Package ‘BNPMIXcluster’

November 30, 2020

Type Package

Title Bayesian Nonparametric Model for Clustering with Mixed Scale Variables

Version 1.3

Date 2020-11-28

Description Model-based approach for clustering of multivariate data, capable of combining different types of variables (continuous, ordinal and nominal) and accommodating for different sampling probabilities in a complex survey design. The model is based on a location mixture model with a Poisson-Dirichlet process prior on the location parameters of the associated latent variables. Details of the underlying model is described in Carmona, C., Nieto-Barajas, L. E., Canale, A. (2016) <arXiv:1612.00083>.

License MIT + file LICENSE

URL https://github.com/christianu7/BNPMIXcluster

BugReports https://github.com/christianu7/BNPMIXcluster/issues

LazyData TRUE

Depends R (>= 2.10),

Imports compiler, gplots, MASS, matrixcalc, mvtnorm, plyr, Rcpp (>= 1.0.5), truncnorm

LinkingTo Rcpp, RcppArmadillo

Suggests scatterplot3d

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

Author Christian Carmona [aut, cre] (<https://orcid.org/0000-0003-0224-4968>), Luis Nieto-Barajas [aut] (<https://orcid.org/0000-0002-0859-7679>), Antonio Canale [ctb] (<https://orcid.org/0000-0002-5403-0040>)

Maintainer Christian Carmona <carmona@stats.ox.ac.uk>

Repository CRAN

Date/Publication 2020-11-30 11:10:06 UTC
meta_param_ex

R topics documented:

- meta_param_ex 2
- MIXclustering 3
- plot.MIXcluster 9
- poverty.data 10
- summary.MIXcluster 12
- Y_ex_5_1 13
- Z_latent_ex_5_1 14

Index 17

meta_param_ex

Hyper-parameters for testing the BNPMIXcluster package

Description

Values for the parameters used in the three specifications (a), (b) and (c) of the exercise in section 5.1 of the article Carmona et al. (2017).

Usage

```r
meta_param_ex
```

Format

A data frame with 3 rows and 13 columns.

Details

A data frame with 3 rows and 13 columns. Each column is a parameter used in `MIXclustering`.

See Also

`MIXclustering`, `Y_ex_5_1`
Description

MIXclustering is used to perform cluster analysis of individuals using a Bayesian nonparametric mixture model that jointly models mixed scale data and accommodates for different sampling probabilities. The model is described in Carmona, C., Nieto-Barajas, L. E., Canale, A. (2016).

Usage

MIXclustering(
 Y,
 var_type,
 n_iter_out = 2000,
 n_burn = 100,
 n_thin = 2,
 a_fix = NULL,
 alpha = 0.5,
 d_0_a = 1,
 d_1_a = 1,
 b_fix = NULL,
 d_0_b = 1,
 d_1_b = 1,
 eta = 2,
 d_0_z = 2.1,
 d_1_z = 30,
 kappa = 5,
 delta = 4,
 d_0_mu = 2.1,
 d_1_mu = 30,
 sampling_prob = NULL,
 expansion_f = NULL,
 log_file = NULL,
 keep_param_chains = FALSE
)

Arguments

Y Matrix or data frame containing the data to be clustered.

var_type Character vector that indicates the type of variable in each column of x. Three possible types:
 • "c" for continuous variables. It is assumed to be Gaussian-shaped.
 • "o" for ordinal variables (binary and ordered categorical).
 • "m" for nominal variables (non-ordered categorical).
n_iter_out Number of effective iterations in the MCMC procedure for clustering.
n_burn Number of iterations discarded as part of the burn-in period at the beginning
 MCMC procedure.
n_thin Number of iterations discarded for thinning the chain (reducing the autocorrela-
 tion). We keep 1 of every n_thin iterations.
a_fix A numeric value to set the parameter a in the model. If NULL (default), the
 parameter a is assigned a prior distribution. See details.
alpha Hyperparameter in the prior distribution of a. See details.
d_0_a Hyperparameter in the prior distribution of a. See details.
d_1_a Hyperparameter in the prior distribution of a. See details.
b_fix A numeric value to set the parameter b in the model. If NULL (default), the
 parameter b is assigned a prior distribution. See details.
d_0_b Hyperparameter in the prior distribution of b. See details.
d_1_b Hyperparameter in the prior distribution of b. See details.
eta Tuning parameter controlling the proposal in the Metropolis-Hastings step for b.
d_0_z Hyperparameter in the prior distribution of the variance for the latent variables.
 See details.
d_1_z Hyperparameter in the prior distribution of the variance for the latent variables.
 See details.
kappa Tuning parameter controlling the proposal in the Metropolis-Hastings step for
 the variance of latent variables.
delta Tuning parameter controlling the proposal in the Metropolis-Hastings step for
 the correlation of latent variables.
d_0_mu Hyperparameter in the prior distribution of the variance of the location in each
 cluster. See details.
d_1_mu Hyperparameter in the prior distribution of the variance of the location in each
 cluster. See details.
sampling_prob vector with the sampling probabilities π_i for each individual in case that the data
 come from a complex survey sample. By default $\pi_i = 1$.
expansion_f vector with the expansion factors, the reciprocal of the sampling probabilities,
 $w_i = 1/\pi_i$. If both sampling_prob and expansion_f are specified, preference
 is given to sampling_prob.
log_file Specifies a file to save the details with the execution time and the parameters
 used.
keep_param_chains Indicates if the simulations of parameters a, b, lambda and omega should be
 returned as output.

Details

The model consists on a Bayesian non-parametric approach for clustering that is capable to com-

bine different types of variables through the usage of associated continuous latent variables. The
clustering mechanism is based on a location mixture model with a Poisson-Dirichlet (PD) process prior on the location parameters \(\mu_i; i = 1, \ldots, n \) of the associated latent variables.

Computational inference about the cluster allocation and the posterior distribution of the parameters are performed using MCMC.

The model consider an individual \(y_i \) that is characterized by a multivariate response of dimension \(p \), i.e., \(y_i = (y_{i,1}, \ldots, y_{i,p}) \). The total number of variables \(p \) is divided into \(c \) continuous variables, \(o \) ordinal variables, and \(m \) nominal variables such that \(p = c + o + m \).

For the continuous variables, it is convenient that the variables have a real support. The user may have transformed the original values before using the function MIXclustering.

For each response \(y_i = (y_{i,1}, \ldots, y_{i,p}) \) (of dimension \(p \)) a corresponding latent vector \(z_i = (z_{i,1}, \ldots, z_{i,q}) \) (of dimension \(q \)) is created, according to the following:

- For each continuous variable \(y_{i,j}; j = 1, \ldots, c \) the algorithm uses a latent with the same values \(z_{i,j} = y_{i,j} \).
- For each ordinal variable \(y_{i,j}, j = c + 1, \ldots, c + o \), with \(K_j \) different ordered values, the algorithm creates one latent \(z_{i,j} \), that allows to map the categories into continuous values divided by thresholds. For example, for a binary \(y_j \), we have \(y_j = 0 \) if \(z_j < 0 \) and \(y_j = 1 \) if \(z_j > 0 \).
- For each nominal variable \(y_{i,j}, j = c + o + 1, \ldots, c + o + m \), with \(L_j \) categories, the algorithm require \(L_j - 1 \) latent variables, whose relative order is consistent with the observed category.

The data may come from a complex survey sample where each individual \(y_i \) has known sampling probability \(\pi_i, i = 1, \ldots, n \). The reciprocal of these sampling probabilities, \(w_i = 1/\pi_i \), are called expansion factors or sampling design weights.

The joint model for the latent vector is therefore:

\[
(z_i|\mu_i, \Sigma) \sim N_q(\mu_i, \pi_i \Sigma)
\]

(Note: the final model in Carmona et al. (2016) has variance \(\kappa \pi_i \Sigma \). This value of \(\kappa \) can be used in the package through a transformed sampling probability vector \(\pi_i^* = \kappa \pi_i \).)

The clustering model will be based in an appropriate choice of the prior distribution on the \(\mu_i \)'s. A clustering of the \(\mu_i \)'s will induce a clustering of the \(y_i \)'s. Our prior on the \(\mu_i \)'s will be:

\(\mu_i \sim G - \text{G}, \text{iid for } i = 1, \ldots, n \)

Where \(G \sim PD(a, b, G_0) \) is a Poisson-Dirichlet process with parameters \(a \in [0, 1), b > -a \) and centering measure \(G_0 \). The Dirichlet and the normalized stable processes arise when \(a = 0 \) and when \(b = 0 \), respectively.

In consequence, this choice of prior implies that the \(\mu_i \)'s are exchangeable with marginal distribution \(\mu_i \sim G - \text{G}_0 \) for all \(i = 1, \ldots, n \).

In our case, \(G(\mu) = N(0, \Sigma_\mu) \), where \(\Sigma_\mu = \text{diag}(\sigma_{\mu_1}^2, \ldots, \sigma_{\mu_q}^2) \).

The parameters \(a \) and \(b \) in the model define the PD process and therefore control the number of groups. These parameters can be fixed, resulting in a larger/smaller number of groups if assigned a larger/smaller value, respectively.

There are 9 hyperparameters in the function that also characterize the prior distributions in the model.
• \(f(a) = \alpha \cdot I(a=0) + (1-\alpha) \cdot \text{dbeta}(a \mid d_{0 \cdot a}, d_{0 \cdot a}) \)
• \(f(b \mid a) = \text{dgamma}(b + a \mid d_{0 \cdot b}, d_{1 \cdot b}) \)
• \(\sigma^2 \sim \text{inverse-gamma}(d_{0 \cdot z}, d_{1 \cdot z}) \)
• \(\sigma^2_{\mu} \sim \text{inverse-gamma}(d_{0 \cdot \mu}, d_{1 \cdot \mu}) \)

The definition of these values also affect the number of resulting clusters since they affect the variance implied in the model.

For example, increasing the values of \(d_{1 \cdot a} \) and \(d_{1 \cdot b} \) reduce the number of groups.

Finally, the function parameters \(\eta, \kappa, \delta \) are tuning parameters that control the acceptance rate in the random-walk MH steps of the new proposed values for the parameters \(b, \Lambda_{i,j}, \Omega_{i,j} \) (variance of latents) and \(\Omega_{i,j} \) (correlation of latents). These parameters are not recommended to be changed (used in the internal functions: sampling_b, sampling_Lambda_jj, sampling_Omega_ij).

Value

\textbf{MIXclustering} returns a S3 object of class "MIXcluster".

The generic methods \texttt{summary} and \texttt{plot} are defined for this class.

An object of class "MIXcluster" is a list containing the following components:

- \texttt{cluster} vector with the cluster allocation for each row in the data. It corresponds to the iteration which is Closest-To-Average (CTA) arrangement.
- \texttt{cluster_heterogeneity} Heterogeneity Measure (HM) for the cluster in the previous point. The HM measure is discussed in section 4 of Carmona et al. (2017).
- \texttt{Y.cluster_summary} a summary of the data divided by the allocation in \$cluster.
- \texttt{Y.var_type} vector with the variable types in the data.
- \texttt{Y.na} vector specifying the rows with missing values.
- \texttt{Y.n} number of rows in the data.
- \texttt{Y.p} number of variables in the data.
- \texttt{MC.clusters} matrix with the cluster allocation for each row in the data. Each column corresponds to an effective iteration in the MCMC simulation of the model (after discarding burn-in and thinning iterations).
- \texttt{MC.clusters_heterogeneity} Heterogeneity Measure (HM) for all the clusters returned in \texttt{MC.clusters}.
- \texttt{cluster.matrix_avg} average similarity matrix of size \(n \) by \(n \).
- \texttt{MC.values} a list with the simulated values of the chains for the parameters \(a,b,\Lambda,\Omega \).
- \texttt{MC.accept_rate} a named vector with the acceptance rates for each parameter. It includes iterations that are discarded in the burn-in period and thinning.
- \texttt{call} the matched call.

References

See Also

summary.MIXcluster for a summary of the clustering results, *plot.MIXcluster* for graphical representation of results.

Examples

```r
# Simulation study 1  #
# Carmona et al. (2017)  #

# Data and parameters are discussed in section 5.1 of Carmona et al. (2017) #

# Set seed for reproducibility #
set.seed(0)

# Specification of data Y #
help(Y_ex_5_1)

# Observable data #
# Choose scenario: 1, 2, or 3
ex_i <- 1

# Prior specification #
# Choose "a", "b" or "c"
param_j <- "c"

# Specify the data type that is being provided to the method
var_type_Y_ex_5_1 <- list(c("c","c","c"),
c("o","o"),
c("o","o","o","c")
)

## Not run:  
cluster_ex <- MIXclustering( Y = as.matrix(Y_ex_5_1[[ ex_i ]]),
 var_type=var_type_Y_ex_5_1[[ ex_i ]],
   n_iter_out=1500,
   n_burn=200,
   n_thin=3,
   alpha = meta_param_ex[ param_j, "alpha" ],
   d_0_a = meta_param_ex[ param_j, "d_0_a" ],
   d_1_a = meta_param_ex[ param_j, "d_1_a" ],
   d_0_b = meta_param_ex[ param_j, "d_0_b" ],
   d_1_b = meta_param_ex[ param_j, "d_1_b" ],
   eta = meta_param_ex[ param_j, "eta" ],
   kappa = meta_param_ex[ param_j, "kappa" ],
   delta = meta_param_ex[ param_j, "delta" ],
   d_0_z = meta_param_ex[ param_j, "d_0_z" ],
   d_1_z = meta_param_ex[ param_j, "d_1_z" ],
```

d_0_mu = meta.param.ex[param_j, "d_0_mu"],
d_1_mu = meta.param.ex[param_j, "d_1_mu"]

Summary of clustering results
summary(cluster_ex)

Visualizing clustering results
plot(cluster_ex,type="heatmap")
plot(cluster_ex,type="chain")

Comparison of cluster configurations
1) Minimum distance with average MCMC iterations
2) Minimum Heterogeneity Measure (HM)
plot(x=jitter(cluster_ex$cluster),y=jitter(cluster_ex$clusterHMmin), col="#FF000080", pch=20,
 main=paste("Comparison of two relevant cluster configurations"),
 xlab="minimizes distance to average MCMC grouping", ylab="minimizes Heterogeneity Measure")

Comparison with the original clusters in the simulated data
plot(x=jitter(Z_latent_ex_5_1$cluster),
 y=jitter(cluster_ex$cluster),
 main=paste("Comparison real configuration with the model results"),
 xlab="Real cluster",
 ylab="Model cluster",
 pch=19, col="#FF000080")

End(Not run)

##
Households data
Carmona et al. (2017)
##

Testing "MIXclustering" function with poverty.data
Data and parameters are discussed in section 5.3 of Carmona et al. (2017)

Set seed for reproducibility
set.seed(0)

Not run:
relevant variables for clustering households
Y.names <- c("ict_norm",
 "ic_ali","ic_asalud","ic_cv",
 "ic_rezedu","ic_sbv","ic_segsoc",
 "niv_ed","tam_loc")
Y.var.type <- c("c","o","o","o","o","o","o","o")

using only data from state 15 (Edomex)
aux_subset <- rep(TRUE,nrow(poverty.data))
aux_subset <- aux_subset & is.element(substr(poverty.data$folioviv,1,2),"15")

Y.data <- poverty.data[aux_subset,Y.names]

Sampling probability dependin on the scenario
plot.MIXcluster

Scenario description in section 5.3 of Carmona et al. (2017)
Choose 1, 2 or 3
poverty_sampling_spec <- 3

if (poverty_sampling_spec == 1) {
 k <- 1
 sampling_prob_pov <- rep(1,nrow(Y_data))
} else if (poverty_sampling_spec == 2) {
 k <- 2 * mean(poverty.data[aux_subset,"factor_hog"])
 sampling_prob_pov <- 1/poverty.data[aux_subset,"factor_hog"]
} else if (poverty_sampling_spec == 3) {
 k <- 4 * mean(poverty.data[aux_subset,"factor_hog"])
 sampling_prob_pov <- 1/poverty.data[aux_subset,"factor_hog"]
}

cluster_poverty <- MIXclustering(Y=Y_data,
 var_type=Y_var_type,
 n_iter_out=1500,
 n_burn=200,
 n_thin=3,

 alpha = 0.5,
 d_0_a = 1, d_1_a = 1,
 d_0_b = 1, d_1_b = 1,

 eta = 2,
 kappa = 5,
 delta = 4,

 d_0_z = 2.1, d_1_z = 30,
 d_0_mu = 2.1, d_1_mu = 30,

 sampling_prob = k * sampling_prob_pov)

summary(cluster_poverty)
plot(cluster_poverty,type="heatmap")
plot(cluster_poverty,type="chain")

End(Not run)

plot.MIXcluster

Plotting clustering results for "MIXcluster" objects

Description

Plotting method for objects inheriting from class "MIXcluster".
Usage

```r
## S3 method for class 'MIXcluster'
plot(
  x,
  type = c("heatmap", "chain")[1],
  chain.obj = c("n.cluster", "a", "b", "Lambda", "Omega", "all")[1],
  ...)
```

Arguments

- **x**: an object of class "MIXcluster"
- **type**: what type of plot should be drawn. Possible types are:
 - "heatmap" (default) draws a heatmap of the average similarity matrix for the effective iterations of the MCMC.
 - "chain" for the evolution and histograms of the chains for parameters in the model.
- **chain.obj**: if type="chain", this specifies what chain will be plotted. Possible types are:
 - "n.cluster" (default) for the number of clusters.
 - "a" for the a parameter of the model.
 - "b" for the b parameter of the model.
 - "Lambda" one plot for each element in the diagonal of the Λ matrix of the model (variance of latent variables).
 - "Omega" one plot for each element above the diagonal of the Ω matrix of the model (correlation between latent variables).
 - "all" for all of the above.
- **...**: further arguments passed to or from other methods.

See Also

MIXclustering

poverty.data

Poverty data for testing the BNPMIXcluster package

Description

Poverty indicators observed in Mexico for 2014.

The original data is available in the file "R_2014.zip" from CONEVAL's website: http://www.coneval.org.mx/Medicion/MP/Paginas/Programas_BD_10_12_14.aspx

This data frame presents indicators aggregated by household. The aggregation was done by the authors according with code in section Examples.
poverty.data

Usage

poverty.data

Details

poverty.data is a data frame with 58121 rows and 13 variables, with the following columns:

proyecto Data source identifier (1=MCS, 2=ENIGH)
folioviv Household identifier level 1
foliohog Household identifier level 2
ict_norm (continuous) Total income in the household (in Mexican pesos).
ic_alii (binary) Indicator for deprivation to feeding: 1-yes,0-no
ic_asalud (binary) Indicator for deprivation to health services: 1-yes,0-no
ic_cv (binary) Housing quality: 1-bad, 0-good
ic_rezedu (binary) Indicator for education backwardness: 1-yes,0-no
ic_sbv (binary) Indicator for deprivation to basic public services: 1-yes,0-no
ic_segsoc (binary) Indicator for deprivation to social security: 1-yes,0-no
niv_ed (categorical, ordered) Maximum educational level in the household: 0-incomplete primary: 1-incomplete secondary, 2-complete secondary or more
tam_loc (categorical, nominal) Size of locality according to the number of people living there: 1-100000, 2-[15000, 100000), 3-[2500, 15000), 4-[0, 2500)
factor_hog Expansion factor for the household, according to the complex survey design.

See Also

MIXclustering

Examples

Generates poverty.data using the original data from CONEVAL's website

Not run:

step 1:
Download and unzip the file "R_2014.zip"
available in:
http://www.coneval.org.mx/Medicion/MP/Documents/Programas_calculo_pobreza_10_12_14/R_2014.zip

coneval.poverty.data <- read.csv("pobreza_14.csv", na.strings=c("NA",""))

step 3:
Execute the following code...

var_id <- c("proyecto","folioviv","foliohog","numren")
for(i in match(var_id,colnames(coneval.poverty.data))) {
 coneval.poverty.data[,i] <- formatC(x=as.numeric(coneval.poverty.data[,i]),
 width=max(nchar(coneval.poverty.data[,i])),
 format="f",flag="0",digits=0
 }
}

normalizing the continuous variable for income
b <- quantile(coneval.poverty.data$ict,probs=0.01)
coneval.poverty.data$ict_norm <- log(coneval.poverty.data$ict+b)

Aggregating data at household level
Y_names <- c("ict_norm","ic_all","ic_asalud","ic_cv",
 "ic_rezedu","ic_sbv","ic_segsoc",
 "niv_ed","tam_loc")
agg_form <- as.formula("cbind("paste(c(Y_names,"factor_hog"),collapse="","","
 "proyecto+folioviv+foliohog"

poverty.data <- aggregate(agg_form,FUN="max",data=coneval.poverty.data)

End(Not run)

summary.MIXcluster

Summary of clustering results

Description

summary method for class "MIXcluster".

Usage

S3 method for class 'MIXcluster'
summary(object, ...)

Arguments

- **object**: an object of class "MIXcluster"
- **...**: further arguments passed to or from other methods.

See Also

- MIXclustering
Y_ex_5_1

Simulated data for testing the BNPMIXcluster package

Description

List with three data frames. Each dataset consists of the data \(Y_i \) described in the exercise of section 5.1 in the article Carmona et al (2017).

The data \(Y_{\text{ex}_5_1} \) is a transformation of the simulated data \(Z_{\text{latent}_5_1} \).

Usage

\(Y_{\text{ex}_5_1} \)

Format

A list with three data frames.

Details

A list with three data frames. Each data frame with 100 rows.

See Also

MIXclustering

Examples

Show the relation between \(Y_{\text{ex}_5_1} \) and \(Z_{\text{latent}_5_1} \)

```r
plot(y=Y_ex_5_1[[3]][,"Y1"],x=Z_latent_ex_5_1$Z1,pch=20,col=2); abline(v=c(5),lty=3)
plot(y=Y_ex_5_1[[3]][,"Y2"],x=Z_latent_ex_5_1$Z2,pch=20,col=2); abline(v=c(5),lty=3)
plot(y=Y_ex_5_1[[3]][,"Y3"],x=Z_latent_ex_5_1$Z3,pch=20,col=2); abline(v=c(5),lty=3)
```

##############################
Exercise 5.1
Data definition
##############################

Code to generate \(Y_{\text{ex}_5_1} \) from \(Z_{\text{latent}_5_1} \)

```r
Y_ex_5_1 <- list()

# (I) #
# Three continuous variables (Y1, Y2, Y3)
# defined as Yi = Z_i, for i=1, 2, 3.
Y_ex_5_1[[1]] <- Z_latent_ex_5_1[,c("Z1","Z2","Z3")]
```

Y_ex_5_1
(II)

(II)

```
# two binary variables (Y_1, Y_3) defined as
# Y_1 = I(Z_1 > 5)
# Y_3 = I(Z_3 > 3)
Y_ex_5_1_i <- data.frame(matrix(NA,nrow=nrow(Z_latent_ex_5_1),ncol=2))
colnames(Y_ex_5_1_i) <- paste("Y",c(1,3),sep="")
Y_ex_5_1_i$Y1 <- findInterval( Z_latent_ex_5_1$Z1, c(-Inf,5,Inf) )-1
Y_ex_5_1_i$Y3 <- findInterval( Z_latent_ex_5_1$Z3, c(-Inf,3,Inf) )-1
Y_ex_5_1[[2]] <- Y_ex_5_1_i
```

(III)

```
# two binary variables (Y_1, Y_3) defined as in Scenario (II)
# one ordinal variable Y_2 such that Y_2 = I(4 < Z_2 < 5) + 2 * I(Z_2 > 5)
# and one continuous variable Y_4 distributed N(0, 1)
Y_ex_5_1_i <- data.frame(matrix(NA,nrow=nrow(Z_latent_ex_5_1),ncol=4))
colnames(Y_ex_5_1_i) <- paste("Y",1:4,sep="")
Y_ex_5_1_i$Y1 <- Y_ex_5_1[[2]]$Y1
Y_ex_5_1_i$Y2 <- findInterval( Z_latent_ex_5_1$Z2, c(-Inf,4,5,Inf) )-1
Y_ex_5_1_i$Y3 <- Y_ex_5_1[[2]]$Y3
Y_ex_5_1_i$Y4 <- rnorm(n=nrow(Z_latent_ex_5_1),mean=0,sd=1)
Y_ex_5_1[[3]] <- Y_ex_5_1_i
```

Y_ex_5_1
```

---

Z_latent_ex_5_1  

*Simulated data for testing the BNPMIXcluster package*

---

**Description**

Simulated values for three continuous variables under the existence of three clusters.

The data consists of a three-variate Normal distribution with different mean and covariance matrix between clusters.

This can be assumed either as continuous data to be clustered Y=(Y_1,Y_2,Y_3); or also can be used as the underlying latent data that can be transformed into observable variables Y_i=f(Z_i), which can be continuous or categorical.

**Usage**

Z_latent_ex_5_1

**Format**

A data frame with 100 rows and 4 variables.

- **cluster** Indicates the cluster for each row
- **Z1,Z2,Z3** Continuous values coming from a multivariate normal distribution, given the cluster
Details

A data frame with 100 rows and 4 variables.

See Also

MIXclustering

Examples

### Visualizing the simulated data for clustering ###

```r
require(scatterplot3d)

cluster_color <- c(rgb(1,0,0,alpha = 0.5),
 rgb(0,0,1,alpha = 0.5),
 rgb(0,0.5,0,alpha = 0.5))
cluster_color <- cluster_color[Z_latent_ex_5_1$cluster]
cluster_pch <- c(19,15,17)[Z_latent_ex_5_1$cluster]
par(mfrow=c(2,2))
par(mar=c(4,5,2,2))
scatterplot3d::scatterplot3d(x=Z_latent_ex_5_1$Z1,y = Z_latent_ex_5_1$Z2, z=Z_latent_ex_5_1$Z3,
 color=cluster_color,pch=cluster_pch,
 xlab="Z1",ylab="Z2",zlab="Z3",
 main="Simulated data in 3 clusters"
)
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("Z2","Z3")],col=cluster_color,pch=cluster_pch,xlab="Z2",ylab="Z3")
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("Z1","Z3")],col=cluster_color,pch=cluster_pch,xlab="Z1",ylab="Z3")
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("Z1","Z2")],col=cluster_color,pch=cluster_pch,xlab="Z1",ylab="Z2")
```

# Exercise 5.1

### Code to generate the simulated data from scratch ###

```r
require(MASS)
set.seed(0)
n.sim <- 100
n.cluster <- 3
p <- 3
mu_Z_latent <- matrix(c(2 , 2 , 5 ,
 6 , 4 , 2 ,
 1 , 6 , 2),
 nrow=3,ncol=3)
```
nrow=n.cluster, ncol=p, byrow=TRUE)

sigma_Z_latent <- array(dim=c(3,3,3))
sigma_Z_latent[,,1] <- diag(3)
sigma_Z_latent[,,2] <- matrix( c( 0.1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0.1 ),
  nrow=n.cluster, ncol=p, byrow=TRUE)
sigma_Z_latent[,,3] <- matrix( c( 2 , 0 , 0 , 0 , 0.1 , 0 , 0 , 0 , 0.1 ),
  nrow=n.cluster, ncol=p, byrow=TRUE)

Z_cluster <- data.frame(cluster=sample(x=1:n.cluster,size=n.sim,replace=TRUE))

Z_latent <- matrix(NA,nrow=n.sim,ncol=p)
for( i in unique(Z_cluster$cluster) ) {
  Z_latent[Z_cluster[,1]==i,] <- MASS::mvrnorm( n=sum(Z_cluster[,1]==i),
    mu=mu_Z_latent[i,],
    Sigma=sigma_Z_latent[,,i] )
}
colnames(Z_latent) <- paste("Z",1:ncol(Z_latent),sep="")
Z_latent_ex_5_1 <- cbind(Z_cluster,Z_latent)
Z_latent_ex_5_1
Index

meta_param_ex. 2
MIXclustering, 2, 3, 10–13, 15

plot. 6
plot.MIXcluster, 7, 9
poverty.data, 10

summary, 6
summary.MIXcluster, 7, 12

Y_ex_5_1, 2, 13

Z_latent_ex_5_1, 14