Package ‘BRETIGEA’

October 12, 2022

Title Brain Cell Type Specific Gene Expression Analysis

Version 1.0.3

Author Andrew McKenzie [aut, cre],
Minghui Wang [aut],
Bin Zhang [aut]

Maintainer Andrew McKenzie <amckenz@gmail.com>

Description Analysis of relative cell type proportions in bulk gene expression data. Provides a well-validated set of brain cell type-specific marker genes derived from multiple types of experiments, as described in McKenzie (2018) <doi:10.1038/s41598-018-27293-5>. For brain tissue data sets, there are marker genes available for astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and oligodendrocyte precursor cells, derived from each of human, mice, and combination human/mouse data sets. However, if you have access to your own marker genes, the functions can be applied to bulk gene expression data from any tissue. Also implements multiple options for relative cell type proportion estimation using these marker genes, adapting and expanding on approaches from the ‘CellCODE’ R package described in Chikina (2015) <doi:10.1093/bioinformatics/btv015>. The number of cell type marker genes used in a given analysis can be increased or decreased based on your preferences and the data set. Finally, provides functions to use the estimates to adjust for variability in the relative proportion of cell types across samples prior to downstream analyses.

Depends R (>= 3.0.0)

Suggests testthat, stats, utils, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 6.1.0

License MIT + file LICENSE

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2021-05-05 04:40:02 UTC
aba_marker_expression

Description

Filtered data set to only contain brain marker genes as well as ~100 other genes. The total data set can be downloaded by following the links in the original paper.

Usage

```r
aba_marker_expression
```

Format

An object of class `data.frame` with 395 rows and 377 columns.

References

aba_pheno_data

Phenotype data from brain samples in the Allen Brain Atlas Aging, Dementia, and TBI study.

Description
A subset of phenotype data to be used for correlations with the expression data in the tests and vignette, to validate that the estimated cell type proportions correspond to useful quantities.

Usage
aba_pheno_data

Format
An object of class data.frame with 377 rows and 4 columns.

References

adjustBrainCells
Estimate and adjust for brain cell type proportions in bulk expression data.

Description
This function uses a linear model to adjust each row of gene expression for cell types. Other covariates can be included as well.

Usage
adjustBrainCells(
 inputMat,
 nMarker = 50,
 species = "combined",
 celltypes = c("ast", "end", "mic", "neu", "oli", "opc"),
 addMeans = FALSE,
 formula = NULL,
 verbose = FALSE
)
Arguments

inputMat
Input gene expression data, with rows as features (e.g., genes) and samples as columns.

nMarker
The number of marker genes (that are present in your expression data set) to use in estimating the surrogate cell type proportion variable for each cell type.

species
By default, this function uses markers from combined human and mouse measurements, which are the most robust and reliable, as the gene expression patterns are very conserved between these two species. Other options are "human" and "mouse" for data specific to those species. Note that OPCs only have 500 gene symbols in this case, and are taken from only the Darmanis et al or Tasic et al data sets, respectively.

celltypes
Character vector of which cell types to estimate and adjust for.

addMeans
Whether the mean should be added to the residuals in the resulting adjusted gene expression table.

formula
If you want to add additional covariates to be adjusted for, then you can supply them by adding an (optional) formula function here. The format should be "expression_data ~ $cov1 + factor($cov2) +", where $cov1 is a numeric covariate present in the current environment, and $cov2 is a factor variable also defined in the current environment.

verbose
Whether to report the formula used for adjustment of each row.

Value

A list containing both a matrix of estimate surrogate proportion variables (SPVs), as well as a matrix of adjusted gene expression values.

Examples

brain_cells_adjusted = adjustBrainCells(aba_marker_expression,
nMarker = 50, species = "combined")
expression_data_adj = brain_cells_adjusted$expression

cor_mic_unadj = cor.test(as.numeric(aba_marker_expression["AIF1",]),
 as.numeric(aba_pheno_data$ihc_ibal_ffpe), method = "spearman")
cor_mic_adj = cor.test(expression_data_adj["AIF1",],
 as.numeric(aba_pheno_data$ihc_ibal_ffpe), method = "spearman")

adjustCells
Adjust for estimated cell type proportions in bulk gene expression data.

Description

This function uses a linear model to adjust each row of gene expression for cell types, taking the residuals from the linear model for downstream analysis. Other covariates can be included as well, if they are defined in the current environment, through the use of the formula argument.
adjustCells

Usage

adjustCells(
 inputMat,
 cellSPV,
 celltypes = NULL,
 addMeans = FALSE,
 formula = NULL,
 verbose = FALSE
)

Arguments

inputMat Input gene expression data, with rows as features (e.g. genes) and samples as columns.
cellSPV Estimated matrix of surrogate proportion variables for each cell type, with samples as rows and columns as cell types.
celltypes Character vector of which cell types to use. Must correspond to column names in the cellSPV data frame. If NULL, all of the columns of SPV will be used for adjustment.
addMeans Whether the mean should be added to the residuals in the resulting adjusted gene expression table.
formula If you want to add additional covariates to be adjusted for, then you can supply them by adding an (optional) formula function here. The format should be "expression_data ~ $cov1 + factor($cov2) +", where $cov1 is a numeric covariate present in the current environment, and $cov2 is a factor variable also defined in the current environment.
verbose Whether to print out the formula used for adjustment of each row.

Value

A matrix of adjusted gene expression values.

Examples

svp_res = brainCells(inputMat = aba_marker_expression, nMarker = 10,
 species = "human", celltypes = c("ast", "neu", "oli"))
str(svp_res)
adjust_res = adjustCells(inputMat = aba_marker_expression,
 cellSPV = svp_res, addMeans = FALSE)
str(adjust_res)
brainCells

Estimate brain cell type proportions in bulk expression data with marker genes.

Description

This function uses marker genes estimated in a meta-analysis of brain cell type-associated RNA expression data sets, and uses them as input for the findCells cell type proportion estimation procedure pipeline.

Usage

brainCells(
 inputMat,
 nMarker = 50,
 species = "combined",
 data_set = "mckenzie",
 celltypes = c("ast", "end", "mic", "neu", "oli", "opc"),
 method = "SVD",
 scale = TRUE
)

Arguments

- **inputMat**: Gene expression data frame or matrix, with rownames corresponding to gene names, some of which are marker genes, and columns corresponding to samples.
- **nMarker**: The number of marker genes (that are present in your expression data set) to use in estimating the surrogate cell type proportion variable for each cell type.
- **species**: By default, this function uses markers from combined human and mouse measurements, which are the most robust and reliable, as the gene expression patterns are very conserved between these two species. Other options are "human" and "mouse" for data specific to those species. Note that OPCs only have 500 gene symbols in this case, and are taken from only the Darmanis et al or Tasic et al data sets, respectively.
- **data_set**: Which data set the data should be derived from. Options are "mckenzie" (default), "kelley". Note that the "kelley" data set will ignore the "species" argument.
- **celltypes**: Character vector of which cell types to estimate.
- **method**: To estimate the cell type proportions, can either use "PCA" or "SVD".
- **scale**: Whether or not to scale the gene expression data from each marker gene prior to using it as an input for dimension reduction.

Value

A sample-by-cell type matrix of estimate cell type proportion variables.
Examples

```r
ct_res = brainCells(aba_marker_expression, nMarker = 50, species = "combined")
cor.test(ct_res[, "mic"], as.numeric(aba_pheno_data$ihc_iba1_ffpe), method = "spearman")
```

Description

This package provides two major functions: 1) A function to estimate cell type surrogate proportion variables based on marker genes. 2) A function to adjust bulk gene expression data for estimated cell type proportions, as covariates. It also provides data containing estimated marker genes for six major brain cell types, i.e. astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and oligodendrocyte precursor cells (OPCs), as well as wrapper functions to use this data on the two major package functions.

findCells

Find cell type proportions from bulk gene expression data using marker genes.

Description

Input a gene expression matrix and your own data frame of marker genes, and this function will estimate cell type proportions in your data set using one of the SVD or PCA dimension reduction approaches.

Usage

```r
findCells(inputMat, markers, nMarker = 50, method = "SVD", scale = TRUE)
```

Arguments

- **inputMat**: Numeric gene expression data frame or matrix, with rownames corresponding to gene names, some of which are marker genes, and columns corresponding to samples.
- **markers**: Data frame with marker genes in one column (named "marker") and the cell type that that gene symbol corresponds to in another column (named "cell").
- **nMarker**: The number of marker genes (that are present in your expression data set) to use in estimating the surrogate cell type proportion variable for each cell type.
- **method**: To estimate the cell type proportions, can either use PCA or SVD.
- **scale**: Whether or not to scale the gene expression data from each marker gene prior to using it as an input for dimension reduction.
Value

A sample-by-cell type matrix of estimate cell type proportion variables.

References

Examples

```r
cell_type_proportions = findCells(aba_marker_expression, markers = markers_df_brain, nMarker = 10)
str(cell_type_proportions)
```

kelley_df_brain
Marker genes estimated from

Description

Top 1000 marker genes from each of four major brain cell types (ie astrocytes, microglia, neurons, and oligodendrocytes) estimated via correlation-based analysis of bulk brain tissue. Contains marker data averaged across all brain regions as well as markers derived from individual brain regions.

Usage

`kelley_df_brain`

Format

An object of class `data.frame` with 84000 rows and 2 columns.

References

markers_df_brain

Marker genes estimated from a meta-analysis of brain cell gene expression data from both humans and mice.

Description

Top 1000 marker genes from each of the six major brain cell types (i.e., astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and OPCs) estimated from a meta-analysis of brain cell gene expression data from both humans and mice.

Usage

`markers_df_brain`

Format

An object of class `data.frame` with 6000 rows and 2 columns.

References

markers_df_human_brain

Marker genes estimated from a meta-analysis of brain cell gene expression data from humans only.

Description

Top 1000 marker genes from each of the six major brain cell types (i.e., astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and OPCs) estimated from a meta-analysis of brain cell gene expression data from humans only.

Usage

`markers_df_human_brain`

Format

An object of class `data.frame` with 5500 rows and 2 columns.

References

markers_df_mouse_brain

Marker genes estimated from a meta-analysis of brain cell gene expression data from mice only.

Description

Top 1000 marker genes from each of the six major brain cell types (i.e., astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and OPCs) estimated from a meta-analysis of brain cell gene expression data from mice only.

Usage

markers_df_mouse_brain

Format

An object of class data.frame with 5430 rows and 2 columns.

References

Index

* datasets
 aba_marker_expression, 2
 aba_pheno_data, 3
 kelley_df_brain, 8
 markers_df_brain, 9
 markers_df_human_brain, 9
 markers_df_mouse_brain, 10

aba_marker_expression, 2
aba_pheno_data, 3
adjustBrainCells, 3
adjustCells, 4

brainCells, 6
BRETIGEA, 7

findCells, 7
kelley_df_brain, 8

markers_df_brain, 9
markers_df_human_brain, 9
markers_df_mouse_brain, 10