Package ‘BayesFluxR’

December 10, 2023

Type Package

Title Implementation of Bayesian Neural Networks

Version 0.1.3

Maintainer Enrico Wegner <e.wegner@student.maastrichtuniversity.nl>

Description Implementation of 'BayesFlux.jl' for R; It extends the famous 'Flux.jl' machine learning library to Bayesian Neural Networks. The goal is not to have the fastest production ready library, but rather to allow more people to be able to use and research on Bayesian Neural Networks.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports JuliaCall (>= 0.17.5), stats

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Enrico Wegner [aut, cre]

Repository CRAN

Date/Publication 2023-12-10 13:30:02 UTC

R topics documented:

.. install_pkg ... 2
.. julia_project_status 3
.. set_seed ... 3
.. using ... 4
BayesFluxR_setup ... 4
bayes_by_backprop .. 5
BNN ... 6
BNN.totparams .. 7
Chain .. 8
Index

.. install_pkg Installs Julia packages if needed

Description

Installs Julia packages if needed
Usage

`.install_pkg(...)`

Arguments

`...` strings of package names

`.julia_project_status` Obtain the status of the current Julia project

Description

Obtain the status of the current Julia project

Usage

`.julia_project_status()`

`.set_seed` Set a seed both in Julia and R

Description

Set a seed both in Julia and R

Usage

`.set_seed(seed)`

Arguments

`seed` seed to be used

Value

No return value, called for side effects.

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
.set_seed(123)

## End(Not run)
```
BayesFluxR_setup

Description

Loads Julia packages

Usage

`.using(...)`

Arguments

... strings of package names

BayesFluxR_setup

Set up of the Julia environment needed for BayesFlux

Description

This will set up a new Julia environment in the current working directory or another folder if provided. This environment will then be set with all Julia dependencies needed.

Usage

BayesFluxR_setup(
 pkg_check = TRUE,
 nthreads = 4,
 seed = NULL,
 env_path = getwd(),
 installJulia = FALSE,
 ...
)

Arguments

pkg_check (Default=TRUE) Check whether needed Julia packages are installed
nthreads (Default=4) How many threads to make available to Julia
seed Seed to be used.
env_path The path to were the Julia environment should be created. By default, this is the current working directory.
installJulia (Default=TRUE) Whether to install Julia
... Other parameters passed on to julia_setup
Value

No return value, called for side effects.

Examples

```r
## Not run:
## Time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)

## End(Not run)
```

Description

This was proposed in Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, June). Weight uncertainty in neural network. In International conference on machine learning (pp. 1613-1622). PMLR.

Usage

```r
bayes_by_backprop(  
  bnn,  
  batchsize,  
  epochs,  
  mc_samples = 1,  
  opt = opt.ADAM(),  
  n_samples_convergence = 10  
)
```

Arguments

- **bnn**: a BNN obtained using BNN
- **batchsize**: batch size
- **epochs**: number of epochs to run for
- **mc_samples**: samples to use in each iteration for the MC approximation usually one is enough.
- **opt**: An optimiser. These all start with ‘opt.’. See for example **opt.ADAM**
- **n_samples_convergence**: At the end of each iteration convergence is checked using this many MC samples.
Value

a list containing

• `juliavar` - julia variable storing VI
• `juliacode` - julia representation of function call
• `params` - variational family parameters for each iteration
• `losses` - BBB loss in each iteration

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(RNN(5, 1))
like <- likelihood.seqtoone_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
data <- matrix(rnorm(10*1000), ncol = 10)
# Choosing sequences of length 10 and predicting one period ahead
tensor <- tensor_embed_mat(data, 10+1)
x <- tensor[1:10, , , drop = FALSE]
# Last value in each sequence is the target value
y <- tensor[11,,

bnn <- BNN(x, y, like, prior, init)
vi <- bayes_by_backprop(bnn, 100, 100)
vi_samples <- vi.get_samples(vi, n = 1000)

## End(Not run)
```

BNN

Create a Bayesian Neural Network

Description

Create a Bayesian Neural Network

Usage

`BNN(x, y, like, prior, init)`

Arguments

- `x` For a Feedforward structure, this must be a matrix of dimensions variables x observations; For a recurrent structure, this must be a tensor of dimensions sequence_length x number_variables x number_sequences; In general, the last dimension is always the dimension over which will be batched.
BNN.totparams

y A vector or matrix with observations.
like Likelihood; See for example likelihood.feedforward_normal
prior Prior; See for example prior.gaussian
init Initialiser; See for example initialise.allsame

Value

List with the following content

- ‘juliavar’ - the julia variable containing the BNN
- ‘juliacode’ - the string representation of the BNN
- ‘x’ - x
- ‘juliax’ - julia variable holding x
- ‘y’ - y
- ‘juliay’ - julia variable holding y

Examples

Not run:
Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)

End(Not run)
Arguments

bnn A BNN formed using BNN

Value

The total number of parameters in the BNN

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)
## End(Not run)
```

Chain various layers together to form a network

Description

Chain various layers together to form a network

Usage

Chain(...)
Dense

Examples

Not run:
Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
Chain(LSTM(5, 5))
Chain(RNN(5, 5, "tanh"))
Chain(Dense(1, 5))

End(Not run)

<table>
<thead>
<tr>
<th>Dense</th>
<th>Create a Dense layer with <code>in_size</code> inputs and <code>out_size</code> outputs using <code>act</code> activation function</th>
</tr>
</thead>
</table>

Description

Create a Dense layer with `in_size` inputs and `out_size` outputs using `act` activation function

Usage

Dense(in_size, out_size, act = c("identity", "sigmoid", "tanh", "relu"))

Arguments

<table>
<thead>
<tr>
<th>in_size</th>
<th>Input size</th>
</tr>
</thead>
<tbody>
<tr>
<td>out_size</td>
<td>Output size</td>
</tr>
<tr>
<td>act</td>
<td>Activation function</td>
</tr>
</tbody>
</table>

Value

A list with the following content

- `in_size` - Input Size
- `out_size` - Output Size
- `activation` - Activation Function
- `julia` - Julia code representing the Layer
Description

Find the MAP of a BNN using SGD

Usage

```r
find_mode(bnn, optimiser, batchsize, epochs)
```

Arguments

- `bnn` a BNN obtained using `BNN`
- `optimiser` an optimiser. These start with `opt.`. See for example `opt.ADAM`
- `batchsize` batch size
- `epochs` number of epochs to run for

Value

Returns a vector. Use `posterior_predictive` to obtain a prediction using this MAP estimate.

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 5, "relu"))

## End(Not run)
```

```r
find_mode(bnn, optimiser, batchsize, epochs)
```
Create a Gamma Prior

Description

Creates a Gamma prior in Julia using Distributions.jl.

Usage

```
Gamma(shape = 2, scale = 2)
```

Arguments

- `shape`: shape parameter
- `scale`: scale parameter

Value

A list with the following content:

- `juliavar`: Julia variable containing the distribution
- `juliacode`: Julia code used to create the distribution

Examples

```
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
## End(Not run)
```

get_random_symbol

Description

Creates a random string that is used as variable in Julia.

Usage

```
get_random_symbol()
```
initialise.allsame
Initialises all parameters of the network, all hyper parameters of the prior and all additional parameters of the likelihood by drawing random values from ‘dist’.

Description

Initialises all parameters of the network, all hyper parameters of the prior and all additional parameters of the likelihood by drawing random values from ‘dist’.

Usage

initialise.allsame(dist, like, prior)

Arguments

dist
A distribution; See for example Normal

like
A likelihood; See for example likelihood.feedforward_normal

prior
A prior; See for example prior.gaussian

Value

A list containing the following

- ‘juliavar’ - julia variable storing the initialiser
- ‘juliacode’ - julia code used to create the initialiser

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)
## End(Not run)
```
InverseGamma

Create an Inverse-Gamma Prior

Description

Creates and Inverse Gamma prior in Julia using Distributions.jl

Usage

InverseGamma(shape = 2, scale = 2)

Arguments

shape shape parameter
scale scale parameter

Value

A list with the following content

- juliavar - julia variable containing the distribution
- juliacode - julia code used to create the distribution

See Also

Gamma

Examples

Not run:
Needs previous call to `BayesFluxR_setup` which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, InverseGamma(2.0, 0.5))

End(Not run)
Use a Normal likelihood for a Feedforward network

Description

This creates a likelihood of the form

\[y_i \sim \text{Normal}(\text{net}(x_i), \sigma) \quad \forall i = 1, \ldots, N \]

where the \(x_i \) is fed through the network in a standard feedforward way.

Usage

\[
\text{likelihood.feedforward_normal}(\text{chain}, \text{sig_prior})
\]

Arguments

- **chain**: Network structure obtained using \text{link\{Chain\}}
- **sig_prior**: A prior distribution for \(\sigma \) defined using \text{Gamma}, \text{ln\{InverGamma\}}, \text{Truncated}, \text{Normal}

Value

A list containing the following

- \text{juliavar} - Julia variable containing the likelihood
- \text{juliacode} - Julia code used to create the likelihood

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming
## and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bn <- BNN(x, y, like, prior, init)
BNN.totparams(bn)

## End(Not run)
```
likelihood.feedforward_tdist

Use a t-Distribution likelihood for a Feedforward network

Description

This creates a likelihood of the form

\[
\frac{y_i - \text{net}(x_i)}{\sigma} \sim T_\nu \forall i = 1, ..., N
\]

where the \(x_i \) is fed through the network in the standard feedforward way.

Usage

\[
\text{likelihood.feedforward_tdist(} \text{chain, sig prior, nu = 30)}
\]

Arguments

- **chain**: Network structure obtained using `link{Chain}`
- **sig_prior**: A prior distribution for sigma defined using `Gamma`, `link{InverGamma}`, `Truncated`, `Normal`
- **nu**: DF of TDist

Value

see `likelihood.feedforward_normal`

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_tdist(net, Gamma(2.0, 0.5), nu=8)
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)
```

End(Not run)
likelihood.seqtoone_normal

Use a Normal likelihood for a seq-to-one recurrent network

Description

This creates a likelihood of the form

\[y_i \sim \text{Normal}(\text{net}(x_i), \sigma), \quad i = 1, \ldots, N \]

Here \(x_i \) is a subsequence which will be fed through the recurrent network to obtain the final output \(\text{net}(x_i) = \hat{y}_i \). Thus, if one has a single time series, and splits the single time series into subsequences of length \(K \) which are then used to predict the next output of the time series, then each \(x_i \) consists of \(K \) consecutive observations of the time series. In a sense one constraints the maximum memory length of the network this way.

Usage

\[\text{likelihood.seqtoone_normal}(\text{chain}, \text{sig_prior}) \]

Arguments

- **chain**: Network structure obtained using \link{Chain}
- **sig_prior**: A prior distribution for sigma defined using \link{Gamma}, \link{InverGamma}, \link{Truncated}, \link{Normal}

Value

see \link{likelihood.feedforward_normal}

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(RNN(5, 1))
like <- likelihood.seqtoone_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- array(rnorm(5*100*10), dim=c(10,5,100))
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)
## End(Not run)
```
Use a T-likelihood for a seq-to-one recurrent network.

Description

See `likelihood.seqtoone_normal` and `likelihood.feedforward_tdist` for details.

Usage

`likelihood.seqtoone_tdist(chain, sig_prior, nu = 30)`

Arguments

- `chain`: Network structure obtained using `link{Chain}`
- `sig_prior`: A prior distribution for sigma defined using `Gamma`, `link{InverGamma}`, `Truncated`, `Normal`
- `nu`: DF of TDist

Value

See `likelihood.feedforward_normal`

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(RNN(5, 1))
like <- likelihood.seqtoone_tdist(net, Gamma(2.0, 0.5), nu=5)
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- array(rnorm(5*100*10), dim=c(10,5,100))
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)
## End(Not run)
```
LSTM

Create an LSTM layer with 'in_size' input size, and 'out_size' hidden state size

Description

Create an LSTM layer with 'in_size' input size, and 'out_size' hidden state size

Usage

```r
LSTM(in_size, out_size)
```

Arguments

- `in_size` : Input size
- `out_size` : Output size

Value

A list with the following content

- `in_size` - Input Size
- `out_size` - Output Size
- `julia` - Julia code representing the Layer

See Also

- `Dense`

Examples

```r
## Not run:
## Needs previous call to 'BayesFluxR_setup' which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(LSTM(5, 5))

## End(Not run)
```
Use the diagonal of sample covariance matrix as inverse mass matrix.

Description

Use the diagonal of sample covariance matrix as inverse mass matrix.

Usage

```r
madapter.DiagCov(adapt_steps, windowlength, kappa = 0.5, epsilon = 1e-06)
```

Arguments

- `adapt_steps`: Number of adaptation steps
- `windowlength`: Lookback window length for calculation of covariance
- `kappa`: How much to shrink towards the identity
- `epsilon`: Small value to add to diagonal so as to avoid numerical non-pos-def problem

Value

list containing ‘juliavar’ and ‘juliacode’ and all given arguments.

Examples

```r
## Not run:  
## Needs previous call to `BayesFluxR_setup` which is time  
## consuming and requires Julia and BayesFlux.jl  
BayesFluxR_setup(installJulia=TRUE, seed=123)  
net <- Chain(Dense(5, 1))  
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))  
prior <- prior.gaussian(net, 0.5)  
init <- initialise.allsame(Normal(0, 0.5), like, prior)  
x <- matrix(rnorm(5*100), nrow = 5)  
y <- rnorm(100)  
bnn <- BNN(x, y, like, prior, init)  
madapter <- madapter.DiagCov(100, 10)  
sampler <- sampler.GGMC(madapter = madapter)  
ch <- mcmc(bnn, 10, 1000, sampler)  
## End(Not run)
```
Use a fixed mass matrix

Usage

```r
madapter.FixedMassMatrix(mat = NULL)
```

Arguments

- `mat` (Default=NULL); inverse mass matrix; If ‘NULL’, then identity matrix will be used.

Value

list with ‘juliavar’ and ‘juliacode’ and given matrix or ‘NULL’

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
madapter <- madapter.FixedMassMatrix()
sampler <- sampler.GGMC(madapter = madapter)
ch <- mcmc(bnn, 10, 1000, sampler)

# Providing a non-sense weight matrix
weight_matrix <- matrix(runif(BNN.totparams(bnn)^2, 0, 1),
nrow = BNN.totparams(bnn))
madapter2 <- madapter.FixedMassMatrix(weight_matrix)
sampler2 <- sampler.GGMC(madapter = madapter2)
ch2 <- mcmc(bnn, 10, 1000, sampler2)

## End(Not run)
```
madapter.FullCov

Use the full covariance matrix as inverse mass matrix

Description

Use the full covariance matrix as inverse mass matrix

Usage

madapter.FullCov(adapt_steps, windowlength, kappa = 0.5, epsilon = 1e-06)

Arguments

adapt_steps Number of adaptation steps
windowlength Lookback window length for calculation of covariance
kappa How much to shrink towards the identity
epsilon Small value to add to diagonal so as to avoid numerical non-pos-def problem

Value

see madapter.DiagCov

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
madapter <- madapter.FullCov(100, 10)
sampler <- sampler.GGMC(madapter = madapter)
ch <- mcmc(bnn, 10, 1000, sampler)

## End(Not run)
```
Use RMSProp to adapt the inverse mass matrix.

Description

Usage

```r
madapter.RMSProp(adapt_steps, lambda = 1e-05, alpha = 0.99)
```

Arguments

- `adapt_steps`: number of adaptation steps
- `lambda`: see above paper
- `alpha`: see above paper

Value

list with `juliavar` and `juliacode` and all given arguments

Examples

```r
## Not run:
## Needs previous call to 'BayesFluxR_setup' which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
madapter <- madapter.RMSProp(100)
sampler <- sampler.GGMC(madapter = madapter)
ch <- mcmc(bnn, 10, 1000, sampler)

## End(Not run)
```
Sample from a BNN using MCMC

Usage

```r
mcmc(
  bnn,
  batchsize,
  numsamples,
  sampler = sampler.SGLD(stepsize_a = 1),
  continue_sampling = FALSE,
  start_value = NULL
)
```

Arguments

- **bnn**: A BNN obtained using `BNN`
- **batchsize**: batchsize to use; Most samplers allow for batching. For some, theoretical justifications are missing (HMC)
- **numsamples**: Number of mcmc samples
- **sampler**: Sampler to use; See for example `sampler.SGLD` and all other samplers start with 'sampler.' and are thus easy to identity.
- **continue_sampling**: Do not start new sampling, but rather continue sampling For this, numsamples must be greater than the already sampled number.
- **start_value**: Values to start from. By default these will be sampled using the initialiser in 'bnn'.

Value

a list containing the 'samples' and the 'sampler' used.

Examples

```r
## Not run:
## Needs previous call to 'BayesFluxR_setup' which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
```
```r
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGNHTS(1e-3)
ch <- mcmc(bnn, 10, 1000, sampler)

## End(Not run)
```

Normal

Create a Normal Prior

Description

Creates a Normal prior in Julia using Distributions.jl. This can then be truncated using `Truncated` to obtain a prior that could then be used as a variance prior.

Usage

```
Normal(mu = 0, sigma = 1)
```

Arguments

- **mu**: Mean
- **sigma**: Standard Deviation

Value

see `Gamma`

Examples

```
## Not run:
## Needs previous call to 'BayesFluxR_setup' which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Truncated(Normal(0, 0.5), 0, Inf))

## End(Not run)
```
opt.ADAM

Adam optimiser

Description

ADAM optimiser

Usage

```
opt.ADAM(eta = 0.001, beta = c(0.9, 0.999), eps = 1e-08)
```

Arguments

- `eta`: stepsize
- `beta`: momentum decays; must be a list of length 2
- `eps`: Flux does not document this

Value

see _opt.Descent_

Examples

```
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
find_mode(bnn, opt.ADAM(), 10, 100)
## End(Not run)
```
opt.Descent

Standard gradient descent

Description

Standard gradient descent

Usage

opt.Descent(eta = 0.1)

Arguments

eta stepsize

Value

list containing

- ‘julivar’ - julia variable holding the optimiser
- ‘juliacode’ - string representation

Examples

Not run:
Needs previous call to `BayesFluxR_setup` which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
find_mode(bnn, opt.Descent(1e-5), 10, 100)

End(Not run)
RMSProp optimiser

Description

RMSProp optimiser

Usage

```
opt.RMSProp(eta = 0.001, rho = 0.9, eps = 1e-08)
```

Arguments

- `eta`: learning rate
- `rho`: momentum
- `eps`: not documented by Flux

Value

see `opt.Descent`

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
find_mode(bnn, opt.RMSProp(), 10, 100)
## End(Not run)
```
posterior_predictive
Draw from the posterior predictive distribution

Description

Draw from the posterior predictive distribution

Usage

`posterior_predictive(bnn, posterior_samples, x = NULL)`

Arguments

- **bnn**
 A BNN obtained using `link{BNN}`

- **posterior_samples**
 A vector or matrix containing posterior samples. This can be obtained using `mcmc`, or `bayes_by_backprop` or `find_mode`.

- **x**
 Input variables. If 'NULL' (default), training values will be used.

Value

A matrix whose columns are the posterior predictive draws.

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
pp <- posterior_predictive(bnn, ch$samples)

## End(Not run)
```
prior.gaussian

Use an isotropic Gaussian prior

Description

Use a Multivariate Gaussian prior for all network parameters. Covariance matrix is set to be equal
’sigma * I’ with ‘I’ being the identity matrix. Mean is zero.

Usage

prior.gaussian(chain, sigma)

Arguments

chain Chain obtained using Chain
sigma Standard deviation of Gaussian prior

Value

a list containing the following

• ‘juliavar’ the julia variable used to store the prior
• ‘juliacode’ the julia code

Examples

Not run:
Needs previous call to 'BayesFluxR_setup' which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
End(Not run)
prior.mixturescale
Scale Mixture of Gaussian Prior

Description

Uses a scale mixture of Gaussian for each network parameter. That is, the prior is given by

$$\pi_1 \text{Normal}(0, \sigma_1) + (1 - \pi_1) \text{Normal}(0, \sigma_2)$$

Usage

prior.mixturescale(chain, sigma1, sigma2, pi1)

Arguments

- **chain**: Chain obtained using Chain
- **sigma1**: Standard deviation of first Gaussian
- **sigma2**: Standard deviation of second Gaussian
- **pi1**: Weight of first Gaussian

Value

a list containing the following

- ‘juliavar’ the julia variable used to store the prior
- ‘juliacode’ the julia code

Examples

```r
## Not run:
## Needs previous call to ‘BayesFluxR_setup’ which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.mixturescale(net, 10, 0.1, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnm <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
```
prior_predictive

Sample from the prior predictive of a Bayesian Neural Network

Description

Sample from the prior predictive of a Bayesian Neural Network

Usage

prior_predictive(bnn, n = 1)

Arguments

bnn BNN obtained using BNN

n Number of samples

Value

matrix of prior predictive samples; Columns are the different samples

Examples

Not run:
Needs previous call to 'BayesFluxR_setup' which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
pp <- prior_predictive(bnn, n = 10)

End(Not run)

RNN

Create a RNN layer with ‘in_size‘ input, ‘out_size‘ hidden state and ‘act‘ activation function

Description

Create a RNN layer with ‘in_size‘ input, ‘out_size‘ hidden state and ‘act‘ activation function
sadapter.Const

Usage

RNN(in_size, out_size, act = c("sigmoid", "tanh", "identity", "relu"))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in_size</td>
<td>Input size</td>
</tr>
<tr>
<td>out_size</td>
<td>Output size</td>
</tr>
<tr>
<td>act</td>
<td>Activation function</td>
</tr>
</tbody>
</table>

Value

A list with the following content

- in_size - Input Size
- out_size - Output Size
- activation - Activation Function
- julia - Julia code representing the Layer

See Also

- Dense

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(RNN(5, 5, "tanh"))
## End(Not run)
```

sadapter.Const

Use a constant stepsize in mcmc

Description

Use a constant stepsize in mcmc

Usage

sadapter.Const(l)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>stepsize</td>
</tr>
</tbody>
</table>
sadapter.DualAverage

Value
list with ‘juliavar’, ‘juliacode’ and the given arguments

Examples
```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sadapter <- sadapter.Const(1e-5)
sampler <- sampler.GGMC(sadapter = sadapter)
ch <- mcmc(bnn, 10, 1000, sampler)
```

End(Not run)

sadapter.DualAverage Use Dual Averaging like in STAN to tune stepsize

Description
Use Dual Averaging like in STAN to tune stepsize

Usage
```r
sadapter.DualAverage(
  adapt_steps,
  initial_stepsize = 1,
  target_accept = 0.65,
  gamma = 0.05,
  t0 = 10,
  kappa = 0.75
)
```

Arguments
- `adapt_steps`: number of adaptation steps
- `initial_stepsize`: initial stepsize
- `target_accept`: target acceptance ratio
- `gamma`: See STAN manual NUTS paper
sampler.AdaptiveMH

\texttt{t0} \quad \text{See STAN manual or NUTS paper}
\texttt{kappa} \quad \text{See STAN manual or NUTS paper}

\textbf{Value}

list with ‘juliavar’, ‘juliacode’, and all given arguments

\textbf{Examples}

\begin{verbatim}
Not run:
Needs previous call to 'BayesFluxR_setup' which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sadapter <- sadapter.DualAverage(100)
sampler <- sampler.GGMC(sadapter = sadapter)
ch <- mcmc(bnn, 10, 1000, sampler)
End(Not run)
\end{verbatim}

\textbf{Description}

\textbf{Usage}

\texttt{sampler.AdaptiveMH(bnn, t0, sd, eps = 1e-06)}

\textbf{Arguments}

\begin{verbatim}
 bnn \quad \text{BNN obtained using \texttt{BNN}}
 t0 \quad \text{Number of iterators before covariance adaptation will be started. Also the look-
 back period for covariance adaptation.}
 sd \quad \text{Tuning parameter; See paper}
 eps \quad \text{Used for numerical reasons. Increase this if pos-def-error thrown.}
\end{verbatim}
Value

a list with 'juliavar', 'juliacode', and all given arguments

Examples

```r
## Not run:
## Needs previous call to 'BayesFluxR_setup' which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.AdaptiveMH(bnn, 10, 1)
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
```

sampler.GGMC

Gradient Guided Monte Carlo

Description

Usage

```r
sampler.GGMC(
  beta = 0.1,
  l = 1,
  sadapter = sadapter.DualAverage(1000),
  madapter = madapter.FixedMassMatrix(),
  steps = 3
)
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>See paper</td>
</tr>
<tr>
<td>l</td>
<td>stepsize</td>
</tr>
<tr>
<td>sadapter</td>
<td>Stepsize adapter; Not used in original paper</td>
</tr>
<tr>
<td>madapter</td>
<td>Mass adapter; Not used in original paper</td>
</tr>
<tr>
<td>steps</td>
<td>Number of steps before accept/reject</td>
</tr>
</tbody>
</table>
Value

a list with 'juliavar', 'juliacode' and all provided arguments.

Examples

```r
## Not run:
## Needs previous call to 'BayesFluxR_setup' which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sadapter <- sadapter.DualAverage(100)
sampler <- sampler.GGMC(sadapter = sadapter)
ch <- mcmc(bnn, 10, 1000, sampler)

## End(Not run)
```

sampler.HMC

Standard Hamiltonian Monte Carlo (Hybrid Monte Carlo).

Description

Allows for the use of stochastic gradients, but the validity of doing so is not clear.

Usage

```r
sampler.HMC(
  l,
  path_len,
  sadapter = sadapter.DualAverage(1000),
  madapter = madapter.FixedMassMatrix()
)
```

Arguments

- **l** stepsize
- **path_len** number of leapfrog steps
- **sadapter** Stepsize adapter
- **madapter** Mass adapter
Details

This is motivated by parts of the discussion in Neal, R. M. (1996). Bayesian Learning for Neural Networks (Vol. 118). Springer New York. https://doi.org/10.1007/978-1-4612-0745-0

Value

a list with ‘juliavar’, ‘juliacode’, and all given arguments

Examples

```r
## Not run:
## Needs previous call to ‘BayesFluxR_setup’ which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)

bnn <- BNN(x, y, like, prior, init)
sadapter <- sadapter.DualAverage(100)
sampler <- sampler.HMC(1e-3, 3, sadapter = sadapter)
ch <- mcmc(bnn, 10, 1000, sampler)

## End(Not run)
```

sampler.SGLD

Description

Stepsizes will be adapted according to

\[a(b + t)^{-\gamma} \]

Usage

```r
sampler.SGLD(  
    stepsize_a = 0.1,  
    stepsize_b = 0,  
    stepsize_gamma = 0.55,  
    min_stepsize = -Inf  
  )
```
Arguments

- `stepsize_a`: See eq. above
- `stepsize_b`: See eq. above
- `stepsize_gamma`: see eq. above
- `min_stepsize`: Do not decrease stepsize beyond this

Value

A list with 'juliavar', 'juliacode', and all given arguments

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
```

```
## End(Not run)
```

sampler.SGNHTS: Stochastic Gradient Nose-Hoover Thermostat as proposed in

Description

Usage

```r
sampler.SGNHTS(
  l,
  sigmaA = 1,
  xi = 1,
  mu = 1,
  madapter = madapter.FixedMassMatrix()
)
```
summary.BNN

Print a summary of a BNN

Arguments

- \(l \) Stepsize
- \(\sigma_A \) Diffusion factor
- \(\xi \) Thermostat
- \(\mu \) Free parameter of thermostat
- \(\text{adapter} \) Mass Adapter; Not used in original paper and thus has no theoretical backing

Details

This is similar to SGNHT as proposed in Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian sampling using stochastic gradient thermostats. Advances in neural information processing systems, 27.

Value

a list with ‘juliavar’, ‘juliacode’ and all arguments provided

Examples

```r
## Not run:
## Needs previous call to ‘BayesFluxR_setup’ which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGNHTS(1e-3)
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
```

Description

Print a summary of a BNN

Usage

```r
## S3 method for class ‘BNN’
summary(object, ...)
```
Arguments

object A BNN created using BNN
... Not used

tensor_embed_mat Embed a matrix of timeseries into a tensor

Description

This is used when working with recurrent networks, especially in the case of seq-to-one modelling. Creates overlapping subsequences of the data with length 'len_seq'. Returned dimensions are seq_len x num_vars x num_subsequences.

Usage

tensor_embed_mat(mat, len_seq)

Arguments

mat Matrix of time series
len_seq subsequence length

Value

A tensor of dimension: len_seq x num_vars x num_subsequences

Examples

Not run:
Needs previous call to `BayesFluxR_setup` which is time
consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(RNN(5, 1))
like <- likelihood.seqtoone_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
data <- matrix(rnorm(5*1000), ncol = 5)
Choosing sequences of length 10 and predicting one period ahead
tensor <- tensor_embed_mat(data, 10+1)
x <- tensor[1:10, , , drop = FALSE]
Last value in each sequence is the target value
y <- tensor[11,1,]
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)

End(Not run)
to_bayesplot

Convert draws array to conform with ‘bayesplot’

Description

BayesFluxR returns draws in a matrix of dimension params x draws. This cannot be used with the ‘bayesplot’ package which expects an array of dimensions draws x chains x params.

Usage

to_bayesplot(ch, param_names = NULL)

Arguments

- `ch`: Chain of draws obtained using mcmc
- `param_names`: If ‘NULL’, the parameter names will be of the form ‘param_1’, ‘param_2’, etc. If ‘param_names’ is a string, the parameter names will start with the string with the number of the parameter attached to it. If ‘param_names’ is a vector, it has to provide a name for each parameter in the chain.

Value

Returns an array of dimensions draws x chains x params.

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
ch <- to_bayesplot(ch)
library(bayesplot)
mcmc_intervals(ch, pars = paste0("param_", 1:10))

## End(Not run)
```
Truncated

Truncates a Distribution

Description

Truncates a Julia Distribution between `lower` and `upper`.

Usage

```r
Truncated(dist, lower, upper)
```

Arguments

- `dist` A Julia Distribution created using `Gamma`, `InverseGamma`...
- `lower` lower bound
- `upper` upper bound

Value

see `Gamma`

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Truncated(Normal(0, 0.5), 0, Inf))

## End(Not run)
```

vi.get_samples

Draw samples form a variational family.

Description

Draw samples form a variational family.

Usage

```r
vi.get_samples(vi, n = 1)
```
vi.get_samples

Arguments

vi obtained using bayes_by_backprop

n number of samples

Value

a matrix whose columns are draws from the variational posterior

Examples

```r
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(RNN(5, 1))
like <- likelihood.seqtoone_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
data <- matrix(rnorm(10*1000), ncol = 10)
# Choosing sequences of length 10 and predicting one period ahead
tensor <- tensor_embed_mat(data, 10+1)
x <- tensor[1:10, , , drop = FALSE]
# Last value in each sequence is the target value
y <- tensor[11,,]
bn <- BNN(x, y, like, prior, init)
vi <- bayes_by_backprop(bn, 100, 100)
vi_samples <- vi.get_samples(vi, n = 1000)
pp <- posterior_predictive(bn, vi_samples)
## End(Not run)
```
Index

.install_pkg, 2
.julia_project_status, 3
.set_seed, 3
.using, 4

bayes_by_backprop, 5, 28, 43
BayesFluxR_setup, 4
BNN, 5, 6, 8, 10, 23, 31, 34, 40
BNN.totparams, 7
Chain, 8, 29, 30
Dense, 9, 18, 32
find_mode, 10, 28
Gamma, 11, 13–17, 24, 42
get_random_symbol, 11
 initialise.allsame, 7, 12
InverseeGamma, 13, 42

julia_setup, 4
likelihood.feedforward_normal, 7, 12, 14, 15–17
likelihood.feedforward_tdist, 15, 17
likelihood.seqtoone_normal, 16, 17
likelihood.seqtoone_tdist, 17
LSTM, 18

madapter.DiagCov, 19, 21
madapter.FixedMassMatrix, 20
madapter.FullCov, 21
madapter.RMSProp, 22
mcmc, 23, 28, 41

Normal, 12, 14–17, 24

opt.ADAM, 5, 10, 25
opt.Descent, 25, 26, 27
opt.RMSProp, 27

prior.gaussian, 7, 12, 29
prior.mixturescale, 30
prior.predictive, 31

RNN, 31

sadadapter.Const, 32
sadadapter.DualAverage, 33
sampler.AdaptiveMH, 34
sampler.GGMC, 35
sampler.HMC, 36
sampler.SGLD, 23, 37
sampler.SGNHTS, 38
summary.BNN, 39
tensor_embed_mat, 40
to_bayesplot, 41
Truncated, 14–17, 24, 42

vi.get_samples, 42