Package ‘BRDT’

June 9, 2020

Type Package

Title Binomial Reliability Demonstration Tests

Version 0.1.0

Maintainer Suiyao Chen <csycsy12377@gmail.com>

Description This is an implementation of design methods for binomial reliability demonstration tests (BRDTs) with failure count data. The acceptance decision uncertainty of BRDT has been quantified and the impacts of the uncertainty on related reliability assurance activities such as reliability growth (RG) and warranty services (WS) are evaluated. This package is associated with the work from the published paper “Optimal Binomial Reliability Demonstration Tests Design under Acceptance Decision Uncertainty” by Suiyao Chen et al. (2020) <doi:10.1080/08982112.2020.1757703>.

Depends R (>= 3.3.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports stats

Suggests tidyverse, knitr, rmarkdown

URL https://github.com/ericchen12377/BRDT

BugReports https://github.com/ericchen12377/BRDT/issues

VignetteBuilder knitr

NeedsCompilation no

Author Suiyao Chen [aut, cre]

Repository CRAN

Date/Publication 2020-06-09 09:40:09 UTC
R topics documented:

- `bacceptprob` 2
- `bconsumerrisk` 3
- `bcore` 3
- `bcost_expected` 4
- `bcost_RDT` 5
- `bcost_RG` 6
- `bcost_WS` 6
- `ndata_generator` 7
- `bIndicator` 8
- `boptimal_cost` 9
- `boptimal_n` 10
- `pi_MCSim_beta` 11

Description

Define the acceptance probability function which gets the probability of passing the test (for binomial RDT).

Usage

```r
bacceptprob(n, c, pi)
```

Arguments

- `n`
 RDT sample size.
- `c`
 Maximum allowable failures.
- `pi`
 Failure probability.

Value

Acceptance probability

Examples

```r
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
bacceptprob(n = 10, c = 2, pi = pi);
```
bconsumerrisk

Consumer's Risk for Binomial RDT

Description

Define the consumer’s risk function which gets the probability of passing the test when the lower level reliability requirement is not satisfied (for binomial RDT).

Usage

\[\text{bconsumerrisk}(n, c, \pi, R) \]

Arguments

- **n**: RDT sample size.
- **c**: Maximum allowable failures.
- **\pi**: Failure probability.
- **R**: Lower level reliability requirement.

Value

Probability of consumer’s risk

See Also

- `bcore` for getting the core probability of passing the test; `boptimal_n` for getting the optimal test sample size; `bIndicator` for getting the binary indicator.

Examples

```r
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
bconsumerrisk(n = 10, c = 2, pi = pi, R = 0.8);
```

bcore

Probability Core for Binomial RDT

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities (for binomial RDT).

Usage

\[\text{bcore}(n, c, \pi) \]

bcost_expected

Arguments

- **n**: RDT sample size.
- **c**: Maximum allowable failures.
- **pi**: Failure probability.

Value

Core probability of passing the test given specific failure probabilities.

See Also

- `boptimal_n` for getting the optimal test sample size; `bconsumerrisk` for getting the consumer’s risk; `bIndicator` for getting the binary indicator;

Examples

```r
bcore(n = 10, c = 2, pi = 0.2)
```

bcost_expected
Expected Overall Costs in Binomial RDT Design

Description

Define the cost function of expected overall cost including the RDT cost, expected reliability growth (RG) cost and expected warranty services (WS) cost (for binomial RDT design).

Usage

```r
bcost_expected(Cf, Cv, n, G, Cw, N, c, pi)
```

Arguments

- **Cf**: Fixed costs of RDT
- **Cv**: Variable unit costs of RDT
- **n**: RDT sample size
- **G**: Reliability growth cost
- **Cw**: Average cost per warranty claim
- **N**: Sales volume
- **c**: Maximum allowable failures
- **pi**: Failure probability

Value

Overall expected cost
bcost_RDT

See Also

`bcost_RDT`, `bcost_RG`, `bcost_WS`

Examples

```r
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
bcost_expected(Cf = 10, Cv = 10, n = 10, G = 100000, Cw = 10, N = 1, c = 1, pi = pi)
```

bcost_RDT
Binomial RDT Cost

Description

Define the cost function of RDT, mainly determined by the test sample size (for binomial RDT)

Usage

```r
bcost_RDT(Cf, Cv, n)
```

Arguments

- `Cf`: Fixed costs
- `Cv`: Variable costs.
- `n`: Optimal test sample size

Value

Binomial RDT cost

See Also

`bcost_RG`, `bcost_WS`, `bcost_expected`

Examples

```r
# the n value can be the minimum test sample size obtained from \code{\link{boptimal_n}}.
n_optimal <- 20
bcost_RDT(Cf = 0, Cv = 10, n = n_optimal);
```
bcost_RG

Reliability Growth Cost

Description

Define the cost function of reliability growth (RG) after the decision of the test (for binomial RDT).

Usage

`bcost_RG(G)`

Arguments

- `G`
 A constant value reliability growth cost, suggest to be sufficiently larger than RDT cost.

Value

Reliability growth cost

See Also

`bcost_RDT, bcost_WS, bcost_expected`

Examples

`bcost_RG(G = 100000);`

bcost_WS

Warranty Services Cost

Description

Define the cost function of warranty services (WS) after the decision of the test (for binomial RDT).

Usage

`bcost_WS(Cw, N, n, c, pi)`

Arguments

- `Cw`
 Average cost per warranty claim
- `N`
 Sales volume
- `n`
 RDT sample size
- `c`
 Maximum allowable failures
- `pi`
 Failure probability
bdata_generator

Data Generation Function for Binomial RDT Design

Description

Define the function to generate the dataset based on the design settings (for Binomial RDT).

Usage

```r
bdata_generator(  
  Cf,  
  Cv,  
  nvec,  
  G,  
  Cw,  
  N,  
  Rvec,  
  cvec,  
  pi,  
  par = all(),  
  option = c("optimal"),  
  thres_CR  
)
```

Arguments

- **Cf**: Fixed costs of RDT
- **Cv**: Variable unit costs of RDT
- **nvec**: Vector of test sample size
- **G**: Reliability growth cost

Value

The result is a vector with two values. The first value is the expected failure probability in warranty period. The second value is the expected warranty services cost.

See Also

`bcost_RDT`, `bcost_RG`, `bcost_expected`

Examples

```r
# the n value can be the minimum test sample size obtained from \code{\link{boptimal_n}}.

n_optimal <- 20
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
WScost <- bcost_WS(Cw = 10, N = 1, n = n_optimal, c = 1, pi = pi);
print(WScost[1]) # expected failure probability
print(WScost[2]) # expected warranty services cost
```
bIndicator

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirement (for binomial RDT).

Usage

```r
bIndicator(pi, R)
```

Value

Matrix of the dataset

See Also

`boptimal_cost` for getting the optimal test plan with minimum overall cost; `boptimal_n` for getting the optimal test sample size;

Examples

```r
nvec <- seq(0, 10, 1)
Rvec <- seq(0.8, 0.85, 0.01)
cvec <- seq(0, 2, 1)
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
bdata_generator(Cf = 10, Cv = 10, nvec = nvec, G = 10000, Cw = 10, N = 100, Rvec = Rvec, cvec = cvec, pi = pi, par = c(’n’, ’R’, ’c’, ’CR’, ’AP’), option = c(”optimal”), thres_CR = 0.05)
```
b\texttt{optimal_cost}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{pi} \hspace{1cm} Failure probability.
 \item \texttt{R} \hspace{1cm} Lower Level reliability requirement.
\end{itemize}

\textbf{Value}

0 – No; 1 – Yes.

\textbf{See Also}

b\texttt{core} for getting the core probability of passing the test; b\texttt{optimal_n} for getting the optimal test sample size; b\texttt{consumerrisk} for getting the consumer’s risk;

\textbf{Examples}

b\texttt{Indicator(pi = 0.05, R = 0.9)}
b\texttt{Indicator(pi = 0.2, R = 0.9)}

\begin{verbatim}
boptimal_cost
Optimal Test Plans with Minimum Expected Overall Costs in Binomial RDT Design

\begin{verbatim}
\end{verbatim}

\textbf{Description}

Define the optimal function to find the optimal test plans with minimum expected overall costs (for binomial RDT).

\textbf{Usage}

boptimal_cost(Cf, Cv, G, Cw, N, Rvec, cvec, pi, thres_CR)

\textbf{Arguments}

\begin{itemize}
 \item \texttt{Cf} \hspace{1cm} Fixed costs of RDT
 \item \texttt{Cv} \hspace{1cm} Variable unit costs of RDT
 \item \texttt{G} \hspace{1cm} Reliability growth cost
 \item \texttt{Cw} \hspace{1cm} Average cost per warranty claim
 \item \texttt{N} \hspace{1cm} Sales volume
 \item \texttt{Rvec} \hspace{1cm} Vector of lower level reliability requirements
 \item \texttt{cvec} \hspace{1cm} Vector of maximum allowable failures
 \item \texttt{pi} \hspace{1cm} Failure probability
 \item \texttt{thres_CR} \hspace{1cm} Threshold (acceptable level) of consumer’s risk
\end{itemize}

\textbf{Value}

Vector of optimal test plan parameters, acceptance probability and cost
See Also

\texttt{boptimal_n} for getting the optimal test sample size; \texttt{bdata_generator} for generating optimal test plans dataset;

Examples

\begin{verbatim}
Rvec <- seq(0.8, 0.85, 0.01)
cvec <- seq(0, 2, 1)
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
boptimal_cost(Cf = 10, Cv = 10, G = 100, Cw = 10,
N = 100, Rvec = Rvec, cvec = cvec, pi = pi, thres_CR = 0.5);
\end{verbatim}

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer’s risk (for binomial RDT).

Usage

\texttt{boptimal_n(c, pi, R, thres_CR)}

Arguments

- \texttt{c} Maximum allowable failures
- \texttt{pi} Failure probability
- \texttt{R} Lower level reliability requirement
- \texttt{thres_CR} Threshold (acceptable level) of consumer’s risk

Value

Minimum test sample size

See Also

\texttt{boptimal_cost} for getting the optimal test plan with minimum overall cost; \texttt{bdata_generator} for generating optimal test plans dataset;

Examples

\begin{verbatim}
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
boptimal_n(c = 2, pi = pi, R = 0.8, thres_CR = 0.05)
\end{verbatim}
pi_MCSim_beta

Beta Prior Simulation for Binomial RDT

Description

Define the simulation function to generate failure probability with Beta prior distributions as conjugate prior to binomial distributions (for binomial RDT).

Usage

\[\text{pi}_\text{MCSim_beta}(M, \text{seed}, a, b) \]

Arguments

- **M**: Simulation sample size
- **seed**: Random seed for random sample
- **a**: Shape parameter 1 for beta distribution
- **b**: Shape parameter 2 for beta distribution

Value

Vector of failure probability sample values

Examples

\[\text{pi} \leftarrow \text{pi_MCSim_beta}(M = 1000, \text{seed} = 10, a = 1, b = 1) \]
Index

bacceptprob, 2
bconsumerrisk, 3, 4, 9
bcore, 3, 3, 9
bcost_expected, 4, 5–7
bcost_RDT, 5, 5, 6, 7
bcost_RG, 5, 6, 7
bcost_WS, 5, 6, 6
bdata_generator, 7, 10
bIndicator, 3, 4, 8
boptimal_cost, 8, 9, 10
boptimal_n, 3, 4, 8–10, 10

pi_MCSim_beta, 11