: A new tensor operator instance

Method set_params(): Set the tensor operator parameters

Usage:
TensorOperator$set_params(fp_type = NULL, fp_device = NULL, seed = NULL)

Arguments:
fp_type The floating point type to use for the tensor operations (either "float64" or "float32")
fp_device The device to use for the tensor operations (either "cpu" or "cuda")
seed The seed to use for the random number generator

Method get_default_jitter(): Get the default jitter value for the floating point type used by the tensor operator

Usage:
TensorOperator$get_default_jitter()

Returns: The default jitter value for the floating point type used by the tensor operator

Method tensor(): Create a tensor from a vector or matrix of data with the tensor operator dtype and device

Usage:
TensorOperator$tensor(tensor_data)

Arguments:
tensor_data The vector or matrix of data to create the tensor from

Returns: A new tensor with the tensor operator dtype and device

Method is_tensor(): Check if a provided object is a tensor

Usage:
TensorOperator$is_tensor(tensor)

Arguments:
tensor The object to check

Returns: A boolean indicating if the object is a tensor

Method eye(): Create a tensor with a diagonal of ones and zeros with the tensor operator dtype and device for a given dimension

Usage:
TensorOperator$eye(eye_dim)

Arguments:
eye_dim: The dimension of the tensor to create

Returns: A new tensor with a diagonal of ones and zeros with the tensor operator dtype and device

Method ones(): Create a tensor of ones with the tensor operator dtype and device for a given dimension

Usage:

```
TensorOperator.ones(tsr_dim)
```

Arguments:

- tsr_dim: The dimension of the tensor to create

Returns: A new tensor of ones with the tensor operator dtype and device

Method zeros(): Create a tensor of zeros with the tensor operator dtype and device for a given dimension

Usage:

```
TensorOperator.zeros(tsr_dim)
```

Arguments:

- tsr_dim: The dimension of the tensor to create

Returns: A new tensor of zeros with the tensor operator dtype and device

Method rand(): Create a tensor of random uniform values with the tensor operator dtype and device for a given dimension

Usage:

```
TensorOperator.rand(tsr_dim)
```

Arguments:

- tsr_dim: The dimension of the tensor to create

Returns: A new tensor of random values with the tensor operator dtype and device

Method randn(): Create a tensor of random normal values with the tensor operator dtype and device for a given dimension

Usage:

```
TensorOperator.randn(tsr_dim)
```

Arguments:

- tsr_dim: The dimension of the tensor to create

Returns: A new tensor of random normal values with the tensor operator dtype and device

Method randn_like(): Create a tensor of random uniform values with the same shape as a given tensor with the tensor operator dtype and device

Usage:

```
TensorOperator.randn_like(input_tensor)
```

Arguments:

- input_tensor: The tensor to use as a shape reference
TensorOperator

Returns: A new tensor of random uniform values with the same shape as a given tensor

Method `arange()`: Create a tensor of a range of values with the tensor operator dtype and device for a given start and end

Usage:
TensorOperator$arange(start, end)

Arguments:
start The start of the range
dend The end of the range

Returns: A new tensor of a range of values with the tensor operator dtype and device

Method `rand_choice()`: Choose random values from a tensor for a given number of samples

Usage:
TensorOperator$rand_choice(
 choices_tsr,
 nb_sample,
 use_replace = FALSE,
 weights_tsr = NULL
)

Arguments:
choices_tsr The tensor to choose values from
nb_sample The number of samples to choose
use_replace A boolean indicating if the sampling should be done with replacement. Defaults to FALSE
weights_tsr The weights to use for the sampling. If NULL, the sampling is uniform. Defaults to NULL

Returns: A new tensor of randomly chosen values from a tensor

Method `kronecker_prod()`: Efficiently compute the kronecker product of two matrices in tensor format

Usage:
TensorOperator$kronecker_prod(a, b)

Arguments:
a The first tensor
b The second tensor

Returns: The kronecker product of the two matrices

Method `khatri_rao_prod()`: Efficiently compute the khatri rao product of two matrices in tensor format having the same number of columns

Usage:
TensorOperator$khatri_rao_prod(a, b)

Arguments:
a The first tensor
b The second tensor

Returns: The khatri rao product of the two matrices

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```r
TensorOperator$clone(deep = FALSE)
```

Arguments:

- `deep`: Whether to make a deep clone.

Examples

```r
# Set the seed, setup the tensor floating point type and device
TSR$set_params(fp_type='float64', fp_device='cpu', seed=42)
# Create a tensor from a vector
TSR$tensor(c(1, 2, 3))
# Create a tensor from a matrix
TSR$tensor(matrix(c(1, 2, 3, 4), nrow=2))
# Create a 3x3 tensor with a diagonal of ones and zeros elsewhere
TSR$eye(3)
# Create a tensor of ones (with 6 elements, 2 rows and 3 columns)
TSR$ones(c(2, 3))
# Create a tensor of zeros (with 12 elements, 3 rows and 4 columns)
TSR$zeros(c(3, 4))
# Create a tensor of random uniform values (with 6 elements)
TSR$rand(c(2, 3))
# Create a tensor of random normal values (with 6 elements)
TSR$randn(c(2, 3))
# Create a tensor of random normal values with the same shape as a given tensor
tsr_a <- TSR$randn(c(2, 3))
TSR$randn_like(tsr_a)
# Create a tensor of a range of values (1, 2, 3, 4)
TSR$arange(1, 4)
# Choose two random values from a given tensor without replacement
tsr_b <- TSR$rand(6)
TSR$rand_choice(tsr_b, 2)
# Use the tensor operator to compute the kronecker product of two 2x2 matrices
tsr_c <- TSR$tensor(matrix(c(1, 2, 3, 4), nrow=2))
tsr_d <- TSR$tensor(matrix(c(5, 6, 7, 8), nrow=2))
TSR$kronecker_prod(tsr_c, tsr_d) # Returns a 4x4 tensor
# Use the tensor operator to compute the khatri rao product of two 2x2 matrices
TSR$khatri_rao_prod(tsr_c, tsr_d) # Returns a 4x2 tensor
# Check if a given object is a tensor
TSR$is_tensor(tsr_d) # Returns TRUE
TSR$is_tensor(TSR$eye(2)) # Returns TRUE
TSR$is_tensor(1) # Returns FALSE
```
Description

Singleton instance of the TensorOperator class that contains all informations related the tensor API; tensor methods, used data type and used device.

Usage

TSR

Format

An object of class TensorOperator (inherits from Singleton, R6) of length 19.
Index

* datasets
 bixi_spatial_features, 5
 bixi_spatial_locations, 6
 bixi_station_departures, 7
 bixi_temporal_features, 8
 bixi_temporal_locations, 9
 CompositionOps, 15
 TSR, 47
 *.Kernel, 3
 +.Kernel, 3

bixi_spatial_features, 5
bixi_spatial_locations, 6
bixi_station_departures, 7
bixi_temporal_features, 8
bixi_temporal_locations, 9
BixiData, 4
BKTR::Kernel, 17, 18, 20, 21, 24, 26–28
BKTR::KernelComposed, 17, 21
BKTRRegressor, 9
CompositionOps, 15

Kernel, 15
KernelAddComposed, 17
KernelComposed, 18
KernelMatern, 20
KernelMulComposed, 21
KernelParameter, 22
KernelPeriodic, 24
KernelRQ, 26
KernelSE, 27
KernelWhiteNoise, 28

plot_beta_dists, 30
plot_covariates_beta_dists, 31
plot_hyperparams_dists, 32
plot_hyperparams_traceplot, 33
plot_spatial_betas, 35
plot_temporal_betas, 36

plot_y_estimates, 37
print.BKTRRegressor, 38

R6P::Singleton, 42
reshape_covariate_dfs, 39
simulate_spatiotemporal_data, 40
summary.BKTRRegressor, 41

TensorOperator, 42
TSR, 47