Package `BasketballAnalyzeR`

October 12, 2022

Type Package

Title Analysis and Visualization of Basketball Data

Version 0.5.0

Author Marco Sandri, Paola Zuccolotto, Marica Manisera

Maintainer Marco Sandri <basketballanalyzer.help@unibs.it>

License GPL (>= 2.0)

Encoding UTF-8

LazyData true

URL https://github.com/sndmrc/BasketballAnalyzeR

Contact <basketballanalyzer.help@unibs.it>

Depends R (>= 3.4), ggplot2 (>= 2.2.0)

Imports hexbin (>= 1.27), plyr (>= 1.8.4), dplyr (>= 0.7.6), tidyr (>= 0.8.1), rlang (>= 0.4.3), magrittr (>= 1.5), ggrepel (>= 0.8), gridExtra (>= 2.3), scales (>= 1.0), MASS (>= 7.3), directlabels (>= 2018.05), corrplot (>= 0.80), ggplotify (>= 0.0.3), network (>= 1.13.0), sna (>= 2.4), dendextend (>= 1.8), circlize (>= 0.4), PBSmapping (>= 2.70), sp (>= 1.3), operators (>= 0.1), stringr (>= 1.3), GGally (>= 1.4), statnet.common (>= 4.2), ggnetwork (>= 0.5), readr (>= 1.3), stats, grDevices, graphics

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-26 09:00:11 UTC
R topics documented:

assistnet ... 3
barline ... 4
bubbleplot ... 5
corranalysis ... 7
CreateRadialPlot .. 8
densityplot .. 10
drawNBAcourt ... 12
expectedpts .. 13
fourfactors .. 15
hclustering .. 17
inequality .. 19
is.assistnet .. 20
is.corranalysis ... 21
is.fourfactors ... 22
is.hclustering ... 23
is.inequality ... 24
is.kclustering ... 25
is.MDSmap ... 26
is.simplereg .. 27
is.variability ... 28
kclustering .. 29
MDSmap .. 30
Obox ... 32
Pbox ... 33
PbP.BDB .. 34
PbP.manipulation .. 35
plot.assistnet ... 36
plot.corranalysis .. 38
plot.fourfactors .. 39
plot.hclustering ... 40
plot.inequality ... 42
plot.kclustering ... 43
plot.MDSmap ... 44
plot.simplereg ... 46
plot.variability .. 47
radialprofile ... 49
scatterplot .. 50
scoringprob .. 52
shotchart .. 54
simplereg ... 56
Tadd ... 58
Tbox ... 58
variability .. 60

Index ... 61
Investigates the network of assists-shots in a team

Description

Investigates the network of assists-shots in a team

Usage

```r
assistnet(
  data,
  assist = "assist",
  player = "player",
  points = "points",
  event.type = "event_type"
)
```

Arguments

- **data**: a data frame whose rows are field shots and columns are variables to be specified in `assist`, `player`, `points`, `event.type` (see Details).
- **assist**: character, indicating the name of the variable with players who made the assists, if any.
- **player**: character, indicating the name of the variable with players who made the shot.
- **points**: character, indicating the name of the variable with points.
- **event.type**: character, indicating the name of the variable with type of event (mandatory categories are "miss" for missed field shots and "shot" for field goals).

Details

The `data` data frame could also be a play-by-play dataset provided that rows corresponding to events different from field shots are not coded as "shot" in the `event.type` variable.

Value

A list with 3 elements, `assistTable` (a table), `nodeStats` (a data frame), and `assistNet` (a network object). See Details.

- **assistTable**: the cross-table of assists made and received by the players.
- **nodeStats**: a data frame with the following variables:
 - FGM (fields goals made),
 - FGM_AST (field goals made thanks to a teammate’s assist),
 - FGM_ASTp (percentage of FGM_AST over FGM),
barline

Draws a bar-line plot

Description

Draws a bar-line plot

Usage

barline(
 data,
 id,
 bars,
 line,
 order.by = id,
 decreasing = TRUE,
 labels.bars = NULL,
 label.line = NULL,
 title = NULL
)
bubbleplot

Arguments

- data: a data frame.
- id: character, name of the ID variable.
- bars: character vector, names of the bar variables.
- line: character, name of the line variable.
- order.by: character, name of the variable used to order bars (on the x-axis).
- decreasing: logical; if TRUE, decreasing order.
- labels.bars: character vector, labels for the bar variables.
- label.line: character, label for the line variable on the second y-axis (on the right).
- title: character, plot title.

Value

A ggplot2 object

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Examples

dts <- subset(Pbox, Team=="Houston Rockets" & MIN>=500)
barline(data=dts, id="Player", bars=c("P2p","P3p","FTp"),
 line="MIN", order.by="Player",
 labels.bars=c("2P","3P","FT"), title="Houston Rockets")

bubbleplot

Draws a bubble plot

Description

Draws a bubble plot
Usage

```r
bubbleplot(
    data,
    id,
    x,
    y,
    col,
    size,
    text.col = NULL,
    text.size = 2.5,
    scale.size = TRUE,
    labels = NULL,
    mx = NULL,
    my = NULL,
    mcol = NULL,
    title = NULL,
    repel = TRUE,
    text.legend = TRUE
)
```

Arguments

- **data**: a data frame.
- **id**: character, name of the ID variable.
- **x**: character, name of the x-axis variable.
- **y**: character, name of the y-axis variable.
- **col**: character, name of variable on the color axis.
- **size**: character, name of variable on the size axis.
- **text.col**: character, name of variable for text colors.
- **text.size**: integer, text font size.
- **scale.size**: logical; if TRUE, size variable is rescaled between 0 and 100.
- **labels**: character vector, variable labels (on legend and axis).
- **mx**: numeric, x-coordinate of the vertical axis; default is the mean value of x variable.
- **my**: numeric, y-coordinate of the horizontal axis; default is the mean value of y variable.
- **mcol**: numeric, midpoint of the diverging scale (see `scale_colour_gradient2`); default is the mean value of col variable.
- **title**: character, plot title.
- **repel**: logical; if TRUE, activate text repelling.
- **text.legend**: logical; if TRUE, show the legend for text color.

Value

A ggplot2 object
corranalysis

Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Examples
X <- with(Tbox, data.frame(T=Team, P2p=P2p, P3p=P3p, FTp=FTp, AS=P2A+P3A+FTA))
labs <- c("2-point shots (% made)", "3-point shots (% made)", "free throws (% made)", "Total shots attempted")
bubbleplot(X, id="T", x="P2p", y="P3p", col="FTp", size="AS", labels=labs)

Description
Correlation analysis

Usage
corranalysis(data, threshold = 0, sig.level = 0.95)

Arguments
data a numeric matrix or data frame (see cor).
threshold numeric, correlation cutoff (default 0); correlations in absolute value below threshold are set to 0.
sig.level numeric, significance level (default 0.95); correlations with p-values greater that 1-sig.level are set to 0.

Value
A list with the following elements:
• corr.mtx (the complete correlation matrix)
• corr.mtx.trunc (the truncated correlation matrix)
• cor.mtest (the output of the significance test on correlations; see cor.mtest)
• threshold correlation cutoff
• sig.level significance level

Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)
CreateRadialPlot

R function CreateRadialPlot by William D. Vickers, freely downloadable from the web

Description

R function CreateRadialPlot by William D. Vickers, freely downloadable from the web

Usage

CreateRadialPlot(
 plot.data,
 axis.labels = colnames(plot.data)[-1],
 grid.min = -0.5,
 grid.mid = 0,
 grid.max = 0.5,
 centre.y = grid.min - ((1/9) * (grid.max - grid.min)),
 plot.extent.x.sf = 1.2,
 plot.extent.y.sf = 1.2,
 x.centre.range = 0.02 * (grid.max - centre.y),
 label.centre.y = FALSE,
 grid.line.width = 0.5,
 gridline.min.linetype = "longdash",
 gridline.mid.linetype = "longdash",
 gridline.max.linetype = "longdash",
 gridline.min.colour = "grey",
 gridline.mid.colour = "blue",
 gridline.max.colour = "grey",
 grid.label.size = 4,
 gridline.label.offset = -0.02 * (grid.max - centre.y),

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

plot.corranalysis.

Examples

data <- data.frame(Pbox$PTS, Pbox$P3M, Pbox$P2M,
 Pbox$OREB + Pbox$DREB, Pbox$AST,
 Pbox$TOV, Pbox$STL, Pbox$BLK)/Pbox$MIN
names(data) <- c("PTS", "P3M", "P2M", "REB", "AST", "TOV", "STL", "BLK")
data <- subset(data, Pbox$MIN >= 500)
out <- corranalysis(data, threshold = 0.5)
plot(out)
label.gridline.min = TRUE,
axis.label.offset = 1.15,
axis.label.size = 2.5,
axis.line.colour = "grey",
group.line.width = 1,
group.point.size = 4,
background.circle.colour = "yellow",
background.circle.transparency = 0.2,
plot.legend = if (nrow(plot.data) > 1) TRUE else FALSE,
legend.title = "Player",
legend.text.size = grid.label.size,
titolo = FALSE
)

Arguments
plot.data
axis.labels
grid.min
grid.mid
grid.max
centre.y
plot.extent.x.sf
plot.extent.y.sf
x.centre.range
label.centre.y
grid.line.width
gridline.min.linetype
gridline.min.linetype
gridline.mid.linetype
gridline.mid.linetype
gridline.max.linetype
gridline.max.linetype
gridline.min.colour
gridline.min.colour
gridline.mid.colour
gridline.mid.colour
gridline.max.colour
gridline.max.colour
grid.label.size
grid.label.size
densityplot

Computes and plots kernel density estimation of shots with respect to a concurrent variable

Details

A description of the function can be found at the following link: http://rstudio-pubs-static.s3.amazonaws.com/5795_e6e6411731bb4f1b9cc7eb49499c2082.html

References

Description

Computes and plots kernel density estimation of shots with respect to a concurrent variable
densityplot

Usage

densityplot(
 data,
 var,
 shot.type = "field",
 thresholds = NULL,
 best.scorer = FALSE,
 period.length = 12,
 bw = NULL,
 title = NULL
)

Arguments

data a data frame whose rows are shots and with the following columns: ShotType, player, points and at least one of playlength, periodTime, totalTime, shot_distance (the column specified in var, see Details).

var character, a string giving the name of the numerical variable according to which the shot density is estimated. Available options: "playlength", "periodTime", "totalTime", "shot_distance".

shot.type character, a string giving the type of shots to be analyzed. Available options: "2P", "3P", "FT", "field".

thresholds numerical vector with two thresholds defining the range boundaries that divide the area under the density curve into three regions. If NULL default values are used.

best.scorer logical; if TRUE, displays the player who scored the highest number of points in the corresponding interval.

period.length numeric, the length of a quarter in minutes (default: 12 minutes as in NBA).

bw numeric, the value for the smoothing bandwidth of the kernel density estimator or a character string giving a rule to choose the bandwidth (see density).

title character, plot title.

Details

The data data frame could also be a play-by-play dataset provided that rows corresponding to events different from shots have NA in the ShotType variable.

Required columns:

- ShotType, a factor with the following levels: "2P", "3P", "FT" (and NA for events different from shots)

- player, a factor with the name of the player who made the shot

- points, a numeric variable (integer) with the points scored by made shots and 0 for missed shots
drawNBAcourt

- playlength, a numeric variable with time between the shot and the immediately preceding event
- periodTime, a numeric variable with seconds played in the quarter when the shot is attempted
- totalTime, a numeric variable with seconds played in the whole match when the shot is attempted
- shot_distance, a numeric variable with the distance of the shooting player from the basket (in feet)

Value
A ggplot2 plot

Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Examples
PbP <- PbPmanipulation(PbP.BDB)
data.team <- subset(PbP, team=="GSW" & result=="")
densityplot(data=data.team, shot.type="2P", var="playlength", best.scorer=TRUE)
data.opp <- subset(PbP, team=="GSW" & result=="")
densityplot(data=data.opp, shot.type="2P", var="shot_distance", best.scorer=TRUE)

drawNBAcourt

Add lines of NBA court to an existing ggplot2 plot

Description
Add lines of NBA court to an existing ggplot2 plot

Usage
drawNBAcourt(p, size = 1.5, col = "black", full = FALSE)

Arguments
- p: a ggplot2 object.
- size: numeric, line size.
- col: line color.
- full: logical; if TRUE draws a complete NBA court; if FALSE draws a half court.
expectedpts

Value

A ggplot2 object

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

Examples

library(ggplot2)

p <- ggplot(data.frame(x=0, y=0), aes(x,y)) + coord_fixed()
drawNBAcourt(p)

expectedpts
Plots expected points of shots as a function of the distance from the basket (default) or another variable

Description

Plots expected points of shots as a function of the distance from the basket (default) or another variable

Usage

expectedpts(
 data,
 var = "shot_distance",
 players = NULL,
 bw = 10,
 period.length = 12,
 palette = gg_color_hue,
 team = TRUE,
 col.team = "gray",
 col.hline = "black",
 xlab = NULL,
 x.range = "auto",
 title = NULL,
 legend = TRUE
)

Arguments

data
 a data frame whose rows are field shots and with the following columns: points, event_type, player (only if the players argument is not NULL) and at least one of playlength, periodTime, totalTime, shot_distance (the column specified in var, see Details).
expectedpts

<table>
<thead>
<tr>
<th>var</th>
<th>character, a string giving the name of the numerical variable according to which the expected points are estimated; available options "playlength", "periodTime", "totalTime", "shot_distance" (default).</th>
</tr>
</thead>
<tbody>
<tr>
<td>players</td>
<td>subset of players to be displayed (optional; it can be used only if the player column is present in data).</td>
</tr>
<tr>
<td>bw</td>
<td>numeric, smoothing bandwidth of the kernel density estimator (see ksmooth).</td>
</tr>
<tr>
<td>period.length</td>
<td>numeric, the length of a quarter in minutes (default: 12 minutes as in NBA).</td>
</tr>
<tr>
<td>palette</td>
<td>color palette.</td>
</tr>
<tr>
<td>team</td>
<td>logical; if TRUE, draws the expected points for all the shots in data.</td>
</tr>
<tr>
<td>col.team</td>
<td>character, color of the expected points line for all the shots in data (default "gray").</td>
</tr>
<tr>
<td>col.hline</td>
<td>character, color of the dashed horizontal line (default "black") denoting the expected points for all the shots in data, not conditional to the variable in the x-axis.</td>
</tr>
<tr>
<td>xlab</td>
<td>character, x-axis label.</td>
</tr>
<tr>
<td>x.range</td>
<td>numerical vector or character; available options: NULL (x-axis range defined by ggplot2, the default), "auto" (internally defined x-axis range), or a 2-component numerical vector (user-defined x-axis range).</td>
</tr>
<tr>
<td>title</td>
<td>character, plot title.</td>
</tr>
<tr>
<td>legend</td>
<td>logical, if TRUE, color legend is displayed (only when players is not NULL).</td>
</tr>
</tbody>
</table>

Details

The data data frame could also be a play-by-play dataset provided that rows corresponding to events different from field shots have values different from "shot" or "miss" in the even_type variable.

Required columns:

- `event_type`, a factor with the following levels: "shot" for made field shots and "miss" for missed field shots
- `player`, a factor with the name of the player who made the shot
- `points`, a numeric variable (integer) with the points scored by made shots and 0 for missed shots
- `playlength`, a numeric variable with time between the shot and the immediately preceding event
- `periodTime`, a numeric variable with seconds played in the quarter when the shot is attempted
- `totalTime`, a numeric variable with seconds played in the whole match when the shot is attempted
- `shot_distance`, a numeric variable with the distance of the shooting player from the basket (in feet)
Value

A ggplot2 plot

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Examples

```r
PbP <- PbPmanipulation(PbP.BDB)
PbP.GSW <- subset(PbP, team=="GSW" & !is.na(shot_distance))
plrys <- c("Stephen Curry", "Kevin Durant")
expectedpts(data=PbP.GSW, bw=10, players=plrys, col.team="dodgerblue",
palette=colorRampPalette(c("gray","black")), col.hline="red")
```

`fourfactors`
Calculates possessions, pace, offensive and defensive rating, and Four Factors

Description

Calculates possessions, pace, offensive and defensive rating, and Four Factors

Usage

`fourfactors(TEAM, OPP)`

Arguments

- **TEAM**
a data frame whose rows are the analyzed teams and with columns referred to the team achievements in the considered game (a box score); required variables: Team, P2A, P2M, P3A, P3M, FTA, FTM, OREB, DREB, TOV, MIN (see Details).

- **OPP**
a data frame whose rows are the analyzed teams and with columns referred to the achievements of the opponents of each team in the considered game; required variables: Team, P2A, P2M, P3A, P3M, FTA, FTM, OREB, DREB, TOV, MIN (see Details).
Details

The rows of the TEAM and the OPP data frames must be referred to the same teams in the same order.

Required columns:

- Team, a factor with the name of the analyzed team
- P2A, a numeric variable (integer) with the number of 2-points shots attempted
- P2M, a numeric variable (integer) with the number of 2-points shots made
- P3A, a numeric variable (integer) with the number of 3-points shots attempted
- P3M, a numeric variable (integer) with the number of 3-points shots made
- FTA, a numeric variable (integer) with the number of free throws attempted
- FTM, a numeric variable (integer) with the number of free throws made
- OREB, a numeric variable (integer) with the number of offensive rebounds
- DREB, a numeric variable (integer) with the number of defensive rebounds
- TOV, a numeric variable (integer) with the number of turnovers
- MIN, a numeric variable (integer) with the number of minutes played

Value

An object of class fourfactors, i.e. a data frame with the following columns:

- Team, a factor with the name of the analyzed team
- POSS.Off, a numeric variable with the number of possessions of each team calculated with the formula $POSS = (P2A + P3A) + 0.44 \times FTA - OREB + TOV$
- POSS.Def, a numeric variable with the number of possessions of the opponents of each team calculated with the formula $POSS = (P2A + P3A) + 0.44 \times FTA - OREB + TOV$
- PACE.Off, a numeric variable with the pace of each team (number of possessions per minute played)
- PACE.Def, a numeric variable with the pace of the opponents of each team (number of possessions per minute played)
- ORtg, a numeric variable with the offensive rating (the points scored by each team per 100 possessions)
- DRtg, a numeric variable with the defensive rating (the points scored by the opponents of each team per 100 possessions)
- F1.Off, a numeric variable with the offensive first factor (effective field goal percentage)
- F2.Off, a numeric variable with the offensive second factor (turnovers per possession)
- F3.Off, a numeric variable with the offensive third factor (rebouding percentage)
- F4.Off, a numeric variable with the offensive fourth factor (free throw rate)
- F1.Def, a numeric variable with the defensive first factor (effective field goal percentage)
- F2.Def, a numeric variable with the defensive second factor (turnovers per possession)
- F3.Def, a numeric variable with the defensive third factor (rebouding percentage)
- F4.Def, a numeric variable with the defensive fourth factor (free throw rate)

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

plot.fourfactors

Examples

```r
selTeams <- c(2,6,10,11)
FF <- fourfactors(Tbox[selTeams,], Obox[selTeams,])
plot(FF)
```

hclustering

Description

Agglomerative hierarchical clustering

Usage

```r
hclustering(data, k = NULL, nclumax = 10, labels = NULL, linkage = "ward.D")
```

Arguments

- `data` numeric data frame.
- `k` integer, number of clusters.
- `nclumax` integer, maximum number of clusters (when k=NULL).
- `labels` character, row labels.
- `linkage` character, the agglomeration method to be used in hclust (see method in `hclust`).
Details

The `hclustering` function performs a preliminary standardization of columns in `data`.

Value

A `hclustering` object.

If `k` is `NULL`, the `hclustering` object is a list of 3 elements:

- `k NULL`
- `clusterRange` integer vector, values of `k` (from 1 to `nclumax`) at which the `variance between` of the clusterization is evaluated
- `VarianceBetween` numeric vector, values of the `variance between` evaluated for `k` in `clusterRange`

If `k` is not `NULL`, the `hclustering` object is a list of 5 elements:

- `k` integer, number of clusters
- `Subjects` data frame, subjects’ cluster identifiers
- `ClusterList` list, clusters’ composition
- `Profiles` data frame, clusters’ profiles, i.e. the average of the variables within clusters and the cluster eterogeneity index (`CHI`)
- `Hclust` an object of class `hclust`, see `hclust`

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

`plot.hclustering`, `hclust`

Examples

data <- with(Pbox, data.frame(PTS, P3M, REB=OREB+DREB, AST, TOV, STL, BLK, PF))
data <- subset(data, Pbox$MIN >= 1500)
ID <- Pbox$Player[Pbox$MIN >= 1500]
hclu1 <- hclustering(data)
plot(hclu1)
hclu2 <- hclustering(data, labels=ID, k=7)
plot(hclu2)
Description
Inequality analysis

Usage
inequality(data, nplayers)

Arguments
- **data**: numeric vector containing the achievements (e.g. scored points) of the players whose inequality has to be analyzed.
- **nplayers**: integer, number of players to include in the analysis (ranked in nondecreasing order according to the values in data).

Value
A list with the following elements: Lorenz (cumulative distributions used to plot the Lorenz curve) and Gini (Gini coefficient).

Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also
- plot.inequality

Examples
```r
Pbox.BN <- subset(Pbox, Team=="Brooklyn Nets")
out <- inequality(Pbox.BN$PTS, nplayers=8)
print(out)
plot(out)
```
is.assistnet

Reports whether x is a 'networkdata' object

Description

Reports whether x is a 'networkdata' object

Usage

```r
is.assistnet(x)
```

Arguments

- `x`
an object to test.

Value

Returns TRUE if its argument is of class `networkdata` and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

- [assistnet](#)

Examples

```r
PbP <- PbPmanipulation(PbP.BDB)
PbP.GSW <- subset(PbP, team="GSW" & player!="")
out <- assistnet(PbP.GSW)
is.assistnet(out)
```
is.corranalysis Reports whether x is a 'corranalysis' object

Description

Reports whether x is a 'corranalysis' object

Usage

is.corranalysis(x)

Arguments

x
an object to test.

Value

Returns TRUE if its argument is of class corranalysis and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

corranalysis

Examples

data <- data.frame(Pbox$PTS,Pbox$P3M,Pbox$P2M,
Pbox$OREB + Pbox$DREB,Pbox$AST,
Pbox$TOV,Pbox$STL,Pbox$BLK)/Pbox$MIN
names(data) <- c("PTS","P3M","P2M","REB","AST","TOV","STL","BLK")
data <- subset(data, Pbox$MIN >= 500)
out <- corranalysis(data)
is.corranalysis(out)
Description

Reports whether x is a 'fourfactors' object

Usage

is.fourfactors(x)

Arguments

x an object to test.

Value

Returns TRUE if its argument is of class fourfactors and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

fourfactors

Examples

selTeams <- c(2,6,10,11)
out <- fourfactors(Tbox[selTeams,], Obox[selTeams,])
is.fourfactors(out)
is.hclustering

Reports whether x is a 'hclustering' object

Description

Reports whether x is a 'hclustering' object

Usage

is.hclustering(x)

Arguments

x

an object to test.

Value

Returns TRUE if its argument is of class hclustering and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

hclustering

Examples

data <- data.frame(Pbox$PTS, Pbox$P3M,
Pbox$OREB + Pbox$DREB, Pbox$AST,
Pbox$TOV, Pbox$STL, Pbox$BLK, Pbox$PF)
names(data) <- c("PTS", "P3M", "REB", "AST", "TOV", "STL", "BLK", "PF")
data <- subset(data, Pbox$MIN >= 1500)
ID <- Pbox$Player[Pbox$MIN >= 1500]
hclu <- hclustering(data, labels=ID, k=7)
is.hclustering(hclu)
is.inequality Reports whether x is a 'inequality' object.

Description

Reports whether x is a 'inequality' object.

Usage

is.inequality(x)

Arguments

x an object to test.

Value

Returns TRUE if its argument is of class inequality and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

inequality

Examples

Pbox.BN <- subset(Pbox, Team=="Brooklyn Nets")
out <- inequality(Pbox.BN$PTS, npl=8)
is.inequality(out)
is.kclustering

Reports whether x is a 'kclustering' object

Description

Reports whether x is a 'kclustering' object

Usage

is.kclustering(x)

Arguments

x

an object to test.

Value

Returns TRUE if its argument is of class kclustering and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

kclustering

Examples

FF <- fourfactors(Tbox, Obox)
X <- with(FF, data.frame(OD.Rtg=ORtg/DRtg,
 F1.r=F1.Def/F1.Off, F2.r=F2.Off/F2.Def,
X$P3M <- Tbox$P3M
X$STL.r <- Tbox$STL/Obox$STL
kclu <- kclustering(X)
is.kclustering(kclu)
is.MDSmap

Reports whether x is a 'MDSmap' object

Description

Reports whether x is a 'MDSmap' object

Usage

is.MDSmap(x)

Arguments

x

an object to test.

Value

Returns TRUE if its argument is of class MDSmap and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

MDSmap

Examples

data <- subset(Pbox, MIN >= 1500)
data <- data.frame(data$PTS, data$P3M, data$P2M, data$OREB + data$DREB, data$AST, data$TOV, data$STL, data$BLK)
mds <- MDSmap(data)
is.MDSmap(mds)
is.simplereg

Reports whether x is a 'simplereg' object

Description

Reports whether x is a 'simplereg' object

Usage

is.simplereg(x)

Arguments

x
an object to test.

Value

Returns TRUE if its argument is of class simplereg and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

simplereg

Examples

Pbox.sel <- subset(Pbox, MIN >= 500)
X <- Pbox.sel$AST/Pbox.sel$MIN
Y <- Pbox.sel$TOV/Pbox.sel$MIN
Pl <- Pbox.sel$Player
out <- simplereg(x=X, y=Y, type="lin")
is.simplereg(out)
is.variability Reports whether x is a 'variability' object

Description

Reports whether x is a 'variability' object

Usage

is.variability(x)

Arguments

x an object to test.

Value

Returns TRUE if its argument is of class variability and FALSE otherwise.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

variability

Examples

Pbox.BC <- subset(Pbox, Team=="Oklahoma City Thunder" & MIN >= 500,
 select=c("P2p","P3p","FTp","P2A","P3A","FTA"))
out <- variability(data=Pbox.BC, data.var=c("P2p","P3p","FTp"),
 size.var=c("P2A","P3A","FTA"), weight=TRUE)
is.variability(out)
K-means cluster analysis

Usage

```r
kclustering(
  data,  
  k = NULL,  
  labels = NULL,  
  nclumax = 10,  
  nruns = 10,  
  iter.max = 50,  
  algorithm = "Hartigan-Wong"
)
```

Arguments

- **data**: numeric data frame.
- **k**: integer, number of clusters.
- **labels**: character, row labels.
- **nclumax**: integer, maximum number of clusters (when k=NULL) used for calculating the explained variance as function of the number of clusters.
- **nruns**: integer, run the k-means algorithm nruns times and chooses the best solution according to a maximum explained variance criterion.
- **iter.max**: integer, maximum number of iterations allowed in k-means clustering (see kmeans).
- **algorithm**: character, the algorithm used in k-means clustering (see kmeans).

Details

The kclustering function performs a preliminary standardization of columns in data.

Value

A kclustering object.

If k is NULL, the kclustering object is a list of 3 elements:

- **k** NULL
- **clusterRange** integer vector, values of k (from 1 to nclumax) at which the variance between of the clusterization is evaluated
- **VarianceBetween** numeric vector, values of the variance between evaluated for k in clusterRange
If \(k \) is not NULL, the kclustering object is a list of 4 elements:

- \(k \) integer, number of clusters
- Subjects data frame, subjects’ cluster identifiers
- ClusterList list, clusters’ composition
- Profiles data frame, clusters’ profiles, i.e. the average of the variables within clusters and the cluster etoregeneity index (CHI)

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

plot.kclustering, kmeans

Examples

```r
FF <- fourfactors(Tbox, Obox)
X <- with(FF, data.frame(OD.Rtg=ORtg/DRtg,
                           F1.r=F1.Def/F1.Off, F2.r=F2.Off/F2.Def,
X$P3M <- Tbox$P3M
X$STL.r <- Tbox$STL/Obox$STL
kclu1 <- kclustering(X)
plot(kclu1)
kclu2 <- kclustering(X, k=9)
plot(kclu2)
```

MDSmap

Multidimensional scaling (MDS) in 2 dimensions

Description

Multidimensional scaling (MDS) in 2 dimensions

Usage

```r
MDSmap(data, std = TRUE)
```
Arguments

data a numeric matrix, data frame or "dist" object (see dist).
std logical; if TRUE, data columns are standardized (centered and scaled).

Details

If data is an object of class "dist", std is not active and data is directly inputted into MASS::isoMDS.

Value

An object of class MDSmap, i.e. a list with 4 objects:

- points, a 2-column vector of the fitted configuration (see isoMDS);
- stress, the final stress achieved in percent (see isoMDS);
- data, the input data frame;
- std, the logical std input.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

isoMDS, plot.MDSmap.

Examples

data <- with(Pbox, data.frame(PTS, P3M, P2M, REB=OREB+DREB, AST, TOV, STL, BLK))
selp <- which(Pbox$MIN >= 1500)
data <- data[selp,]
id <- Pbox$Player[selp]
mds <- MDSmap(data)
plot(mds, labels=id, z.var="P2M", level.plot=FALSE, palette=rainbow)
Opponents box scores dataset - NBA 2017-2018

Description
In this data frame cases (rows) are teams and variables (columns) are referred to achievements of the opponents in the NBA 2017-2018 Championship.

Usage

Format
A data frame with 30 rows and 23 variables:

- **Team**: Analyzed team, character
- **GP**: Games Played, numeric
- **MIN**: Minutes Played, numeric
- **PTS**: Points Made, numeric
- **W**: Games won, numeric
- **L**: Games lost, numeric
- **P2M**: 2-Point Field Goals (Made), numeric
- **P2A**: 2-Point Field Goals (Attempted), numeric
- **P2p**: 2-Point Field Goals (Percentage), numeric
- **P3M**: 3-Point Field Goals (Made), numeric
- **P3A**: 3-Point Field Goals (Attempted), numeric
- **P3p**: 3-Point Field Goals (Percentage), numeric
- **FTM**: Free Throws (Made), numeric
- **FTA**: Free Throws (Attempted), numeric
- **FTp**: Free Throws (Percentage), numeric
- **OREB**: Offensive Rebounds, numeric
- **DREB**: Defensive Rebounds, numeric
- **AST**: Assists, numeric
- **TOV**: Turnovers, numeric
- **STL**: Steals, numeric
- **BLK**: Blocks, numeric
- **PF**: Personal Fouls, numeric
- **PM**: Plus/Minus, numeric
Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Players box scores dataset - NBA 2017-2018

Description
In this data frame, cases (rows) are players and variables (columns) are referred to the individual achievements in the NBA 2017-2018 Championship.

Usage
Pbox

Format
A data.frame with 605 rows and 22 variables:

- **Team**: Analyzed team, character
- **Player**: Analyzed player, character
- **GP**: Games Played, numeric
- **MIN**: Minutes Played, numeric
- **PTS**: Points Made, numeric
- **P2M**: 2-Point Field Goals (Made), numeric
- **P2A**: 2-Point Field Goals (Attempted), numeric
- **P2p**: 2-Point Field Goals (Percentage), numeric
- **P3M**: 3-Point Field Goals (Made), numeric
- **P3A**: 3-Point Field Goals (Attempted), numeric
- **P3p**: 3-Point Field Goals (Percentage), numeric
- **FTM**: Free Throws (Made), numeric
- **FTA**: Free Throws (Attempted), numeric
- **FTp**: Free Throws (Percentage), numeric
- **OREB**: Offensive Rebounds, numeric
- **DREB**: Defensive Rebounds, numeric
- **AST**: Assists, numeric
- **TOV**: Turnovers, numeric
- **STL**: Steals, numeric
- **BLK**: Blocks, numeric
- **PF**: Personal Fouls, numeric
- **PM**: Plus/Minus, numeric
Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

PbP.BDB

Play-by-play dataset - NBA 2017-2018

Description
In this play-by-play data frame (NBA 2017-2018 Championship), the cases (rows) are the events occurred during the analyzed games and the variables (columns) are descriptions of the events in terms of type, time, players involved, score, area of the court.

Usage
PbP.BDB

Format
A data.frame with 37430 rows and 48 variables:

- **game_id**: Identification code for the game
- **data_set**: Season: years and type (Regular or Playoffs)
- **date**: Date of the game
- **a1 ... a5; h1 ... h5**: Five players on the court (away team; home team)
- **period**: Quarter (>= 5: over-time)
- **away_score; home_score**: Score of the away/home team
- **remaining_time**: Time left in the quarter (h:mm:ss)
- **elapsed**: Time played in the quarter (h:mm:ss)
- **play_length**: Time since the immediately preceding event (h:mm:ss)
- **play_id**: Identification code for the play
- **team**: Team responsible for the event
- **event_type**: Type of event
- **assist**: Player who made the assist
- **away; home**: Players for the jump ball
- **block**: Player who blocked the shot
- **entered; left**: Player who entered/left the court
- **num**: Sequence number of the free throw
- **opponent**: Player who made the foul
PbPmanipulation

outof Number of free throws accorded
player Player responsible for the event
points Scored points
possession Player who the jump ball is tipped to
reason Reason of the turnover
result Result of the shot (made or missed)
steal Player who stole the ball
type Type of play
shot_distance Field shots: distance from the basket
original_x; original_y; converted_x; converted_y Coordinates of the shooting player. original: tracking coordinate system half court, (0,0) center of the basket; converted: coordinates in feet full court, (0,0) bottom-left corner
description Textual description of the event

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

Source

https://github.com/sndmrc/BasketballAnalyzeR

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

PbPmanipulation Adapts the standard file supplied by BigDataBall to the format required by BasketballAnalyzeR

Description

Adapts the standard file supplied by BigDataBall to the format required by BasketballAnalyzeR

Usage

PbPmanipulation(data)

Arguments

data a play-by-play data frame supplied by BigDataBall.
Value

A play-by-play data frame.

The data frame generated by `PbPmanipulation` has the same variables of `PbP.BDB` (when necessary, coerced from one data type to another, e.g., from factor to numeric) plus the following five additional variables:

- `periodTime`, time played in the quarter (in seconds)
- `totalTime`, time played in the match (in seconds)
- `playlength`, time since the immediately preceding event (in seconds)
- `ShotType`, type of shot (FT, 2P, 3P)
- `oppTeam`, name of the opponent team

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

`PbP.BDB`

Examples

```r
PbP <- PbPmanipulation(PbP.BDB)
```

plot.assistnet

Plots a network from a `assistnet` object

Description

Plots a network from a `assistnet` object
Usage

```r
## S3 method for class 'assistnet'
plot(
  x,
  layout = "kamadakawai",
  layout.par = list(),
  edge.thr = 0,
  edge.col.lim = NULL,
  edge.col.lab = NULL,
  node.size = NULL,
  node.size.lab = NULL,
  node.col = NULL,
  node.col.lim = NULL,
  node.col.lab = NULL,
  node.pal = colorRampPalette(c("white", "blue", "red")),
  edge.pal = colorRampPalette(c("white", "blue", "red")),
  ...
)
```

Arguments

- `x`: an object of class `assistnet`.
- `layout`: character, network vertex layout algorithm (see `gplot.layout`) such as "kamadakawai" (the default).
- `layout.par`: a list of parameters for the network vertex layout algorithm (see `gplot.layout`).
- `edge.thr`: numeric, threshold for edge values; values below the threshold are set to 0.
- `edge.col.lim`: numeric vector of length two providing limits of the scale for edge color.
- `edge.col.lab`: character, label for edge color legend.
- `node.size`: character, indicating the name of the variable for node size (one of the columns of the `nodeStats` data frame in the `x` object, see `assistnet`).
- `node.size.lab`: character, label for node size legend.
- `node.col`: character, indicating the name of the variable for node color (one of the columns of the `nodeStats` data frame in the `x` object, see `assistnet`).
- `node.col.lim`: numeric vector of length two providing limits of the scale for node color.
- `node.col.lab`: character, label for node color legend.
- `node.pal`: color palette for node colors.
- `edge.pal`: color palette for edge colors.
- `...`: other graphical parameters.

Value

A `ggplot2` object

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)
References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

assistnet

Examples

PbP <- PbPmanipulation(PbP.BDB)
PbP.GSW <- subset(PbP, team=="GSW" & player!="")
out <- assistnet(PbP.GSW)
plot(out, layout="circle", edge.thr=30, node.col="FGM_ASTp", node.size="ASTPTS")

plot.corranalysis

Plots the correlation matrix and the correlation network from a 'corranalysis' object

Description

Plots the correlation matrix and the correlation network from a 'corranalysis' object

Usage

S3 method for class 'corranalysis'
plot(x, horizontal = TRUE, title = NULL, ...)

Arguments

x an object of class corranalysis.
horizontal logical; if TRUE, the two plots are arranged horizontally.
title character, plot title.
... other graphical parameters

Value

A ggplot2 object

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.
plot.fourfactors

Plot possessions, pace, offensive and defensive rating, and Four Factors from a `fourfactors` object

Description

Plot possessions, pace, offensive and defensive rating, and Four Factors from a `fourfactors` object.

Usage

```r
## S3 method for class 'fourfactors'
plot(x, title = NULL, ...)  
```

Arguments

- `x`: an object of class `fourfactors`.
- `title`: character, plot title.
- `...`: other graphical parameters.

Details

The height of the bars in the two four factor plots are given by the difference between the team value and the average on the analyzed teams.

Value

A list of four `ggplot2` plots.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.
plot.hclustering

Plots hierarchical clustering from a 'hclustering' object

Description

Plots hierarchical clustering from a 'hclustering' object

Usage

S3 method for class 'hclustering'
plot(
 x,
 title = NULL,
 profiles = FALSE,
 ncol.arrange = NULL,
 circlize = FALSE,
 horiz = TRUE,
 cex.labels = 0.7,
 colored.labels = TRUE,
 colored.branches = FALSE,
 rect = FALSE,
 lower.rect = NULL,
 min.mid.max = NULL,
 ...
)

Arguments

- **x**: an object of class hclustering.
- **title**: character or vector of characters (when plotting radial plots of cluster profiles; see Value), plot title(s).
- **profiles**: logical; if TRUE, displays radial plots of cluster profiles (active if x$k is not NULL; see Value).
- **ncol.arrange**: integer, number of columns when arranging multiple grobs on a page (active when plotting radial plots of cluster profiles; see Value).
- **circlize**: logical; if TRUE, plots a circular dendrogram (active when plotting a dendrogram; see Value).

Examples

```r
selTeams <- c(2,6,10,11)
FF <- fourfactors(Tbox[selTeams,], Obox[selTeams,])
plot(FF)
```
horiz
numeric, the magnification to be used for labels (active when plotting a dendrogram; see Value).

colored.labels
logical; if TRUE, assigns different colors to labels of different clusters (active when plotting a dendrogram; see Value).

colored.branches
logical; if TRUE, assigns different colors to branches of different clusters (active when plotting a dendrogram; see Value).

rect
logical; if TRUE, draws rectangles around the branches in order to highlight the corresponding clusters (active when plotting a dendrogram; see Value).

lower.rect
numeric, a value of how low should the lower part of the rect be (active when plotting a dendrogram; see option lower_rect of rect.dendrogram).

min.mid.max
numeric vector with 3 elements: lower bound, middle dashed line, upper bound for radial axis (active when plotting radial plots of cluster profiles; see Value).

other graphical parameters.

Value
If x$k is NULL, plot.hclustering returns a single ggplot2 object, displaying the pattern of the explained variance vs the number of clusters.
If x$k is not NULL and profiles=FALSE, plot.hclustering returns a single ggplot2 object, displaying the dendrogram.
If x$k is not NULL and profiles=TRUE, plot.hclustering returns a list of ggplot2 objects, displaying the radial plots of the cluster profiles.

Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also
hclustering, radialprofile.

Examples

data <- with(Pbox, data.frame(PTS, P3M, REB=OREB+DREB, AST, TOV, STL, BLK, PF))
data <- subset(data, Pbox$MIN >= 1500)
ID <- Pbox$Player[Pbox$MIN >= 1500]
hclu1 <- hclustering(data)
plot(hclu1)
hclu2 <- hclustering(data, labels=ID, k=7)
plot(hclu2)
plot.inequality

Plot Lorenz curve from a 'inequality' object

Description

Plot Lorenz curve from a 'inequality' object

Usage

```r
## S3 method for class 'inequality'
plot(x, title = NULL, ...)
```

Arguments

- `x`: an object of class `inequality`.
- `title`: character, plot title.
- `...`: other graphical parameters.

Value

A `ggplot2` object.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

`inequality`

Examples

```r
Pbox.BN <- subset(Pbox, Team=="Brooklyn Nets")
out <- inequality(Pbox.BN$PTS, nplayers=8)
print(out)
plot(out)
```
Plot k-means clustering from a 'kclustering' object

Description

Plot k-means clustering from a 'kclustering' object

Usage

S3 method for class 'kclustering'
plot(x, title = NULL, ncol.arrange = NULL, min.mid.max = NULL, ...)

Arguments

x
an object of class kclustering.
title
character or vector of characters (when plotting radial plots of cluster profiles; see Value), plot title(s).
ncol.arrange
integer, number of columns when arranging multiple grobs on a page (active when plotting radial plots of cluster profiles; see Value).
min.mid.max
numeric vector with 3 elements: lower bound, middle dashed line, upper bound for radial axis (active when plotting radial plots of cluster profiles; see Value).
...
other graphical parameters.

Value

If x$k is NULL, plot.kclustering returns a single ggplot2 object, displaying the pattern of the explained variance vs the number of clusters.
If x$k is not NULL, plot.kclustering returns a list of ggplot2 objects, displaying the radial plots of the cluster profiles.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

kclustering, radialprofile
Examples

```r
FF <- fourfactors(Tbox,Obox)
X <- with(FF, data.frame(OD.Rtg=ORtg/DRtg,
  F1.r=F1.Def/F1.Off, F2.r=F2.Off/F2.Def,
X$P3M <- Tbox$P3M
X$STL.r <- Tbox$STL/Obox$STL
kclu1 <- kclustering(X)
plot(kclu1)
kclu2 <- kclustering(X, k=9)
plot(kclu2)
```

plot.MDSmap

Draws two-dimensional plots for multidimensional scaling (MDS) from a 'MDSmap' object

Description

Draws two-dimensional plots for multidimensional scaling (MDS) from a 'MDSmap' object

Usage

```r
## S3 method for class 'MDSmap'
plot(
  x, 
  z.var = NULL, 
  level.plot = TRUE, 
  title = NULL, 
  labels = NULL, 
  repel_labels = FALSE, 
  text_label = TRUE, 
  subset = NULL, 
  col.subset = "gray50", 
  zoom = NULL, 
  palette = NULL, 
  contour = FALSE, 
  ncol.arrange = NULL, 
  ... 
)
```

Arguments

- `x` an object of class MDSmap.
- `z.var` character vector; defines the set of variables (available in the data data frame of MDSmap) used to color-coding the points in the map (for scatter plots) or, alternatively, overlap to the map a colored level plot.
level.plot logical; if TRUE, draws a level plot, otherwise draws a scatter plot (not active if zvar=NULL).

title character, plot title.

labels character vector, labels for (x, y) points (only for single scatter plot).

repel_labels logical; if TRUE, draw text labels using repelling (not for highlighted points) (see geom_text_repel).

text_label logical; if TRUE, draw a rectangle behind the text labels (not active if subset=NULL).

subset logical vector, to select a subset of points to be highlighted.

col.subset character, color for the subset of points.

zoom numeric vector with 4 elements: c(xmin,xmax,ymin,ymax) for the x- and y-axis limits of the plot.

palette color palette.

contour logical; if TRUE, contour lines are plotted (not active if level.plot=FALSE).

ncol.arrange integer, number of columns when arranging multiple grobs on a page.

... other graphical parameters.

Value

A single ggplot2 plot or a list of ggplot2 plots

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

MDSmap

Examples

data <- data.frame(Pbox$PTS, Pbox$P3M, Pbox$P2M, Pbox$OREB + Pbox$DREB, Pbox$AST, Pbox$TOV, Pbox$STL, Pbox$BLK)
names(data) <- c('PTS','P3M','P2M','REB','AST','TOV','STL','BLK')
selp <- which(Pbox$MIN >= 1500)
data <- data[selp,]
id <- Pbox$Player[selp]
mds <- MDSmap(data)
plot(mds, labels=id, z.var="P2M", level.plot=FALSE, palette=rainbow)
plot.simplereg

Plot simple regression from a 'simplereg' object

Description
Plot simple regression from a 'simplereg' object

Usage
S3 method for class 'simplereg'
plot(
 x,
 labels = NULL,
 subset = NULL,
 Lx = 0.01,
 Ux = 0.99,
 Ly = 0.01,
 Uy = 0.99,
 title = "Simple regression",
 xtitle = NULL,
 ytitle = NULL,
 repel = TRUE,
 ...
)

Arguments

x an object of class simplereg.
labels character, labels for subjects.
subset an optional vector specifying a subset of observations to be highlighted in the
graph or subset='quant' to highlight observations with coordinates above and
below the upper and lower quantiles of the variables on the x- and y-axis (Lx,
Ux, Ly, Uy).
Lx numeric; if subset='quant', lower quantile for the variable on the x-axis (de-
default = 0.01).
Ux numeric; if subset='quant', upper quantile for the variable on the x-axis (de-
default = 0.99).
Ly numeric; if subset='quant', lower quantile for the variable on the y-axis (de-
default = 0.01).
Uy numeric; if subset='quant', upper quantile for the variable on the y-axis (de-
default = 0.99).
title character, plot title.
xtitle character, x-axis label.
ytitle character, y-axis label.
repel logical, if TRUE (the default) text labels repel away from each other.
... other graphical parameters.
Value
A ggplot2 object

Author(s)
Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References
P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also
simplereg

Examples
Pbox.sel <- subset(Pbox, MIN >= 500)
X <- Pbox.sel$AST/Pbox.sel$MIN
Y <- Pbox.sel$TOV/Pbox.sel$MIN
Pl <- Pbox.sel$Player
mod <- simplereg(x=X, y=Y, type="lin")
plot(mod)

plot.variability

Plots a variability diagram from a 'variability' object

Description
Plots a variability diagram from a 'variability' object

Usage
S3 method for class 'variability'
plot(
 x,
 title = "Variability diagram",
 ylim = NULL,
 ylab = NULL,
 size.lim = NULL,
 max.circle = 25,
 n.circle = 4,
 leg.brk = NULL,
 leg.pos = "right",
 leg.just = "left",
 leg.nrow = NULL,
 leg.title = NULL,
 leg.title.pos = "top",
 ...
)
plot.variability

Arguments

- **x**: an object of class `variability`.
- **title**: character, plot title.
- **ylim**: numeric vector of length two, y-axis limits.
- **ylab**: character, y-axis label.
- **size.lim**: numeric vector of length two, set limits of the bubbles’ size scale (see limits of `scale_size`).
- **max.circle**: numeric, maximum size of the size plotting symbol (see range of `scale_size`).
- **n.circle**: integer; if `leg.brk=NULL`, set a sequence of about `n.circle+1` equally spaced 'round' values which cover the range of the values used to set the bubbles’ size.
- **leg.brk**: numeric vector, breaks for bubbles’ size legend (see `breaks` of `scale_size`).
- **leg.pos**: character or numeric vector of length two, legend position; available options “none”, “left”, “right” (default), “bottom”, “top”, or a `c(x,y)` numeric vector (x and y are coordinates of the legend box; their values should be between 0 and 1; `c(0,0)` corresponds to the bottom-left and `c(1,1)` corresponds to the top-right position).
- **leg.just**: character or numeric vector of length two; anchor point for positioning legend inside plot (“left” (default), “center”, “right” or two-element numeric vector) or the justification according to the plot area when positioned outside the plot.
- **leg.nrow**: integer, number of rows of the bubbles’ size legend.
- **leg.title**: character, title of the bubbles’ size legend.
- **leg.title.pos**: character, position of the legend title; available options: “top” (default for a vertical legend), “bottom”, “left” (default for a horizontal legend), or “right”.
- **...**: other graphical parameters.

Value

A `ggplot2` object

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

`variability`
radialprofile

Examples

```r
Pbox.BC <- subset(Pbox, Team="Oklahoma City Thunder" & MIN >= 500, 
                  select=c("P2p","P3p","FTp","P2A","P3A","FTA"))
out <- variability(data=Pbox.BC, data.var=c("P2p","P3p","FTp"), 
                    size.var=c("P2A","P3A","FTA"), weight=TRUE)
plot(out, leg.brk=c(10,25,50,100,500,1000), max.circle=30)
```

radialprofile
Draws radial plots for player profiles

Description

Draws radial plots for player profiles

Usage

```r
radialprofile(
  data, 
  perc = FALSE, 
  std = TRUE, 
  title = NULL, 
  ncol.arrange = NULL, 
  min.mid.max = NULL
)
```

Arguments

- **data**: a data frame.
- **perc**: logical; if perc=TRUE, std=FALSE and min.mid.max=NULL, set axes range between 0 and 100 and set the middle dashed line at 50.
- **std**: logical; if std=TRUE, variables are preliminarily standardized.
- **title**: character vector, titles for radial plots.
- **ncol.arrange**: integer, number of columns in the grid of arranged plots.
- **min.mid.max**: numeric vector with 3 elements: lower bound, middle dashed line, upper bound for radial axis.

Value

A list of ggplot2 radial plots or, if ncol.arrange=NULL, a single ggplot2 plot of arranged radial plots

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)
References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

plot.kclustering

Examples

data("Pbox")
Pbox.PG <- Pbox[1:6,]
X <- data.frame(Pbox.PG$P2M, Pbox.PG$P3M, Pbox.PG$OREB+Pbox.PG$DREB,
Pbox.PG$AST, Pbox.PG$TO)/Pbox.PG$MIN
names(X) <- c("P2M","P3M","REB","AST","TO")
radialprofile(data=X, ncol.arrange=3, title=Pbox.PG$Player)

scatterplot

Draws a scatter plot or a matrix of scatter plots

Description

Draws a scatter plot or a matrix of scatter plots

Usage

scatterplot(
 data,
 data.var,
 z.var = NULL,
 palette = NULL,
 labels = NULL,
 repel_labels = FALSE,
 text_label = TRUE,
 subset = NULL,
 col.subset = "gray50",
 zoom = NULL,
 title = NULL,
 legend = TRUE,
 upper = list(continuous = "cor", combo = "box_no_facet", discrete = "facetbar", na = "na"),
 lower = list(continuous = "points", combo = "facethist", discrete = "facetbar", na = "na"),
 diag = list(continuous = "densityDiag", discrete = "barDiag", na = "naDiag")
)
scatterplot

Arguments

data an object of class data.frame.
data.var character or numeric vector, name or column number of variables (in data object) used on the axes of scatter plot(s).
z.var character or number, name or column number of variable (in data object) used to assign colors to points (see Details).
palette color palette (active when plotting a single scatter plot; see Value).
labels character vector, labels for points (active when plotting a single scatter plot, see Value).
repel_labels logical; if TRUE, draws text labels of not highlighted points using repelling (active when plotting a single scatter plot; see Value).
text_label logical; if TRUE, draws a rectangle behind the labels of highlighted points (active when plotting a single scatter plot; see Value).
subset logical or numeric vector, to select a subset of points to be highlighted (active when plotting a single scatter plot; see Value).
col.subset character, color for the labels and rectangles of highlighted points (active when plotting a single scatter plot; see Value).
zoom numeric vector with 4 elements; c(xmin,xmax,ymin,ymax) for the x- and y-axis limits of the plot (active when plotting a single scatter plot; see Value).
title character, plot title.
legend logical, if legend=FALSE legend is removed (active when plotting a single scatter plot with z.var not NULL; see Value).
upper list, may contain the variables continuous, combo, discrete, and na (active when plotting a matrix of scatter plot; see Value and upper in ggpairs)
lower list, may contain the variables continuous, combo, discrete, and na (active when plotting a matrix of scatter plot; see Value and lower in ggpairs)
diag list, may contain the variables continuous, discrete, and na (active when plotting a matrix of scatter plot; see Value and diag in ggpairs)

Details

If length(data.var)=2, the variable specified in z.var can be numeric or factor; if length(data.var)>2, the variable specified in z.var must be a factor.

Value

A ggplot2 object with a single scatter plot if length(data.var)=2 or a matrix of scatter plots if length(data.var)>2.

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)
References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

ggpairs

Examples

Single scatter plot
Pbox.sel <- subset(Pbox, MIN>= 500)
X <- data.frame(AST=Pbox.sel$AST/Pbox.sel$MIN,TOV=Pbox.sel$TOV/Pbox.sel$MIN)
X$PTSpm <- Pbox.sel$PTS/Pbox.sel$MIN
mypal <- colorRampPalette(c("blue","yellow","red"))
scatterplot(X, data.var=c("AST","TOV"), z.var="PTSpm", labels=1:nrow(X), palette=mypal)

Matrix of scatter plots
data <- Pbox[1:50, c("PTS","P3M","P2M","OREB","Team")]
scatterplot(data, data.var=1:4, z.var="Team")

scoringprob

Plots scoring probability of shots as a function of a given variable

Description

Plots scoring probability of shots as a function of a given variable

Usage

scoringprob(
 data,
 var,
 shot.type,
 players = NULL,
 bw = 20,
 period.length = 12,
 xlab = NULL,
 x.range = "auto",
 title = NULL,
 palette = gg_color_hue,
 team = TRUE,
 col.team = "dodgerblue",
 legend = TRUE
)
scoringprob

Arguments

data a data frame whose rows are shots and with the following columns: result, ShotType, player (only if the players argument is not NULL) and at least one of playlength, periodTime, totalTime, shot_distance (the column specified in var, see Details).

var character, the string giving the name of the numerical variable according to which the scoring probability is estimated. Available options: "playlength", "periodTime", "totalTime", "shot_distance".

shot.type character, the type of shots to be analyzed; available options: "2P", "3P", "FT", "field".

players subset of players to be displayed (optional; it can be used only if the player column is present in data).

bw numeric, the smoothing bandwidth of the kernel density estimator (see ksmooth).

period.length numeric, the length of a quarter in minutes (default: 12 minutes as in NBA).

xlab character, x-axis label.

x.range numerical vector or character; available options: NULL (x-axis range defined by ggplot2, the default), "auto" (internally defined x-axis range), or a 2-component numerical vector (user-defined x-axis range).

title character, plot title.

palette color palette.

team character; if TRUE draws the scoring probability for all the shots in data.

col.team character, color of the scoring probability line for all the shots in data.

legend character; if TRUE, color legend is displayed (only when players is not NULL).

Details

The data data frame could also be a play-by-play dataset provided that rows corresponding to events different from shots have NA in the ShotType variable.

Required columns:

- result, a factor with the following levels: "made" for made shots, "miss" for missed shots, and "" for events different from shots

- ShotType, a factor with the following levels: "2P", "3P", "FT" (and NA for events different from shots)

- player, a factor with the name of the player who made the shot

- playlength, a numeric variable with time between the shot and the immediately preceding event

- periodTime, a numeric variable with seconds played in the quarter when the shot is attempted

- totalTime, a numeric variable with seconds played in the whole match when the shot is attempted

- shot_distance, a numeric variable with the distance of the shooting player from the basket (in feet)
Value

A ggplot2 plot

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Examples

PbP <- PbPmanipulation(PbP.BDB)
PbP.GSW <- subset(PbP, team="GSW" & result="")
players <- c("Kevin Durant","Draymond Green","Klay Thompson")
scoringprob(data=PbP.GSW, shot.type="2P", players=players,
 var="shot_distance", col.team="gray")

```
shotchart

Plots different kinds of charts based on shot coordinates

Description

Plots different kinds of charts based on shot coordinates

Usage

shotchart(
  data,
  x,
  y,
  z = NULL,
  z.fun = median,
  result = NULL,
  type = NULL,
  scatter = FALSE,
  num.sect = 7,
  n = 1000,
  col.limits = c(NA, NA),
  courtline.col = "black",
  bg.col = "white",
  sectline.col = "white",
  text.col = "white",
  legend = FALSE,
  drop.levels = TRUE,
  pt.col = "black",
)```
```r
pt.alpha = 0.5,
nbins = 25,
palette = "mixed"
)
```

### Arguments

- **data**
  A data frame whose rows are field shots and columns are half-court shot coordinates x and y, and optionally additional variables to be specified in z and/or result (see Details).
- **x**
  character, indicating the variable name of the x coordinate.
- **y**
  character, indicating the variable name of the y coordinate.
- **z**
  character, indicating the name of the variable used to color the points (if `type=NULL`) or the sectors (if `type="sectors"`, in this case z must be a numeric variable).
- **z.fun**
  function (active when `type="sectors"`), used to summarize the values of z variable within each sector (recommended: `mean`, `median`).
- **result**
  character (active when `type="sectors"` and `scatter=FALSE`), indicating the name of the factor with the shot result (allowed categories `made` and `missed`).
- **type**
  character, indicating the plot type; available options `NULL`, "sectors", "density-polygons", "density-raster", "density-hexbin".
- **scatter**
  logical, if TRUE a scatter plot of the shots is added to the plot.
- **num.sect**
  integer (active when `type="sectors"`), number of sectors.
- **n**
  integer (active when `type="sectors"`), number of points used to draw arcs (must be > 500).
- **col.limits**
  numeric vector, (active when z is a numeric variable), limits c(min, max) for the gradient color scale of z variable.
- **courtline.col**
  color of court lines.
- **bg.col**
  background color.
- **sectline.col**
  color of sector lines (active when `type="sectors"`).
- **text.col**
  color of text annotation within sectors (active when `type="sectors"`).
- **legend**
  logical, if TRUE a legend for z is plotted.
- **drop.levels**
  logical, if TRUE unused levels of the z variable are dropped.
- **pt.col**
  color of points in the scatter plot.
- **pt.alpha**
  numeric, transparency of points in the scatter plot.
- **nbins**
  integer (active when `type="density-hexbin"`), number of bins.
- **palette**
  color palette; available options "main", "cool", "hot", "mixed", "grey", "bwr" (blue, white, red).

### Details

The `data` dataframe could also be a play-by-play dataset provided that rows corresponding to events different from field shots have missing x and y coordinates.

x and y coordinates must be expressed in feets; the origin of the axes is positioned at the center of the field.
**simplereg**

Simple linear and nonparametric regression

**Description**

Simple linear and nonparametric regression

**Usage**

`simplereg(x, y, type = "lin", sp = NULL)`
simplereg

Arguments

- **x**: numerical vector, input x values.
- **y**: numerical vector, input y values.
- **type**: character, type of regression; available options are: `lin` (linear regression, the default), `pol` (local polynomial regression of degree 2), `ks` (nonparametric kernel smoothing).
- **sp**: numeric, parameter to control the degree of smoothing; span for local polynomial regression and bandwidth for ksmooth.

Value

An object of class `simplereg`, i.e. a list with the following objects:

- **Model**, the output model (linear regression, local polynomial regression, or kernel smoothing)
- **R2**, (in-sample) coefficient of determination
- **x**, input x values
- **y**, input y values
- **type**, type of regression

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketball.analyzer.help@gmail.com>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

See Also

- `loess`, `ksmooth`

Examples

```r
Pbox.sel <- subset(Pbox, MIN >= 500)
X <- Pbox.sel$AST/Pbox.sel$MIN
Y <- Pbox.sel$TOV/Pbox.sel$MIN
Pl <- Pbox.sel$Player
mod <- simplereg(x=X, y=Y, type="lin")
```
Tadd  

**Tadd dataset - NBA 2017-2018**

**Description**

In this data frame, the cases (rows) are the analyzed teams and the variables (columns) are qualitative information such as Conference, Division, final rank, qualification for Playoffs for the NBA 2017-2018 Championship.

**Usage**

Tadd

**Format**

A data frame with 30 rows and 6 variables:

- **Team**  Analyzed team (long name), factor
- **team**  Analyzed team (short name), factor
- **Conference**  Conference, factor
- **Division**  Division, factor
- **Rank**  Rank (end season), numeric
- **Playoff**  Playoff qualification (Yes or No), factor

**Author(s)**

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

**References**

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.

Tbox  

**Teams box scores dataset - NBA 2017-2018**

**Description**

In this data frame, cases (rows) are teams and variables (columns) are referred to team achievements in the different games in the NBA 2017-2018 Championship.

**Usage**

Tbox
Format

A data frame with 30 rows and 23 variables:

Team  Analyzed team, character
GP    Games Played, numeric
MIN   Minutes Played, numeric
PTS   Points Made, numeric
W     Games won, numeric
L     Games lost, numeric
P2M   2-Point Field Goals (Made), numeric
P2A   2-Point Field Goals (Attempted), numeric
P2p   2-Point Field Goals (Percentage), numeric
P3M   3-Point Field Goals (Made), numeric
P3A   3-Point Field Goals (Attempted), numeric
P3p   3-Point Field Goals (Percentage), numeric
FTM   Free Throws (Made), numeric
FTA   Free Throws (Attempted), numeric
FTp   Free Throws (Percentage), numeric
OREB  Offensive Rebounds, numeric
DREB  Defensive Rebounds, numeric
AST   Assists, numeric
TOV   Turnovers, numeric
STL   Steals, numeric
BLK   Blocks, numeric
PF    Personal Fouls, numeric
PM    Plus/Minus, numeric

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

References

P. Zuccolotto and M. Manisera (2020) Basketball Data Science: With Applications in R. CRC Press.
variability

Variability analysis

Description

Variability analysis

Usage

variability(data, data.var, size.var, VC = TRUE, weight = FALSE)

Arguments

data     a data frame.
data.var  a vector of variable names or of column numbers defining (numeric) variables whose variability will be analyzed by variability.
size.var a vector of variable names or of column numbers defining variables for weights (active only if weight=TRUE).
VC       logical; if TRUE, calculates variation coefficients of variables in data.var.
weight   logical; if TRUE, calculates weighted variation coefficients and standard deviations.

Value

A list with the following elements: ranges, standard deviations, variation coefficients, and two dataframes (data, size).

Author(s)

Marco Sandri, Paola Zuccolotto, Marica Manisera (<basketballanalyzer.help@unibs.it>)

Examples

Pbox.BC <- subset(Pbox, Team="Oklahoma City Thunder" & MIN >= 500, 
select=c("P2p","P3p","FTP","P2A","P3A","FTA"))
list_variability <- variability(data=Pbox.BC, data.var=c("P2p","P3p","FTP"),
                                 size.var=c("P2A","P3A","FTA"), weight=TRUE)
print(list_variability)
plot(list_variability, leg.brk=c(10,25,50,100,500,1000), max.circle=30)
Index

* datasets
  Obox, 32
  Pbox, 33
  PbP.BDB, 34
  Tadd, 58
  Tbox, 58

assistnet, 3, 20, 37, 38
barline, 4
bubbleplot, 5
cor, 7
cor.mtest, 7
corranalysis, 7, 21, 39
CreateRadialPlot, 8
density, 11
densityplot, 10
dist, 31
drawNBAcourt, 12, 56
expectedpts, 13
fourfactors, 15, 22, 40
densityplot, 10
dist, 31
drawNBAcourt, 12, 56
expectedpts, 13
fourfactors, 15, 22, 40
gplot.layout, 37
hclust, 17, 18
hclustering, 17, 23, 41
inequality, 19, 24, 42
is.assistnet, 20
is.corranalysis, 21
is.fourfactors, 22
is.hclustering, 23
is.inequality, 24
is.kclustering, 25
is.MDSmap, 26
is.simplereg, 27
is.variability, 28
isoMDS, 31
kclustering, 25, 29, 43
kmeans, 29, 30
ksmooth, 14, 53, 57
loess, 57
MDSmap, 26, 30, 44, 45
network, 4
Obox, 32
Pbox, 33
PbP.BDB, 34, 36
PbPmanipulation, 35
plot.assistnet, 36
plot.corranalysis, 8, 38
plot.fourfactors, 17, 39
plot.hclustering, 18, 40
plot.inequality, 19, 42
plot.kclustering, 30, 43, 50
plot.MDSmap, 31, 44
plot.simplereg, 46
plot.variability, 47
radialprofile, 41, 43, 49
rect.dendrogram, 41
scale_colour_gradient2, 6
scale_size, 48
scatterplot, 50
scoringprob, 52
shotchart, 54
simplereg, 27, 47, 56
Tadd, 58
Tbox, 58

variability, 28, 48, 60