Package ‘BREADR’

April 12, 2023

Title Estimates Degrees of Relatedness (Up to the Second Degree) for Extreme Low-Coverage Data

Version 1.0.1

Description The goal of the package is to provide an easy-to-use method for estimating degrees of relatedness (up to the second degree) for extreme low-coverage data. The package also allows users to quantify and visualise the level of confidence in the estimated degrees of relatedness. A paper describing the method is available at Rohrlach, A. B. et al (2023) <https://tinyurl.com/29t6gbbx>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/jonotuke/BREADR,
 https://jonotuke.github.io/BREADR/

BugReports https://github.com/jonotuke/BREADR/issues

Suggests spelling, knitr, rmarkdown, testthat (>= 3.0.0)

Imports data.table, dplyr, forcats, ggplot2, ggpubr, grDevices, magrittr, matrixStats, purrr, readr, stringr, tibble

Depends R (>= 2.10)

LazyData true

Language en-US

NeedsCompilation no

Author Jono Tuke [aut, cre] (<https://orcid.org/0000-0002-1688-8951>),
 Adam B. Rohrlach [aut] (<https://orcid.org/0000-0002-4204-5018>),
 Wolfgang Haak [aut] (<https://orcid.org/0000-0003-2475-2007>),
 Divyaratan Popli [aut] (<https://orcid.org/0000-0002-0305-6427>)

Maintainer Jono Tuke <simon.tuke@adelaide.edu.au>

Repository CRAN

Date/Publication 2023-04-12 10:00:14 UTC
Description

A function that takes PMR observations, and (given a prior distribution for degrees of relatedness) returns the posterior probabilities of all pairs of individuals being (a) the same individual/twins, (b) first-degree related, (c) second-degree related or (d) "unrelated" (third-degree or higher). The highest posterior probability degree of relatedness is also returned as a hard classification. Options include setting the background relatedness (or using the sample median), a minimum number of overlapping SNPs if one uses the sample median for background relatedness, and a minimum number of overlapping SNPs for including pairs in the analysis.

Usage

callRelatedness(
 pmr_tibble,
 class_prior = rep(0.25, 4),
 average_relatedness = NULL,
 median_co = 500,
 filter_n = 1
)

Arguments

- pmr_tibble: a tibble that is the output of the processEigenstrat function.
- class_prior: the prior probabilities for same/twin, 1st-degree, 2nd-degree, unrelated, respectively.
- average_relatedness: a single numeric value, or a vector of numeric values, to use as the average background relatedness. If NULL, the sample median is used.
if `average_relatedness` is left `NULL`, then the minimum cutoff for the number of overlapping SNPs to be included in the median calculation is 500.

the minimum number of overlapping SNPs for which pairs are removed from the entire analysis. If `NULL`, default is 1.

Value

results_tibble: A tibble containing 13 columns:

- `row`: The row number
- `pair`: the pair of individuals that are compared.
- `relationship`: the highest posterior probability estimate of the degree of relatedness.
- `pmr`: the pairwise mismatch rate (mismatch/nsnps).
- `sd`: the estimated standard deviation of the pmr.
- `mismatch`: the number of sites which did not match for each pair.
- `nsnps`: the number of overlapping SNPs that were compared for each pair.
- `ave_re`: the value for the background relatedness used for normalisation.
- `Same_Twins`: the posterior probability associated with a same individual/twins classification.
- `First_Degree`: the posterior probability associated with a first-degree classification.
- `Second_Degree`: the posterior probability associated with a second-degree classification.
- `Unrelated`: the posterior probability associated with an unrelated classification.
- `BF`: A strength of confidence in the Bayes Factor associated with the highest posterior probability classification compared to the 2nd highest. (No longer included)

Examples

```r
callRelatedness(counts_example,
class_prior=rep(0.25,4),
average_relatedness=NULL,
median_co=5e2,filter_n=1
)
```

Description

this is an example of the tibble made by `processEigenstrat()`.

Usage

```r
counts_example
counts_example
```
Format
counts_example:
A data frame with 15 rows and 4 columns:
pair the pair of individuals that are compared
nsnps the number of overlapping snps that were compared for each pair.
mismatch the number of sites which did not match for each pair.

pmr the pairwise mismatch rate (mismatch/nsnps).

Description
Plots all (sorted by increasing value) observed PMR values with maximum posterior probability classifications represented by colour and shape. Options include a cut off for the minimum number of overlapping SNPs, the max number of pairs to plot and x-axis font size.

Usage
plotLOAF(in_tibble, nsnps_cutoff = NULL, N = NULL, fntsize = 7, verbose = TRUE)

Arguments
in_tibble a tibble that is the output of the callRelatedness() function.
nsnps_cutoff the minimum number of overlapping SNPs for which pairs are removed from the plot. If NULL, default is 500.
N the number of (sorted by increasing PMR) pairs to plot. Avoids plotting all pairs (many of which are unrelated).
fntsize the fontsize for the x-axis names.
verbose if TRUE, then information about the plotting process is sent to the console.

Value
a ggplot object

Examples
relatedness_example
plotLOAF(relatedness_example)
plotSLICE

Description

A function for plotting the diagnostic information when classifying a specific pair (defined by the row number or pair name) of individuals. Output includes the PDFs for each degree of relatedness (given the number of overlapping SNPs) in panel A, and the normalised posterior probabilities for each possible degree of relatedness.

Usage

plotSLICE(
 in_tibble,
 row,
 title = NULL,
 class_prior = rep(1/4, 4),
 showPlot = TRUE,
 which_plot = 0,
 labels = NULL
)

Arguments

in_tibble a tibble that is the output of the callRelatedness() function.
row either the row number or pair name for which the posterior distribution is to be plotted.
title an optional title for the plot. If NULL, the pair from the user-defined row is used.
class_prior the prior probabilities for same/twin, 1st-degree, 2nd-degree, unrelated, respectively.
showPlot If TRUE, display plot. If FALSE, just pass plot as a variable.
which_plot if 1, returns just the plot of the posterior distributions, if 2 returns just the normalised posterior values. Anything else returns both plots.
labels a length two character vector of labels for plots. Default is no labels.

Value

a two-panel diagnostic ggplot object

Examples

plotSLICE(relatedness_example, row = 1)
processEigenstrat

process **Eigenstrat** data

Description

A function that takes paths to an eigenstrat trio (ind, snp and geno file) and returns the pairwise mismatch rate for all pairs on a thinned set of SNPs. Options include choosing thinning parameter, subsetting by population names, and filtering out SNPs for which deamination is possible.

Usage

```r
processEigenstrat(
  indfile, 
  genofile, 
  snpfile, 
  filter_length = NULL, 
  pop_pattern = NULL, 
  filter_deam = FALSE, 
  outfile = NULL, 
  chromosomes = NULL, 
  verbose = TRUE
)
```

Arguments

- **indfile** path to eigenstrat ind file
- **genofile** path to eigenstrat geno file.
- **snpfile** path to eigenstrat snp file.
- **filter_length** the minimum distance between sites to be compared (to reduce the effect of LD).
- **pop_pattern** a character vector of population names to filter the ind file if only some populations are to compared.
- **filter_deam** a TRUE/FALSE for if C->T and G->A sites should be ignored.
- **outfile** (OPTIONAL) a path and filename to which we can save the output of the function as a TSV, if NULL, no back up saved. If no outfile, then a tibble is returned.
- **chromosomes** the chromosome to filter the data on.
- **verbose** controls printing of messages to console

Value

- **out_tibble**: A tibble containing four columns:
Examples

Use internal files to the package as an example
indfile <- system.file("extdata", "example.ind.txt", package = "BREADR")
genofile <- system.file("extdata", "example.geno.txt", package = "BREADR")
snpfile <- system.file("extdata", "example.snp.txt", package = "BREADR")
processEigenstrat(
 indfile, genofile, snpfile,
 filter_length=1e5,
 pop_pattern=NA,
 filter_deam=FALSE
)

Description

read_ind

Usage

read_ind(filename)

Arguments

filename

Value

tibble with column headings: ind (CHR), sex (CHR), pop (CHR)

Examples

ind_snpfile <- system.file("extdata", "example.ind.txt", package = "BREADR")
read_ind(ind_snpfile)

Description

read_snp

Usage

read_snp(filename)
Arguments

filename a SNP text file.

Value

tibble with column headings: snp (CHR), chr (DBL), pos (DBL), site (DBL), anc (CHR), and der (CHR).

Examples

std_snpfile <- system.file("extdata", "example.snp.txt", package = "BREADR")
broken_snpfile <- system.file("extdata", "broken.snp.txt", package = "BREADR")
read_snp(std_snpfile)
read_snp(broken_snpfile)

Description

this is an example of the tibble made by callRelatedness()

Usage

relatedness_example

Format

relatedness_example:
A data frame with 15 rows and 13 columns:

row The row number
pair the pair of individuals that are compared.
relationship the highest posterior probability estimate of the degree of relatedness.
pmr the pairwise mismatch rate (mismatch/nsnps).
sd the estimated standard deviation of the pmr.
mismatch the number of sites which did not match for each pair.
nsnps the number of overlapping snps that were compared for each pair.
ave_re the value for the background relatedness used for normalisation.
Same_Twins the posterior probability associated with a same individual/twins classification.
First_Degree the posterior probability associated with a first-degree classification.
Second_Degree the posterior probability associated with a second-degree classification.
Unrelated the posterior probability associated with an unrelated classification.
BF A strength of confidence in the Bayes Factor associated with the highest posterior probability classification compared to the 2nd highest.
saveSLICES

Description

Plots all pairwise diagnostic plots (in a tibble as output by callRelatedness), as produced by plotSLICE, to a folder. Options include the width and height of the output files, and the units in which these dimensions are measured.

Usage

```
saveSLICES(
  in_tibble,
  outFolder = NULL,
  width = 297,
  height = 210,
  units = "mm",
  verbose = TRUE
)
```

Arguments

- `in_tibble`: a tibble that is the output of the callRelatedness() function.
- `outFolder`: the folder into which all diagnostic plots will be saved.
- `width`: the width of the output PDFs.
- `height`: the height of the output PDFs.
- `units`: the units for the height and width of the output PDFs.
- `verbose`: Controls the printing of progress to console.

Value

nothing

Examples

```
saveSLICES(relatedness_example[1:3, ], outFolder = tempdir())
```
split_line

Description
takes a line for a SNP file and splits into parts.

Usage
split_line(x)

Arguments
x line from SNP file

Value
tibble with 6 columns.

Examples
split_line("1_14.570829090394763 1 0.000000 14 A X")
split_line("rs3094315 1 0.0 752566 G A")

test_degree

Description
Test if a degree of relatedness is consistent with an observed PMR

Usage
test_degree(in_tibble, row, degree, verbose = TRUE)

Arguments
in_tibble a tibble that is the output of the callRelatedness() function.
row either the row number or pair name for which the posterior distribution is to be plotted.
degree the degree of relatedness to be tested.
verbose a logical (boolean) for whether all test output should be printed to screen.

Value
the associated p-value for the test
test_degree

Examples

test_degree(relatedness_example, 1, 1)
Index

* datasets
 counts_example, 3
 relatedness_example, 8
 callRelatedness, 2
 counts_example, 3

plotLOAF, 4
plotSLICE, 5
processEigenstrat, 6

read_ind, 7
read_snp, 7
relatedness_example, 8

saveSLICES, 9
split_line, 10

test_degree, 10