Package ‘BSPADATA’

February 9, 2018

Type Package
Title Bayesian Proposal to Fit Spatial Econometric Models
Version 1.0
Date 2018-02-09
Author Jorge Sicacha-Parada and Edilberto Cepeda-Cuervo
Maintainer Jorge Sicacha-Parada <jasicachap@unal.edu.co>
Depends R (>= 3.1.1), mvtnorm, spdep, pscl
Description The purpose of this package is to fit the three Spatial Econometric Models proposed in Anselin (1988, ISBN:9024737354) in the homoscedastic and the heteroscedastic case. The fit is made through MCMC algorithms and observational working variables approach.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-09 12:21:13 UTC

R topics documented:

BSPADATA .................................................. 2
hetero_general ............................................. 3
hetero_sar .................................................. 5
hetero_sem .................................................. 7
hom_general ............................................... 10
hom_sar .................................................... 12
hom_sem .................................................... 15

Index 18
Description

This package includes 6 functions made to fit three Spatial Econometric Models proposed in Anselin (1988) in homoscedastic and heteroscedastic case. The fit is made through MCMC algorithms and working variables approach in the same fashion as done in Cepeda (2001).

Details

| Package:   | BSPADATAG             |
| Type:      | Package              |
| Version:   | 1.0                  |
| Date:      | 2017-11-17           |
| License:   | GPL (>=2)            |

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co> and Edilberto Cepeda-Cuervo <cecedac@unal.edu.co>

Maintainer: Jorge Sicacha-Parada <jasicachap@unal.edu.co>

References


**hetero_general**

Bayesian fitting of Spatial General Model with heteroscedastic normal error term.

**Description**

Performs the Bayesian fitting of Heteroscedastic Spatial General Model with normal error term

**Usage**

```r
hetero_general(y,X,Z,W1,W2=NULL, nsim, burn, step, b_pri, B_pri,g_pri,G_pri, beta_0,
    gammas_0, rho_0, lambda_0, kernel = NULL,
    plot = TRUE, mateq=TRUE)
```

**Arguments**

- **y**: Object of class matrix, with the dependent variable
- **X**: Object of class matrix, with covariates of mean model
- **Z**: Object of class matrix, with covariates of dispersion model
- **W1**: Object of class matrix, nb or listw related to response variable Spatial Contiguity Matrix, Anselin(1988)
- **W2**: Object of class matrix, nb or listw related to error term Spatial Contiguity Matrix, Anselin(1988). It’s NULL by default.
- **nsim**: A number that indicates the amount of iterations
- **burn**: A number that indicates the amount of iterations to be burn at the beginning of the chain
- **step**: A number that indicates the length between samples in chain that generate the point estimates for each parameter.
- **b_pri**: A vector with the prior mean of beta
- **B_pri**: A matrix with the prior variance of beta
- **g_pri**: A vector with the prior mean of gamma
- **G_pri**: A vector with the prior variance of gamma
- **beta_0**: A vector with start values for beta chain
- **gammas_0**: A number with start value for gamma chain
- **rho_0**: A number with start value for rho chain
- **lambda_0**: A number with start value for lambda chain
- **kernel**: Distribution used in transition kernel to get samples of rho and lambda, it can be "uniform" or "normal"
- **plot**: If it is TRUE present the graph of the chains
- **mateq**: Logical variable indicating whether W1=W2 or not.
Details

hetero_general is a function made in order to fit Spatial General Model with a normal heteroscedastic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for transition kernel to get samples of spatial lag parameters, rho and lambda, and aided by working variables approach to get samples of conditional posterior distribution of gamma vector.

Value

List with the following:

- Bestimado: Estimated coefficients of beta
- Gammaest: Estimated coefficient of gamma
- Rhoest: Estimated coefficient of rho
- Lambdaest: Estimated coefficient of lambda
- DesvBeta: Estimated standard deviations of beta
- DesvGamma: Estimated standard deviation of gamma
- DesvRho: Estimated standard deviation of rho
- DesvLambda: Estimated standard deviation of lambda
- AccRate1: Acceptance Rate for samples of gamma
- AccRate2: Acceptance Rate for samples of rho
- AccRate3: Acceptance Rate for samples of lambda
- BIC: Value of Bayesian Information Criterion
- DIC: Value of Deviance Information Criterion

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References


Examples

```r
library(spdep)
library(mvtnorm)
library(pscl)

n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
x3=runif(n,0,10)
x=cbind(x0,x1,x2)
Z=cbind(x0,x1,x3)
gammas=c(-8,0.026,-0.4)
Sigma=diag(c(exp(Z%*%gammas)))
data(oldcol)
W1=COL.nb
matstand=nb2mat(W1)
A=diag(n)-0.70*matstand
B=diag(n)-0.20*matstand
miu=solve(A)%*%solve(B)%*%(1.7*x2)
Sigma2=t(solve(A)%*%solve(B))%*%solve(A)%*%solve(B)
y=rmvnorm(1,miu,Sigma2)
y_1=t(y)
y=y_1
data(oldcol)
W1=COL.nb
hetero_general(y,X,Z,W1,W1=0,burn=25,step=5,b_pri=rep(0,3),B_pri=diag(rep(1000,3)),
g_pri=rep(0,3),G_pri=diag(rep(1000,3)),
beta_0=rep(0,3),gammas_0=c(10,0,0),rho_0=0.5,lambda_0=0.5,
kern="normal",plot="FALSE",mateq="TRUE")
```

---

**hetero_sar**

Bayesian fitting of Spatial AutoRegressive (SAR) model with heteroscedastic normal error term.

**Description**

Performs the Bayesian fitting of Heterocedastic Spatial AutoRegressive (SAR) model with normal error term

**Usage**

```r
hetero_sar(y, X, Z, W, nsim, burn, step, b_pri, B_pri, g_pri, G_pri, beta_0, gammas_0, rho_0, lambda_0, kernel = NULL, plot = TRUE)
```

**Arguments**

- `y` Object of class matrix, with the dependent variable
- `X` Object of class matrix, with covariates of mean model
**hetero_sar**

- **Z**: Object of class matrix, with covariates of dispersion model
- **W**: Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
- **nsim**: A number that indicates the amount of iterations
- **burn**: A number that indicates the amount of iterations to be burn at the beginning of the chain
- **step**: A number that indicates the length between samples in chain that generate the point estimates for each parameter.
- **b_pri**: A vector with the prior mean of beta
- **B_pri**: A matrix with the prior variance of beta
- **g_pri**: A vector with the prior mean of gamma
- **G_pri**: A vector with the prior variance of gamma
- **beta_0**: A vector with start values for beta chain
- **gammas_0**: A number with start value for gamma chain
- **rho_0**: A number with start value for rho chain
- **kernel**: Distribution used in transition kernel to get samples of rho, it can be "uniform" or "normal"
- **plot**: If it is TRUE present the graph of the chains

**Details**

hetero_sar is a function made in order to fit Spatial AutoRegressive (SAR) model with a normal heteroscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for trasition kernel to get samples of spatial lag parameter, rho and aided by working variables approach to get samples of conditional posterior distribution of gamma vector.

**Value**

List with the following:

- **Bestimado**: Estimated coefficients of beta
- **Gammaest**: Estimated coefficient of gamma
- **Rhoest**: Estimated coefficient of rho
- **DesvBeta**: Estimated standard deviations of beta
- **DesvGamma**: Estimated standard deviation of gamma
- **DesvRho**: Estimated standard deviation of rho
- **AccRate1**: Acceptance Rate for samples of gamma
- **AccRate2**: Acceptance Rate for samples of rho
- **BIC**: Value of Bayesian Information Criterion
- **DIC**: Value of Deviance Information Criterion

**Author(s)**

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>
**References**


**Examples**

```r
library(spdep)
library(mvtnorm)
library(pscl)

n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
x3=runif(n,0,10)
X=cbind(x0,x1,x2)
Z=cbind(x0,x1,x3)
gammas=c(-8,0.026,-0.4)
Sigma=diag(c(exp(Z*%gammas)))
data(oldcol)
W=COL.nb
matstand=nb2mat(W)
A=diag(n)-0.75*matstand
miu=solve(A)%*%(-35+0.35*x1-1.7*x2)
Sigma2=t(solve(A))%*%Sigma%*%solve(A)
y=rmvnorm(1,miu,Sigma2)
y_1=t(y)
y=y_1
data(oldcol)
W=COL.nb
hetero_sar(y,X,Z,W,nsim=500,burn=25,step=5,b_pri=rep(0,3),B_pri=diag(rep(1000,3)),g_pri=rep(0,3),
G_pri=diag(rep(1000,3)),
beta_0=rep(0,3),gammas_0=c(10,0,0),rho_0=0.5,kernel="normal",plot="FALSE")
```

**hetero_sem**

Bayesian fitting of Spatial Error Model (SEM) model with heteroscedastic normal error term.
Description

Performs the Bayesian fitting of Heterocedastic Spatial Error Model (SEM) model with normal error term

Usage

hetero_sem(y, x, Z, W, nsim, burn, step, b_pri, B_pri, g_pri, G_pri, beta_0, gammas_0, lambda_0, kernel = NULL,
plot = TRUE)

Arguments

- **y**: Object of class matrix, with the dependent variable
- **x**: Object of class matrix, with covariates of mean model
- **Z**: Object of class matrix, with covariates of dispersion model
- **W**: Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
- **nsim**: A number that indicates the amount of iterations
- **burn**: A number that indicates the amount of iterations to be burn at the beginning of the chain
- **step**: A number that indicates the length between samples in chain that generate the point estimates for each parameter.
- **b_pri**: A vector with the prior mean of beta
- **B_pri**: A matrix with the prior variance of beta
- **gPri**: A vector with the prior mean of gamma
- **G_pri**: A vector with the prior variance of gamma
- **beta_0**: A vector with start values for beta chain
- **gammas_0**: A number with start value for gamma chain
- **lambda_0**: A number with start value for lambda chain
- **kernel**: Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal"
- **plot**: If it is TRUE present the graph of the chains

Details

hetero_sem is a function made in order to fit Spatial Error Model (SEM) with a normal heteroscedastic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for transition kernel to get samples of spatial lag parameter, lambda, and aided by working variables approach to get samples of conditional posterior distribution of gamma vector.
Value

List with the following:

- **Bestimado**: Estimated coefficients of beta
- **Gammaest**: Estimated coefficient of gamma
- **Lambdaest**: Estimated coefficient of lambda
- **DesvBeta**: Estimated standard deviations of beta
- **DesvGamma**: Estimated standard deviation of gamma
- **DesvLambda**: Estimated standard deviation of lambda
- **AccRate1**: Acceptance Rate for samples of gamma
- **AccRate2**: Acceptance Rate for samples of lambda
- **BIC**: Value of Bayesian Information Criterion
- **DIC**: Value of Deviance Information Criterion

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References


Examples

```r
library(spdep)
library(mvtnorm)
library(pscl)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
x3=runif(n,0,10)
X=cbind(x0,x1,x2)
Z=cbind(x0,x1,x3)
gammas=c(-8,0.026,-0.4)
Sigma=diag(c(exp(Z%*%gammas)))
```
hom_general

Bayesian fitting of Spatial General Model with homoscedastic normal error term.

Description

Performs the Bayesian fitting of Homoscedastic General Model with normal error term.

Usage

hom_general(y, X, W1, W2=NULL, nsim, burn, step, b_pri, B_pri, r_pri, lambda_pri, beta_0, sigma2_0, rho_0, lambda_0, kernel = NULL, plot = TRUE, mateq=TRUE)

Arguments

y Object of class matrix, with the dependent variable
X Object of class matrix, with covariates of model
W1 Object of class matrix, nb or listw related to Spatial Contiguity Matrix for response variable, Anselin(1988)
W2 Object of class matrix, nb or listw related to Spatial Contiguity Matrix for disturbance terms, Anselin(1988)
nsim A number that indicates the amount of iterations
burn A number that indicates the amount of iterations to be burn at the beginning of the chain
step A number that indicates the length between samples in chain that generate the point estimates for each parameter.
b_pri A vector with the prior mean of beta
B_pri A matrix with the prior variance of beta
r_pri A number with the prior shape parameter of sigma^2
hom_general

lambda_pri A number with the prior rate parameter of sigma^2
beta_0 A vector with start values for beta chain
sigma2_0 A number with start value for sigma^2 chain
rho_0 A number with start value for rho chain
lambda_0 A number with start value for lambda chain
kernel Distribution used in transition kernel to get samples of rho and lambda, it can be "uniform" or "normal"
plot If it is TRUE present the graph of the chains
mateq Logical variable indicating whether W1=w2 or not.

Details

hom_general is a function made in order to fit Spatial General Model with a normal homoscedatic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for transition kernel to get samples of spatial responde and error lag parameters, rho and lambda, respectively.

Value

List with the following:

Bestimado Estimated coefficients of beta
Sigma2est Estimated coefficient of sigma^2
Rhoest Estimated coefficient of rho
Lambdakest Estimated coefficient of lambda
DesvBeta Estimated standard deviations of beta
DesvGamma Estimated standard deviation of gamma
DesvRho Estimated standard deviation of rho
DesvLambda Estimated standard deviation of lambda
AccRate1 Acceptance Rate for samples of rho
AccRate2 Acceptance Rate for samples of lambda
BIC Value of Bayesian Information Criterion
DIC Value of Deviance Information Criterion

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>
References


Examples

```r
library(spdep)
library(mvtnorm)
library(pscl)
n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
X=cbind(x0,x1,x2)
sigma2=rep(45,n)
Sigma=diag(sigma2)
data(oldcol)
W1=COL.nb
matstand=nb2mat(W1)
A=diag(n)-0.75*matstand
B=diag(n)-0.20*matstand
miu=solve(A)%*%(18+0.026*x1-0.4*x2)
Sigma2=t(solve(A)%*%solve(B))%*%Sigma%*%solve(A)%*%solve(B)
y=rmvnorm(1,miu,Sigma2)
y_1=t(y)
y=y_1
data(oldcol)
hom_general(y,X,W1=COL.nb,nsim=500,burn=25,step=5,b_pri=rep(0,3),B_pri=diag(rep(1000,3)),r_pri=0.01,lambda_pri=0.01,beta_0=rep(0,3),sigma2_0=90,rho_0=0.5,lambda_0=0.5,kernel="normal",plot=FALSE,mateq=TRUE)
```

hom_sar

Bayesian fitting of Spatial AutoRegressive (SAR) model with homoscedastic normal error term.
**hom_sar**

**Description**
Performs the Bayesian fitting of Homoscedastic Spatial AutoRegressive (SAR) model with normal error term

**Usage**

```
hom_sar(y, X, W, nsim, burn, step, b_pri, B_pri, r_pri, lambda_pri, beta_0, sigma2_0, rho_0, kernel = NULL,
plot = TRUE)
```

**Arguments**

- `y` Object of class matrix, with the dependent variable
- `X` Object of class matrix, with covariates of model
- `W` Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
- `nsim` A number that indicates the number of iterations
- `burn` A number that indicates the number of iterations to be burn at the beginning of the chain
- `step` A number that indicates the length between samples in chain that generate the point estimates for each parameter.
- `b_pri` A vector with the prior mean of beta
- `B_pri` A matrix with the prior variance of beta
- `r_pri` A number with the prior shape parameter of sigma^2
- `lambda_pri` A number with the prior rate parameter of sigma^2
- `beta_0` A vector with start values for beta chain
- `sigma2_0` A number with start value for sigma^2 chain
- `rho_0` A number with start value for rho chain
- `kernel` Distribution used in transition kernel to get samples of rho, it can be "uniform" or "normal"
- `plot` If it is TRUE present the graph of the chains

**Details**

`hom_sar` is a function made in order to fit Spatial AutoRegressive (SAR) model with a normal homoscedastic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for transition kernel to get samples of spatial lag parameter, rho.

**Value**

List with the following:

- `bestimado` Estimated coefficients of beta
- `sigma2est` Estimated coefficient of sigma^2
- `rhoest` Estimated coefficient of rho
DesvBeta Estimated standard deviations of beta
DesvGamma Estimated standard deviation of gamma
DesvRho Estimated standard deviation of rho
AccRate Acceptance Rate for samples of rho
BIC Value of Bayesian Information Criterion
DIC Value of Deviance Information Criterion

Author(s)
Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References

Examples
library(spdep)
library(mvtnorm)
library(pscl)
data(oldcol)
N=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
X=cbind(x0,x1,x2)
sigma22=rep(45,n)
Sigma=diag(sigma22)
W=COL.nb
matstand=nb2mat(W)
A=diag(n)-0.90*matstand
miu=solve(A)%*%(18+0.478*x1-1.3*x2)
Sigma2=t(solve(A))%*%Sigma%*%solve(A)
y=rmvnorm(1,miu,Sigma2)
y_1=t(y)
y=y_1
hom_sar(y,X,W=COL.nb,nsim=500,burn=25,step=5,b_pri=rep(0,3),B_pri=diag(rep(1000,3)),r_pri=0.01,
lambda_pri=0.01,beta_0=rep(0,3),
Bayesian fitting of Spatial Error Model (SEM) with homoscedastic normal error term.

Description
Performs the Bayesian fitting of Homoscedastic Spatial Error Model (SEM) with normal error term

Usage
```r
hom_sem(y, X, W, nsim, burn, step, b_pri, B_pri, r_pri, lambda_pri, beta_0, sigma2_0, lambda_0, kernel = NULL, plot = TRUE)
```

Arguments
- **y**: Object of class matrix, with the dependent variable
- **X**: Object of class matrix, with covariates of model
- **W**: Object of class matrix, nb or listw related to Spatial Contiguity Matrix, Anselin(1988)
- **nsim**: A number that indicates the amount of iterations
- **burn**: A number that indicates the amount of iterations to be burn at the beginning of the chain
- **step**: A number that indicates the length between samples in chain that generate the point estimates for each parameter.
- **b_pri**: A vector with the prior mean of beta
- **B_pri**: A matrix with the prior variance of beta
- **r_pri**: A number with the prior shape parameter of sigma^2
- **lambda_pri**: A number with the prior rate parameter of sigma^2
- **beta_0**: A vector with start values for beta chain
- **sigma2_0**: A number with start value for sigma^2 chain
- **lambda_0**: A number with start value for lambda chain
- **kernel**: Distribution used in transition kernel to get samples of lambda, it can be "uniform" or "normal"
- **plot**: If it is TRUE present the graph of the chains

Details
`hom_sem` is a function made in order to fit Spatial Error Model (SEM) with a normal homoscedastic disturbance term through MCMC methods as Metropolis-Hastings algorithm, under two proposals for transition kernel to get samples of spatial error lag parameter, lambda.

```r
sigma2_0=90, rho_0=0.5, kernel="uniform")
```
Value

List with the following:

- **Bestimado**: Estimated coefficients of beta
- **Sigma2est**: Estimated coefficient of $\sigma^2$
- **Lambdaest**: Estimated coefficient of lambda
- **DesvBeta**: Estimated standard deviations of beta
- **DesvGamma**: Estimated standard deviation of gamma
- **DesvLambda**: Estimated standard deviation of lambda
- **AccRate**: Acceptance Rate for samples of lambda
- **BIC**: Value of Bayesian Information Criterion
- **DIC**: Value of Deviance Information Criterion

Author(s)

Jorge Sicacha-Parada <jasicachap@unal.edu.co>, Edilberto Cepeda-Cuervo <ecepedac@unal.edu.co>

References


Examples

```r
library(spdep)
library(mvtnorm)
library(pscl)

n=49
x0=rep(1,n)
x1=runif(n,0,400)
x2=runif(n,10,23)
X=cbind(x0,x1,x2)
sigma2=rep(45,n)
Sigma=diag(sigma2)
data(oldcol)
W=COL.nb
matstand=nb2mat(W)
```
A = diag(n) - 0.85 * matstand
miu = (18 + 0.026 * x1 - 0.4 * x2)
Sigma2 = t(solve(A)) * Sigma * solve(A)
y = rmvnorm(1, miu, Sigma2)
y_1 = t(y)
y = y_1
hom_sem(y, X, POW, nsim = 500, burn = 25, step = 5, b_pri = rep(0, 3), B_pri = diag(rep(1000, 3)),
        r_pri = 0.01, lambda_pri = 0.01, beta_0 = rep(0, 3),
        sigma2_0 = 90, lambda_0 = 0.5, kernel = "normal", plot = FALSE)
Index

*Topic Bayesian
   BSPADATA, 2
   hetero_general, 3
   hetero_sar, 5
   hetero_sem, 7
   hom_general, 10
   hom_sar, 12
   hom_sem, 15

*Topic General Model
   hom_general, 10

*Topic Heteroscedastic Error Term
   BSPADATA, 2
   hetero_general, 3
   hetero_sar, 5
   hetero_sem, 7

*Topic Heteroscedastic General Model
   hetero_general, 3

*Topic Heteroscedastic SAR Model
   hetero_sar, 5

*Topic Heteroscedastic SEM Model
   hetero_sem, 7

*Topic Homoscedastic Error Term
   BSPADATA, 2

*Topic Metropolis Hastings
   BSPADATA, 2
   hetero_general, 3
   hetero_sar, 5
   hetero_sem, 7
   hom_general, 10
   hom_sar, 12
   hom_sem, 15

*Topic SAR Model
   hom_sar, 12

*Topic SEM Model
   hom_sem, 15

*Topic Spatial Econometric Models
   BSPADATA, 2
   hetero_general, 3