Package ‘BayesGrowth’

November 21, 2023

Type Package
Title Estimate Fish Growth Using MCMC Analysis
Date 2023-11-13
Version 1.0.0
Maintainer Jonathan Smart <jonsmartphd@gmail.com>
Description Estimate fish length-at-age models using MCMC analysis with 'rstan' models. This package allows a multimodel approach to growth fitting to be applied to length-at-age data and is supported by further analyses to determine model selection and result presentation. The core methods of this package are presented in Smart and Grammer (2021) "Modernising fish and shark growth curves with Bayesian length-at-age models". PLOS ONE 16(2): e0246734 <doi:10.1371/journal.pone.0246734>.
License GPL-3
URL https://github.com/jonathansmart/BayesGrowth
BugReports https://github.com/jonathansmart/BayesGrowth/issues
Depends R (>= 3.4.0)
SystemRequirements GNU make
Imports AquaticLifeHistory, bayesplot, dplyr, ggplot2, loo, methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.3.1.1), stats, tibble, tidybayes
Suggests knitr, rmarkdown,
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Biarch true
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)
NeedsCompilation yes
Description

A package to estimate fish length-at-age models using MCMC analysis with 'rstan' models.

Estimate fish length-at-age models using MCMC analysis with 'rstan' models. This package allows a multimodel approach to growth fitting to be applied to length-at-age data and is supported by further analyses to determine model selection and result presentation. The core methods of this package are presented in Smart and Grammer (2021) "Modernising fish and shark growth curves with Bayesian length-at-age models". PLOS ONE 16(2): e0246734.

References

To cite the BayesGrowth package in publications, type citation('BayesGrowth'). The Stan software should also be referenced: Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3. <https://mc-stan.org>
Calculate_MCMC_growth_curve

Description

A 'stan.fit' object produced from Estimate_MCMC_Growth is converted to a dataframe and structured using requested quantiles. This function takes the list of MCMC results for multiple chains, restructures them into a dataframe and calculates quantiles around length-at-age estimates. The quantiles are produced using the tidybayes::mean_qi() function and this result is returned from the function. This can be conveniently plotted in a ggplot using the geom_lineribbon() function provided in the tidybayes package.

Usage

Calculate_MCMC_growth_curve(
 obj,
 Model = NULL,
 max.age = NULL,
 probs = c(0.5, 0.75, 0.95)
)

Arguments

obj An output from the Estimate_MCMC_Growth function
Model The model used in the Estimate_MCMC_Growth object. Either "VB", "Gom" or "Log".
max.age The max age to estimate growth up until.
probs The percentiles of the results to return. Can be a single value or a vector of values. A single quantile width is required rather than its range. For example, 50th percentiles would be width = .5 which would return a lower percentile at .25 and an upper percentile of .75.

Value

A tibble that has been formatted using tidybayes::mean_qi(). This includes variables: Age, LAA, .lower, .upper, .width, .point and .interval.

Examples

load example data
data("example_data")
Biological info - lengths in mm
max_size <- 440
max_size_se <- 5
birth_size <- 0
birth_size_se <- 0.001 # an se cannot be zero

Use the function to estimate the rstan model
fit <- Estimate_MCMC_Growth(data = example_data,
 Model = "VB",
 iter = 5000,
 Linf = max_size,
 Linf.se = max_size_se,
 L0 = birth_size,
 sigma.max = 100,
 L0.se = birth_size_se,
 k.max = 1,
 n_cores = 1)

Use function to return a dataframe of model predictions for VB growth model
Calculate_MCMC_growth_curve(fit, Model = "VB", max.age = max(example_data$Age))

Calc_Gompertz_LAA

Description

Calc_Gompertz_LAA

Usage

Calc_Gompertz_LAA(Linf, k, L0, Age)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linf</td>
<td>A single value of asymptotic length for the Gompertz model</td>
</tr>
<tr>
<td>k</td>
<td>A single value of the growth completion parameter for the Gompertz model</td>
</tr>
<tr>
<td>L0</td>
<td>A single value of length-at-birth for the Gompertz model</td>
</tr>
<tr>
<td>Age</td>
<td>A single value or vector of ages to convert to length based on the Gompertz model</td>
</tr>
</tbody>
</table>

Value

A vector of length-at-ages

Examples

Calculate length-at-age for a Gompertz growth curve with given parameters
and age range
Age_Range <- 0:16
Calc_Gompertz_LAA(Linf = 1580, k = 0.21, L0 = 72, Age = Age_Range)
Calc_Logistic_LAA

Description
Calc_Logistic_LAA

Usage
Calc_Logistic_LAA(Linf, k, L0, Age)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linf</td>
<td>A single value of asymptotic length for the logistic model</td>
</tr>
<tr>
<td>k</td>
<td>A single value of the growth completion parameter for the logistic model</td>
</tr>
<tr>
<td>L0</td>
<td>A single value of length-at-birth for the logistic model</td>
</tr>
<tr>
<td>Age</td>
<td>A single value or vector of ages to convert to length based on the logistic model</td>
</tr>
</tbody>
</table>

Value
A vector of length-at-ages

Examples
Calculate length-at-age for a logistic growth curve with given parameters
and age range
Age_Range <- 0:16
Calc_Logistic_LAA(Linf = 1560, k = 0.36, L0 = 73, Age = Age_Range)

Calc_VBGF_LAA

Description
Calc_VBGF_LAA

Usage
Calc_VBGF_LAA(Linf, k, L0, Age)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linf</td>
<td>A single value of asymptotic length for the von Bertalanffy model</td>
</tr>
<tr>
<td>k</td>
<td>A single value of the growth completion parameter for the von Bertalanffy model</td>
</tr>
<tr>
<td>L0</td>
<td>A single value of length-at-birth for the von Bertalanffy model</td>
</tr>
<tr>
<td>Age</td>
<td>A single value or vector of ages to convert to length based on the von Bertalanffy model</td>
</tr>
</tbody>
</table>
Value

A vector of length-at-ages

Examples

```r
# Calculate length-at-age for a von Bertalanffy growth curve with given parameters
# and age range
Age_Range <- 0:16
Calc_VBGF_LAA(Linf = 1630, k = 0.15, L0 = 71, Age = Age_Range)
```

Description

Conduct growth model selection using 'Leave One Out' (LOO) cross validation analysis and Widely Applicable Information Criterion (WAIC)for three growth models: (von Bertalanffy, Gompertz and Logistic) using the same prior parameters for each.

Usage

```r
Compare_Growth_Models(
  data,
  Linf = NULL,
  Linf.se = NULL,
  L0 = NULL,
  L0.se = NULL,
  k.max = NULL,
  sigma.max = NULL,
  iter = 10000,
  BurnIn = iter/2,
  n_cores = 1,
  controls = NULL,
  n.chains = 4,
  thin = 1,
  verbose = FALSE,
  stats = "LooIC"
)
```

Arguments

- **data**: A data.frame that contains columns named 'Age' and 'Length'. The function can detect columns with similar names. If age and length columns cannot be determined then an error will occur. The dataset can have additional columns which will be ignored by the function.
- **Linf**: The prior for asymptotic length. Must be in the same unit (i.e. cm or mm) as the data. This should be based off of maximum size for the species.
The prior for normally distributed standard error around asymptotic length. Must be in the same unit (i.e. cm or mm) as the data. Cannot be zero.

L_0 The prior for length-at-birth. Must be in the same unit (i.e. cm or mm) as the data. This should be based off of minimum size for the species.

L_0.se The prior for normally distributed standard error around length-at-birth. Must be in the same unit (i.e. cm or mm) as the data. Cannot be zero.

k.max The maximum value to consider for the growth completion parameter 'k'. In the Gompertz and Logistic models, this parameter is often notated as 'g' instead of 'k'.

σ.max The maximum value to consider for sigma. This is the variance around the length-at-age residuals.

iter How many MCMC iterations should be run? Default is 10000 but fewer can be useful to avoid longer run times when testing code or data

BurnIn The number of iterations at the beginning of each chain to discard ('Burn in') to avoid biased values from starting values that do not resemble the target distribution. Default is iter/2.

n_cores The number of cores to be used for parallel processing. It should be 1 core less than the maximum number available.

controls A named list of parameters to control the rstan models behaviour.

n.chains Number of MCMC chains to be run. Default is 4.

thin The thinning of the MCMC simulations. Default is 1 which means no thinning occurs. Thinning is generally only necessary for complicated models as it increases run time.

verbose TRUE or FALSE: flag indicating whether to print intermediate output from Stan on the console, which might be helpful for model debugging.

stats Which statistics should be returned: LooIC, WAIC or both (both will return a list)

Value
A dataframe with the requested stats

Examples

```r
# load example data
data("example_data")
## Biological info - lengths in mm
max_size <- 440
max_size_se <- 5
birth_size <- 0
birth_size_se <- 0.001 # an se cannot be zero

# Use the function to compare growth models with LooIC
Looic_example_results <- Compare_Growth_Models(data = example_data,
stats = "LooIC",
)
```
Description

A wrapper function that creates a Stan MCMC model using the rstan package. The data and priors provided are combined into an rstan model that estimates a length-at-age model with a normal distribution. Three different growth models can be used: a von Bertalanffy model, Gompertz model or a logistic model. The prior on Linf and L0 are normally distributed and determined through the user providing a mean and se for each parameter. The growth completion parameter for any model (k) has a uniform prior which only requires an upper bound with the lower bound set at zero. Sigma is the residual variance of the data around the model and is set up in the same manner as 'k'. The growth estimates in the model are truncated to remain above zero so negative growth cannot occur.

Usage

```r
Estimate_MCMC_Growth(
  data,
  Model = NULL,
  Linf = NULL,
  Linf.se = NULL,
  L0 = NULL,
  L0.se = NULL,
  k.max = NULL,
  sigma.max = NULL,
  iter = 10000,
  BurnIn = iter/2,
  n.chains = 4,
  n.cores = 1,
  controls = NULL,
  verbose = FALSE
)
```
Arguments

data A data.frame that contains columns named 'Age' and 'Length'. The function can detect columns with similar names. If age and length columns cannot be determined then an error will occur. The dataset can have additional columns which will be ignored by the function.

Model Which growth model should be run? Must be one of "VB", "Gom" or "Log" for von Bertalanffy, Gompertz or Logistic models, respectively.

Linf The prior for asymptotic length. Must be in the same unit (i.e. cm or mm) as the data. This should be based off of maximum size for the species.

Linf.se The prior for normally distributed standard error around asymptotic length. Must be in the same unit (i.e. cm or mm) as the data. Cannot be zero.

L0 The prior for length-at-birth. Must be in the same unit (i.e. cm or mm) as the data. This should be based off of minimum size for the species.

L0.se The prior for normally distributed standard error around length-at-birth. Must be in the same unit (i.e. cm or mm) as the data. Cannot be zero.

k.max The maximum value to consider for the growth completion parameter 'k'. In the Gompertz and Logistic models, this parameter is often notated as 'g' instead of 'k'.

sigma.max The maximum value to consider for sigma. This is the variance around the length-at-age residuals.

iter How many MCMC iterations should be run? Default is 10000 but fewer can be useful to avoid longer run times when testing code or data.

BurnIn The number of iterations at the beginning of each chain to discard ('Burn in') to avoid biased values from starting values that do not resemble the target distribution. Default is iter/2.

n_cores The number of cores to be used for parallel processing. It should be 1 core less than the maximum number available.

controls A named list of parameters to control the rstan models behaviour.

n.chains Number of MCMC chains to be run. Default is 4.

thin The thinning of the MCMC simulations. Default is 1 which means no thinning occurs. Thinning is generally only necessary for complicated models as it increases run time.

verbose TRUE or FALSE: flag indicating whether to print intermediate output from Stan on the console, which might be helpful for model debugging.

Value

An object of class 'stanfit' from the rstan package.

Examples

load example data
data("example_data")
example_data

Biological info - lengths in mm
max_size <- 440
max_size_se <- 5
birth_size <- 0
birth_size_se <- 0.001 # an se cannot be zero

Use the function to estimate the rstan model
fit <- Estimate_MCMC_Growth(data = example_data,
Model = "VB",
iter = 5000,
Linf = max_size,
Linf.se = max_size_se,
L0 = birth_size,
L0.se = birth_size_se,
sigma.max = 100,
L0.se = birth_size_se,
k.max = 1,
n_cores = 1)

example_data

Example length-at-age data

Description

A dataset used as examples in the vignettes and for users to test code with

Usage

data(example_data)

Format

A data frame with 509 rows and 2 variables

Details

- Age. Number of growth bands determined from vertebral analysis
- Length. Total Length in mm determined via back-calculation
Description

Get parameter summary statistics from the outputs of a Estimate_MCMC_Growth object. It is simplified set of results than is returned from summary(obj).

Usage

Get_MCMC_parameters(obj)

Arguments

obj An output from the Estimate_MCMC_Growth function

Value

A data.frame with the posterior distributions for each parameter. These include the mean, Standard error of the mean, Standard deviation of the mean, median, 95th percentiles, effective sample sizes and Rhat.

Examples

load example data
data("example_data")
Biological info - lengths in mm
max_size <- 440
max_size_se <- 5
birth_size <- 0
birth_size_se <- 0.001 # an se cannot be zero

Use the function to estimate the rstan model
fit <- Estimate_MCMC_Growth(data = example_data,
 Model = "VB",
 iter = 5000,
 Linf = max_size,
 Linf.se = max_size_se,
 L0 = birth_size,
 sigma.max = 100,
 L0.se = birth_size_se,
 k.max = 1,
 n_cores = 1)

Use function to return a dataframe of model results
Get_MCMC_parameters(fit)
Looic_example_results
Example MCMC model comparison outputs

Description
The results of an MCMC model comparison used as examples in the vignettes and for users to test code with

Usage
```r  
data(Looic_example_results)  
```

Format
An dataframe with results of LooIC

MCMC_example_results
Example MCMC model outputs

Description
The results of an MCMC model used as examples in the vignettes and for users to test code with

Usage
```r  
data(MCMC_example_results)  
```

Format
An 'rstan' model with the class stan.fit
Index

* datasets
 example_data, 10
 Looic_example_results, 12
 MCMC_example_results, 12

BayesGrowth, 2

Calc_Gompertz_LAA, 4
Calc_Logistic_LAA, 5
Calc_VBGF_LAA, 5
Calculate_MCMC_growth_curve, 3
Compare_Growth_Models, 6

Estimate_MCMC_Growth, 8
example_data, 10

Get_MCMC_parameters, 11
Looic_example_results, 12
MCMC_example_results, 12