Package ‘BNPMIXcluster’

September 26, 2017

Type Package
Title Bayesian Nonparametric Model for Clustering with Mixed Scale Variables
Version 1.2.4
Description Bayesian nonparametric approach for clustering that is capable to combine different types of variables (continuous, ordinal and nominal) and also accommodates for different sampling probabilities in a complex survey design. The model is based on a location mixture model with a Poisson-Dirichlet process prior on the location parameters of the associated latent variables. The package performs the clustering model described in Carmona, C., Nieto-Barajas, L. E., Canale, A. (2016) <arXiv:1612.00083>.
License GPL (>= 2)
LazyData TRUE
Depends R (>= 2.10),
Imports compiler, gplots, MASS, matrixcalc, mvtnorm, plyr, Rcpp, truncnorm
LinkingTo Rcpp, RcppArmadillo
Suggests scatterplot3d
RoxygenNote 6.0.1
NeedsCompilation yes
Author Christian Carmona [aut, cre], Luis Nieto-Barajas [aut], Antonio Canale [ctb]
Maintainer Christian Carmona <carmona@stats.ox.ac.uk>
Repository CRAN
Date/Publication 2017-09-26 19:46:36 UTC

R topics documented:

- meta_param_ex ... 2
- MIXclustering .. 2
- plot.MIXcluster .. 8
Description

Values for the parameters used in the three specifications (a), (b) and (c) of the exercise in section 5.1 of the article Carmona et al. (2017).

Usage

meta_param_ex

Format

A data frame with 3 rows and 13 columns.

Details

A data frame with 3 rows and 13 columns. Each column is a parameter used in the function MIXclustering.

See Also

MIXclustering, Y_ex_5_1

MIXclustering

Bayesian Nonparametric Model for Clustering with Mixed Scale Variables

Description

MIXclustering is used to perform cluster analysis of individuals using a Bayesian nonparametric mixture model that jointly models mixed scale data and accommodates for different sampling probabilities. The model is described in Carmona, C., Nieto-Barajas, L. E., Canale, A. (2016).

Usage

MIXclustering(Y, var_type, n_iter_out = 2000, n_burn = 100, n_thin = 2, a_fix = NULL, alpha = 0.5, d_0_a = 1, d_1_a = 1, b_fix = NULL, d_0_b = 1, d_1_b = 1, eta = 2, d_0_z = 2.1, d_1_z = 30, kappa = 5, delta = 4, d_0_mu = 2.1, d_1_mu = 30, sampling_prob = NULL, expansion_f = NULL, log_file = NULL, keep_param_chains = FALSE)
Arguments

\textbf{y} Matrix or data frame containing the data to be clustered.

\textbf{var.type} Character vector that indicates the type of variable in each column of \textbf{x}. Three possible types:
- "c" for continuous variables. It is assumed to be Gaussian-shaped.
- "o" for ordinal variables (binary and ordered categorical).
- "m" for nominal variables (non-ordered categorical).

\textbf{n.iter.out} Number of effective iterations in the MCMC procedure for clustering.

\textbf{n.burn} Number of iterations discarded as part of the burn-in period at the beginning MCMC procedure.

\textbf{n.thin} Number of iterations discarded for thinning the chain (reducing the autocorrelation). We keep 1 of every \textbf{n.thin} iterations.

\textbf{a.fix} A numeric value to set the parameter \textbf{a} in the model. If NULL (default), the parameter \textbf{a} is assigned a prior distribution. See details.

\textbf{alpha} Hyperparameter in the prior distribution of \textbf{a}. See details.

\textbf{d.0.a} Hyperparameter in the prior distribution of \textbf{a}. See details.

\textbf{d.1.a} Hyperparameter in the prior distribution of \textbf{a}. See details.

\textbf{b.fix} A numeric value to set the parameter \textbf{b} in the model. If NULL (default), the parameter \textbf{b} is assigned a prior distribution. See details.

\textbf{d.0.b} Hyperparameter in the prior distribution of \textbf{b}. See details.

\textbf{d.1.b} Hyperparameter in the prior distribution of \textbf{b}. See details.

\textbf{eta} Tuning parameter controlling the proposal in the \textit{Metropolis-Hastings} step for \textbf{b}.

\textbf{d.0.z} Hyperparameter in the prior distribution of the variance for the latent variables. See details.

\textbf{d.1.z} Hyperparameter in the prior distribution of the variance for the latent variables. See details.

\textbf{kappa} Tuning parameter controlling the proposal in the \textit{Metropolis-Hastings} step for the variance of latent variables.

\textbf{delta} Tuning parameter controlling the proposal in the \textit{Metropolis-Hastings} step for the correlation of latent variables.

\textbf{d.0.mu} Hyperparameter in the prior distribution of the variance of the location in each cluster. See details.

\textbf{d.1.mu} Hyperparameter in the prior distribution of the variance of the location in each cluster. See details.

\textbf{sampling.prob} vector with the sampling probabilities π_i for each individual in case that the data come from a complex survey sample. By default $\pi_i = 1$.

\textbf{expansion.f} vector with the expansion factors, the reciprocal of the sampling probabilities, $w_i = 1/\pi_i$. If both \textbf{sampling.prob} and \textbf{expansion.f} are specified, preference is given to \textbf{sampling.prob}.

\textbf{log.file} Specifies a file to save the details with the execution time and the parameters used.

\textbf{keep.param.chains} Indicates whether the simulations of parameters \textbf{a}, \textbf{b}, \textbf{lambda} and \textbf{omega} should be returned as output.
Details

The model consists of a bayesian non-parametric approach for clustering that is capable to combine different types of variables through the usage of associated continuous latent variables. The clustering mechanism is based on a location mixture model with a Poisson-Dirichlet (PD) process prior on the location parameters $\mu_i; i = 1, \ldots, n$ of the associated latent variables.

Computational inference about the cluster allocation and the posterior distribution of the parameters are performed using MCMC simulations.

The model consider an individual y_i that is characterized by a multivariate response of dimension p, i.e., $y_i = (y_{i,1}, \ldots, y_{i,p})$. The total number of variables p is divided into c continuous variables, o ordinal variables, and m nominal variables such that $p = c + o + m$.

For the continuous variables, it is convenient that the variables have a real support. The user may have transformed the original values before using the function MIXclustering.

For each response $y_i = (y_{i,1}, \ldots, y_{i,p})$ (of dimension p) a corresponding latent vector $z_i = (z_{i,1}, \ldots, z_{i,q})$ (of dimension q) is created, according to the following:

- For each continuous variable $y_{i,j}; j = 1, \ldots, c$ the algorithm uses a latent with the same values $z_{i,j} = y_{i,j}$.
- For each ordinal variable $y_{i,j}, j = c + 1, \ldots, c + o$, with K_j different ordered values, the algorithm creates one latent $z_{i,j}$, that allows to map the categories into continuous values divided by thresholds. For example, for a binary y_j, we have $y_j = 0$ iff $z_j < 0$ and $y_j = 1$ iff $z_j > 0$
- For each nominal variable $y_{i,j}, j = c + o + 1, \ldots, c + o + m$, with L_j categories, the algorithm require $L_j - 1$ latent variables, whose relative order is consistent with the observed category.

The data may come from a complex survey sample where each individual y_i has known sampling probability $\pi_i; i = 1, \ldots, n$. The reciprocal of these sampling probabilities, $w_i = 1/\pi_i$, are called expansion factors or sampling design weights.

The joint model for the latent vector is therefore:

$$(z_i|\mu_i, \Sigma) \sim N_q(\mu_i, \pi_i \Sigma)$$

(Note: the final model in Carmona et al. (2016) has variance $\kappa \pi_i \Sigma$. This value of κ can be used in the package through a transformed sampling probability vector $\pi^*_i = \kappa \pi_i$)

The clustering model will be based in an appropriate choice of the prior distribution on the μ_i’s. A clustering of the μ_i’s will induce a clustering of the y_i’s. Our prior on the μ_i’s will be:

$\mu_i|G \sim G, \text{ iid for } i = 1, \ldots, n$

Where $G \sim PD(a, b, G_0)$ is a Poisson-Dirichlet process with parameters $a \in (0, 1)$, $b > -a$ and centring measure G_0. The Dirichlet and the normalized stable processes arise when $a = 0$ and when $b = 0$, respectively.

In consequence, this choice of prior implies that the μ_i’s are exchangeable with marginal distribution $\mu_i|G \sim G_0$ for all $i = 1, \ldots, n$.

In our case, $G(\mu) = N(0, \Sigma_{\mu})$, where $\Sigma_{\mu} = diag(\sigma_{\mu 1}^2, \ldots, \sigma_{\mu q}^2)$.
The parameters \(a \) and \(b \) in the model define the \(PD \) process and therefore control the number of groups. These parameters can be fixed, resulting in a larger/smaller number of groups if assigned a larger/smaller value, respectively.

There are 9 hyperparameters in the function that also characterize the prior distributions in the model:

\[
\begin{align*}
 & f(a) = \alpha \cdot I(a=0) + (1-\alpha) \cdot \text{dbeta}(a \mid d_{0\cdot a}, d_{0\cdot a}) \\
 & f(b \mid a) = \text{dgamma}(b + a \mid d_{0\cdot b}, d_{1\cdot b}) \\
 & \sigma^2 \sim \text{inverse-gamma}(d_{0\cdot z}, d_{1\cdot z}) \\
 & \sigma^2_{\mu} \sim \text{inverse-gamma}(d_{0\cdot \mu}, d_{1\cdot \mu})
\end{align*}
\]

The definition of these values also affect the number of resulting clusters since they affect the variance implied in the model.

For example, increasing the values of \(d_{1\cdot a} \) and \(d_{1\cdot b} \) reduce the number of groups.

Finally, the function parameters \(\eta, \kappa, \delta \) are tuning parameters that control the acceptance rate in the random-walk MH steps of the new proposed values for the parameters \(b, \Lambda_{i,j} \) (variance of latents) and \(\Omega_{i,j} \) (correlation of latents). These parameters are not recommended to be changed (used in the internal functions: sampling__b, sampling__Lambda__jj, sampling__Omega__ij).

Value

\texttt{MIXclustering} returns a S3 object of class "MIXcluster".

The generic methods \texttt{summary} and \texttt{plot} are defined for this class.

An object of class "MIXcluster" is a list containing the following components:

- \texttt{cluster} vector with the cluster allocation for each row in the data. It corresponds to the iteration which is Closest-To-Average (CTA) arrangement.
- \texttt{cluster_heterogeneity} Heterogeneity Measure (HM) for the cluster in the previous point. The HM measure is discussed in section 4 of Carmona et al. (2017).
- \(\texttt{Y.cluster.summary} \) a summary of the data divided by the allocation in \$\texttt{cluster}.
- \texttt{Y.var_type} vector with the variable types in the data.
- \texttt{Y.na} vector specifying the rows with missing values.
- \texttt{Y.n} number of rows in the data.
- \texttt{Y.p} number of variables in the data.
- \texttt{MC.clusters} matrix with the cluster allocation for each row in the data. Each column corresponds to an effective iteration in the MCMC simulation of the model (after discarding burn-in and thinning iterations).
- \texttt{MC.clusters_heterogeneity} Heterogeneity Measure (HM) for all the clusters returned in \texttt{MC.clusters}.
- \texttt{cluster_matrix.avg} average similarity matrix of size \(n \) by \(n \).
- \texttt{MC.values} a list with the simulated values of the chains for the parameters \(a,b,\Lambda,\Omega \).
- \texttt{MC.accept_rate} a named vector with the acceptance rates for each parameter. It includes iterations that are discarded in the burn-in period and thinning.

\texttt{call} the matched call.
References

See Also

`summary.MIXcluster` for a summary of the clustering results, `plot.MIXcluster` for graphical representation of results.

Examples

```r
# Simulation study 1
# Carmona et al. (2017)

# Data and parameters are discussed in section 5.1 of Carmona et al. (2017)

# Set seed for reproducibility
set.seed(0)

# Specification of data Y
help(Y_ex_5.1)
# Choose 1, 2, or 3
ex_i <- 1

# specification of parameters
help(meta_param_ex)
# Choose "a", "b" or "c"
param_j <- "c"

var_type_Y_ex_5.1 <- list(c("c","c","c"),
c("o","o"),
c("o","o","o","c") )

## Not run:
cluster_ex <- MIXclustering( Y = as.matrix(Y_ex_5.1[[ ex_i ]]),
var_type=var_type_Y_ex_5.1[[ ex_i ]],
n_iter_out=1500,
n_burn=200,
n_thin=3,

alpha = meta_param_ex[ param_j, "alpha" ],
d_0_a = meta_param_ex[ param_j, "d_0_a" ],
d_1_a = meta_param_ex[ param_j, "d_1_a" ],
d_0_b = meta_param_ex[ param_j, "d_0_b" ],
d_1_b = meta_param_ex[ param_j, "d_1_b" ],
etta = meta_param_ex[ param_j, "eta" ],
kappa = meta_param_ex[ param_j, "kappa" ],
delta = meta_param_ex[ param_j, "delta" ],
```

```
d_0_z = meta_param_ex[ param_j, "d_0_z" ],
(d_1_z = meta_param_ex[ param_j, "d_1_z" ],
(d_0_mu = meta_param_ex[ param_j, "d_0_mu" ],
(d_1_mu = meta_param_ex[ param_j, "d_1_mu" ] )

# Summary of clustering results
summary(cluster_ex)

# Representation of clustering results
plot(cluster_ex,type="heatmap")
plot(cluster_ex,type="chain")

# Comparison of cluster configurations #
# 1) Minimum distance with average MCMC iterations
# 2) Minimum Heterogeneity Measure (HM)
plot( x=jitter(cluster_ex$cluster), y=jitter(cluster_ex$clusterHMmin), col="#FF000080", pch=20,
main=paste("Comparison of two relevant cluster configurations"),
   xlab="minimizes distance to average MCMC grouping", ylab="minimizes Heterogeneity Measure" )

# Comparison with the original clusters in the simulated data
plot(x=jitter(Z_latent_ex_5_1$cluster),
     y=jitter(cluster_ex$cluster),
     main=paste("Comparison real configuration with the model results"),
     xlab="Real cluster",
     ylab="Model cluster",
     pch=19, col="#FF000080")

## End(Not run)

# Households data #
# Carmona et al. (2017) #

# Testing MIXclustering function with poverty.data #
# Data and parameters are discussed in section 5.3 of Carmona et al. (2017) #

# Set seed for reproducibility #
set.seed(0)

## Not run:
# relevant variables for clustering households #
Y_names <- c("ict_norm",
             "ic_ali","ic_asalud","ic_cv",
             "ic_rezedu","ic_sbv","ic_segsoc",
             "niv_ed","tam_loc")
Y_var_type <- c("c","o","o","o","o","o","o","o","m")

# using only data from state 15 (Edomex) #
aux_subset <- rep(T,nrow(poverty.data))
aux_subset <- aux_subset & is.element(substr(poverty.data$folioviv,1,2),"15")
Y_data <- poverty.data[aux_subsets,Y_names]

### Sampling probability depending on the scenario ###
# Scenario description in section 5.3 of Carmona et al. (2017) #
# Choose 1, 2 or 3 #
poverty_sampling_spec <- 3

if (poverty_sampling_spec == 1) {
  k <- 1
  sampling_prob_pov <- rep(1,nrow(Y_data))
} else if (poverty_sampling_spec == 2) {
  k <- 2 * mean(poverty.data[aux_subsets,"factor_hog"])
  sampling_prob_pov <- 1/poverty.data[aux_subsets,"factor_hog"]
} else if (poverty_sampling_spec == 3) {
  k <- 4 * mean(poverty.data[aux_subsets,"factor_hog"])
  sampling_prob_pov <- 1/poverty.data[aux_subsets,"factor_hog"]
}

cluster_poverty <- MIXclustering( Y=Y_data,
  var_type=Y_var_type,
  n_iter_out=1500,
  n_burn=200,
  n_thin=3,

  alpha = 0.5,
  d_0_a = 1, d_1_a = 1,
  d_0_b = 1, d_1_b = 1,

  eta = 2,
  kappa = 5,
  delta = 4,

  d_0_z = 2.1, d_1_z = 30,
  d_0_mu = 2.1, d_1_mu = 30,

  sampling_prob = k * sampling_prob_pov )

summary(cluster_poverty)
plot(cluster_poverty,type="heatmap")
plot(cluster_poverty,type="chain")

### End(Not run) ###

---

plot.MIXcluster 

*Plotting clustering results for "MIXcluster" objects*

---

**Description**

Plotting method for objects inheriting from class "MIXcluster".
Usage

```r
S3 method for class 'MIXcluster'
plot(x, type = c("heatmap", "chain")[[1]],
 chain.obj = c("n.cluster", "a", "b", "Lambda", "Omega", "all")[[1]], ...)
```

Arguments

- `x`: an object of class "MIXcluster"
- `type`: what type of plot should be drawn. Possible types are:
  - "heatmap" (default) draws a heatmap of the average similarity matrix for the effective iterations of the MCMC.
  - "chain" for the evolution and histograms of the chains for parameters in the model.
- `chain.obj`: if `type="chain"`, this specifies what chain will be plotted. Possible types are:
  - "n.cluster" (default) for the number of clusters.
  - "a" for the $a$ parameter of the model.
  - "b" for the $b$ parameter of the model.
  - "Lambda" one plot for each element in the diagonal of the $\Lambda$ matrix of the model (variance of latent variables).
  - "Omega" one plot for each element above the diagonal of the $\Omega$ matrix of the model (correlation between latent variables).
  - "all" for all of the above.
- `...`: further arguments passed to or from other methods.

See Also

- `MIXclustering`

Description

Poverty indicators observed in Mexico for 2014.

The original data is available in the file "R_2014.zip" from CONEVAL's website: [http://www.coneval.org.mx/Medicion/MP/Paginas/Programas_BD_10_12_14.aspx](http://www.coneval.org.mx/Medicion/MP/Paginas/Programas_BD_10_12_14.aspx)


This data frame presents indicators aggregated by household. The aggregation was done by the authors according with code in section Examples.

Usage

```r
poverty.data
```
Details

`poverty.data` is a data frame with 58121 rows and 13 variables, with the following columns:

- `proyecto` Data source identifier (1=MCS, 2=ENIGH)
- `folioviv` Household identifier level 1
- `foliohog` Household identifier level 2
- `ict_norm` (continuous) Total income in the household (in mexican pesos).
- `ic_ali` (binary) Indicator for deprivation to feeding: 1-yes, 0-no
- `ic_asalud` (binary) Indicator for deprivation to health services: 1-yes, 0-no
- `ic_cv` (binary) Housing quality: 1-bad, 0-good
- `ic_rezedu` (binary) Indicator for education backwardness: 1-yes, 0-no
- `ic_sbv` (binary) Indicator for deprivation to basic public services: 1-yes, 0-no
- `ic_segsoc` (binary) Indicator for deprivation to social security: 1-yes, 0-no
- `niv_ed` (categorical, ordered) Maximum educational level in the household: 0-incomplete primary, 1-incomplete secondary, 2-complete secondary or more
- `tam_loc` (categorical, nominal) Size of locality according to the number of people living there: 1-(100000, ∞), 2-(15000, 100000), 3-(2500, 15000), 4-(0, 2500)
- `factor_hog` Expansion factor for the household, according to the complex survey design.

See Also

- `mixclustering`

Examples

```
Not run:
step 1:
Download and unzip the file "R_2014.zip"
available in:
http://www.coneval.org.mx/Medicion/MP/Documents/Programas_calculo_pobreza_10_12_14/R_2014.zip

step 2:
extract and read the csv file "pobreza_14.csv"
coneal.poverty.data <- read.csv("pobreza_14.csv", na.strings=c("NA",""))

step 3:
Execute the following code...
var_id <- c("proyecto","folioviv","foliohog","numren")
for(i in match(var_id, colnames(coneval.poverty.data))){
 coneval.poverty.data[,i] <- format(x=as.numeric(coneval.poverty.data[,i]),
 width=max(nchar(coneval.poverty.data[,i])),
 format="f",flag="0",digits=0
}
summary.MIXcluster

>
> # normalizing the continuous variable for income
b <- quantile(coneval.poverty.data$ict, probs=0.01)
coneval.poverty.data$ict_norm <- log(coneval.poverty.data$ict+b)

Aggregating data at household level
Y_names <- c("ict_norm",
"ic_ali","ic_asalud","ic_cv",
"ic_rezedu","ic_sbv","ic_segsoc",
"niv_ed","tam_loc")
agg_form <- as.formula(paste("cbind","paste(c(Y_names,"factor_hog"),collapse="","","")",
"proyecto+folioviv+foliohog"
)
)

poverty.data <- aggregate(agg_form,FUN="max",data=coneval.poverty.data)

End(Not run)

summary.MIXcluster Summarizing clustering results

Description

summary method for class "MIXcluster".

Usage

S3 method for class 'MIXcluster'
summary(object, ...)

Arguments

object an object of class "MIXcluster"
...

further arguments passed to or from other methods.

See Also

MIXclustering
Y_ex_5_1

Simulated data for testing the BNPMIXcluster package

Description

List with three data frames. Each dataset consists of the data Yi described in the exercise of section 5.1 in the article Carmona et al (2017).

The data Y_ex_5_1 is a transformation of the simulated data Z_latent_ex_5_1.

Usage

Y_ex_5_1

Format

A list with three data frames.

Details

A list with three data frames. Each data frame with 100 rows.

See Also

MIXclustering

Examples

Show the relation between Y_ex_5_1 and Z_latent_ex_5_1

```r
plot(y=Y_ex_5_1[[3]], "Y1", x=Z_latent_ex_5_1$Z1, pch=20, col=2); abline(v=c(5), lty=3)
plot(y=Y_ex_5_1[[3]], "Y2", x=Z_latent_ex_5_1$Z2, pch=20, col=2); abline(v=c(5), lty=3)
plot(y=Y_ex_5_1[[3]], "Y3", x=Z_latent_ex_5_1$Z3, pch=20, col=2); abline(v=c(5), lty=3)
```

Code to generate Y_ex_5_1 from Z_latent_ex_5_1

```r
Y_ex_5_1 <- list()

# (I)#
# Three continuous variables (Y1, Y2, Y3)
# defined as Yi = Zi, for i=1, 2, 3.
Y_ex_5_1[[1]] <- Z_latent_ex_5_1[, c("Z1","Z2","Z3")]
```
Simulated data for testing the BNPMIXcluster package

Description

Simulated values for three continuous variables under the existence of three clusters.

The data consists of a three-variate Normal distribution with different mean and covariance matrix between clusters.

This can be assumed either as continuous data to be clustered \(Y=(Y_1,Y_2,Y_3) \); or also can be used as the underlying latent data that can be transformed into observable variables \(Y_i=f(Z_i) \), which can be continuous or categorical.

Usage

\[Z_{\text{latent_ex_5_1}} \]

Format

A data frame with 100 rows and 4 variables.

- **cluster** Indicates the cluster for each row
- **Z1, Z2, Z3** Continuous values coming from a multivariate normal distribution, given the cluster
Details

A data frame with 100 rows and 4 variables.

See Also

mixclustering

Examples

Visualizing the simulated data for clustering

```r
require(scatterplot3d)

color <- c(rgb(1,0,0,alpha = 0.5),
            rgb(0,0,1,alpha = 0.5),
            rgb(0,0.5,0,alpha = 0.5))

color <- color[Z_latent_ex_5_1$cluster]
color <- c(19,15,17)[Z_latent_ex_5_1$cluster]
par(mfrow=c(2,2))
par(mar=c(4,5,2,2))

scatterplot3d(x = Z_latent_ex_5_1$x1, y = Z_latent_ex_5_1$x2, z = Z_latent_ex_5_1$x3,
              color = color, pch = color, xlab = "x1", ylab = "y2", zlab = "z3",
              main = "Simulated data in 3 clusters")
par(mfrow=c(2,2))
plot(Z_latent_ex_5_1[,c("y2","y3")],col=color,pch=color,xlab="y2",ylab="y3")
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("y1","y3")],col=color,pch=color,xlab="y1",ylab="y3")
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("y1","y2")],col=color,pch=color,xlab="y1",ylab="y2")
```

##
Exercise 5.1
Data definition
##

Code to generate the simulated data from scratch

```r
require(MASS)

set.seed(0)

n.sim <- 100
n.cluster <- 3
p <- 3

mu_Z_latent <- matrix( c(2, 2, 5,
                          6, 4, 2,
                          1, 6, 2),
                         nrow = p)
```

Z_latent_ex_5_1

Details

A data frame with 100 rows and 4 variables.

See Also

mixclustering

Examples

Visualizing the simulated data for clustering

```r
require(scatterplot3d)

color <- c(rgb(1,0,0,alpha = 0.5),
            rgb(0,0,1,alpha = 0.5),
            rgb(0,0.5,0,alpha = 0.5))

color <- color[Z_latent_ex_5_1$cluster]
color <- c(19,15,17)[Z_latent_ex_5_1$cluster]
par(mfrow=c(2,2))
par(mar=c(4,5,2,2))

scatterplot3d(x = Z_latent_ex_5_1$x1, y = Z_latent_ex_5_1$x2, z = Z_latent_ex_5_1$x3,
              color = color, pch = color, xlab = "x1", ylab = "y2", zlab = "z3",
              main = "Simulated data in 3 clusters")
par(mfrow=c(2,2))
plot(Z_latent_ex_5_1[,c("y2","y3")],col=color,pch=color,xlab="y2",ylab="y3")
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("y1","y3")],col=color,pch=color,xlab="y1",ylab="y3")
par(mar=c(4,5,2,2))
plot(Z_latent_ex_5_1[,c("y1","y2")],col=color,pch=color,xlab="y1",ylab="y2")
```

##
Exercise 5.1
Data definition
##

Code to generate the simulated data from scratch

```r
require(MASS)

set.seed(0)

n.sim <- 100
n.cluster <- 3
p <- 3

mu_Z_latent <- matrix( c(2, 2, 5,
                          6, 4, 2,
                          1, 6, 2),
                         nrow = p)
```
nrow=n.cluster, ncol=p, byrow=TRUE)

sigma.Z_latent <- array(dim=c(3,3,3))
sigma.Z_latent[,,,1] <- diag(3)
sigma.Z_latent[,,,2] <- matrix(c(0.1,0,0,
 0,2,0,
 0,0,0.1),
 nrow=n.cluster, ncol=p, byrow=TRUE)

sigma.Z_latent[,,,3] <- matrix(c(2,0,0,
 0,0.1,0,
 0,0,0.1),
 nrow=n.cluster, ncol=p, byrow=TRUE)

Z_cluster <- data.frame(cluster=sample(x=1:n.cluster,size=n.sim,replace=TRUE))

Z_latent <- matrix(NA,nrow=n.sim,ncol=p)

for(i in unique(Z_cluster$cluster)) {
 Z_latent[Z_cluster[,1]==i,] <- MASS::mvrnorm(n=sum(Z_cluster[,1]==i),
 mu=mu.Z_latent[i,],
 Sigma=sigma.Z_latent[,,,i])
}

colnames(Z_latent) <- paste("Z",1:ncol(Z_latent),sep="")
Z_latent_ex_5_1 <- cbind(Z_cluster,Z_latent)
Z_latent_ex_5_1
Index

meta_param_ex, 2
MIXclustering, 2, 2, 9–12, 14

plot, 5
plot.MIXcluster, 6, 8
poverty_data, 9

summary, 5
summary.MIXcluster, 6, 11

Y_ex_5_1, 2, 12

Z_latent_ex_5_1, 13