Package ‘BayesNetBP’

Type Package
Title Bayesian Network Belief Propagation
Version 1.4.0
Date 2018-08-22
Author Han Yu
Maintainer Han Yu <hyu9@buffalo.edu>
Depends R (>= 3.3.0), stats, graphics, utils
Imports Rgraphviz, igraph, RColorBrewer, fields, doBy, qtlnet,
methods, qtl, graph, bnlearn
Suggests shiny, googleVis
URL https://github.com/hyu-ub/BayesNetBP
BugReports https://github.com/hyu-ub/BayesNetBP/issues
LazyData true
Description Belief propagation methods in Bayesian Networks to propagate evidence through the network. The implementation of these methods are based on the article: Cowell, RG (2005). Local Propagation in Conditional Gaussian Bayesian Networks <http://www.jmlr.org/papers/volume6/cowell05a/>.
License GPL-2
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-22 21:06:37 UTC

R topics documented:

AbsorbEvidence .. 2
bn_to_graphNEL .. 3
chest .. 4
ClusterTree-class .. 4
AbsorbEvidence

Absorb evidence into the model

Description
Absorb evidence into the model

Usage
AbsorbEvidence(tree, vars, values)

Arguments
- tree: a ClusterTree object
- vars: a vector of the names of observed variables
- values: a list of observed values of the variables. Aside from a single value, the element of the list can also be a vector of likelihood values

Details
Absorb multiple types and pieces of evidences into a ClusterTree object. The discrete compartment of the ClusterTree will be automatically propagated after evidence absorption, so that the object will be ready for making queries and absorbing additional evidence.
bn_to_graphNEL

Value

ClusterTree object with the evidence absorbed

Author(s)
Han Yu

References

Examples

data(liver)
tree.init.p <- Initializer(dag=liver$dag, data=liver$data,
 node.class=liver$node.class,
 propagate = TRUE)
tree.post <- AbsorbEvidence(tree.init.p, c("Nr1i3", "chr1_42.65"), list(1,"1"))

bn_to_graphNEL

Convert a bn object to graphNEL object

Description

Convert a bn object to graphNEL object while removing isolated nodes

Usage

bn_to_graphNEL(graph_bn)

Arguments

graph_bn a bn object of Bayesian network

Value

a graphNEL object

Author(s)
Han Yu
Description

Simulated data from the Chest Clinic example (also known as the Asia example) from Lauritzen and Spiegelhalter, 1988.

Usage

data(chest)

Format

The data set chest contains two objects:

data a data.frame object of 10000 observations and 8 discrete variables.
dag a graphNEL object specifying the network structure.

References

ClusterTree-class

An S4 class of the cluster tree.

Description

The ClusterTree object is the computational object for belief propagation.

Slots

cluster A vector storing the name of clusters in the cluster tree.
node A vector storing the name of nodes in the Bayesian network.
graph A list of two graphNEL objects: dag stores the graph of Bayesian network, $tree$ stores the graph of the cluster tree.
member A named list of the node cluster membership.
parent A named vector indicating the parent node of a given cluster in the cluster tree.
class A named vector of logical values indicating whether a cluster is continuous or discrete.
ClusterTreeCompile

Description
Get the cluster sets and strong semi-elimination tree from the Bayesian network.

Usage
ClusterTreeCompile(dag, node.class)

Arguments
dag a graphNEL object of the Bayesian network
node.class a named vector of logical values, TRUE if node is discrete, FALSE if otherwise

Details
This function forms the cluster sets and the semi-elimination tree graph from the Bayesian network. The procedures include acquiring the elimination order, moralization, triangulation, obtaining cluster sets, forming strong elimination tree and strong semi-elimination tree. The cluster sets and the semi-elimination tree are required to initialize the cluster tree.

Value
tree.graph a graphNEL object of semi-elimination tree.
dag a graphNEL object of original Bayesian network.
cluster.sets a list of members of each cluster.
node.class a named vector of logical values, TRUE if node is discrete, FALSE if otherwise
elimination.order a vector of node names sorted by the elimination order.
Author(s)
Han Yu

References

See Also
ElimTreeInitialize

Examples

data(liver)
cst <- ClusterTreeCompile(dag=liver$dag, node.class=liver$node.class)

OperateKLDs Compute signed and symmetric Kullback-Leibler divergence

Description
Compute signed and symmetric Kullback-Leibler divergence of variables over a spectrum of evidence

Usage
ComputeKLDs(tree, var0, vars, seq, pbar = TRUE, method = "gaussian")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>a ClusterTree object</td>
</tr>
<tr>
<td>var0</td>
<td>the variable to have evidence absorbed</td>
</tr>
<tr>
<td>vars</td>
<td>the variables to have divergence computed</td>
</tr>
<tr>
<td>seq</td>
<td>a vector of numeric values as the evidences</td>
</tr>
<tr>
<td>pbar</td>
<td>logical(1) whether to show progress bar</td>
</tr>
<tr>
<td>method</td>
<td>method for divergence computation: gaussian for Gaussian approximation, for Monte Carlo integration</td>
</tr>
</tbody>
</table>

Details
Compute signed and symmetric Kullback-Leibler divergence of variables over a spectrum of evidence. The signed and symmetric Kullback-Leibler divergence is also known as Jeffery’s signed information (JSI) for continuous variables.
ElimTreeInitialize

Value
a data.frame of the divergence

Author(s)
Han Yu

Examples
```r
## Not run:
data(liver)
tree.init.p <- Initialize(dag=liver$dag, data=liver$data,
                           node.class=liver$node.class,
                           propagate = TRUE)
klids <- ComputeKLDs(tree=tree.init.p, var0="Nr1i3",
                      vars=setdiff(tree.init.p@node, "Nr1i3"),
                      seq=seq(-3,3,0.5))
head(klids)
## End(Not run)
```

ElimTreeInitialize Initialize the elimination tree

Description
Initialize the elimination tree with the local models

Usage
```r
ElimTreeInitialize(tree, dag, model, node.sets, node.class)
```

Arguments
- **tree**: a graphNEL object of the elimination tree
- **dag**: a graphNEL object of the Bayesian network
- **model**: a list of local models built from `LocalModelCompile` function
- **node.sets**: a list of cluster sets obtained from `ClusterTreeCompile` function
- **node.class**: a named vector of logical values, TRUE if node is discrete, FALSE if otherwise

Details
Initialize the elimination tree with the local models

Value
- `ClusterTree` object with the local models incorporated
Author(s)
Han Yu

References

See Also
The functions `ClusterTreeCompile` and `LocalModelCompile` provide necessary objects to obtain `ClusterTree` object by initializing the elimination tree through this function.

Examples
```r
data(liver)
cst <- ClusterTreeCompile(dag=liver$dagL node.class=liver$node.class)
models <- LocalModelCompile(data=liver$data, dag=liver$dagL node.class=liver$node.class)
tree.init <- ElimTreeInitialize(tree=cst$tree.graph,
  dag=cst$dag,
  model=models,
  node.sets=cst$cluster.sets,
  node.class=cst$node.class)
```

Description
A propagated `ClusterTree` object named `emission`. This model contains nine variables, including three discrete: Filter State (Fs), Waste Type (W), Burning Regimen (B) and six continuous variables: Metals in Waste (Min), Metals Emission (Mout), Filter Efficiency (E), Dust Emission (D), CO2 Concentration in Emission (C), Light Penetrability (L).

Usage
```r
data(emission)
```

Format
The data set contains a propagated `ClusterTree` object `emission` ready for evidence absorption and making queries.

References
emission1000

A simulated data from the Emission example

Description

Simulated data from the Emission example (also known as the Waste Incinerator example)

Usage

data(emission1000)

Format

The data set emission1000 contains two objects:

data a data.frame object of 1000 observations and 3 discrete variables and 6 continuous variables.
dag a graphNEL object specifying the network structure.

References

FactorQuery

Queries of discrete variable distributions

Description

Obtain the joint, marginal, and conditional distributions of discrete variables

Usage

FactorQuery(tree, vars = c(), mode = c("joint", "conditional", "list"))

Arguments

tree a ClusterTree object
vars the variables to be queried
mode type of desired distribution
 getValue

Details

Query the joint distribution of any combination of discrete variables when mode is "joint", or conditional distribution of a discrete variable. The mode "list" return a list of variable combinations, such that joint distributions of any subset of them are ready for extraction. Queries outside this list are also supported but may take longer computing time. This function will also return marginal distribution if only one variable is queried.

Value

data.frame object specifying a joint or conditional distribution.

Author(s)

Han Yu

References

Examples

data(chest)
dag <- chest$dag
node.class <- rep(TRUE, length(dag@nodes))
names(node.class) <- dag@nodes
tree.init.p <- Initializer(dag=dag, data=chest$data,
 node.class=node.class,.propagate=TRUE)

joint distribution
FactorQuery(tree=tree.init.p, vars=c("tub", "xray", "dysp", "asia"), mode="joint")

conditional distribution
FactorQuery(tree=tree.init.p, vars=c("xray"), mode="conditional")

GetValue

Possible values of a discrete variable

Description

Obtain all the possible values of a discrete variable.

Usage

GetValue(tree, var, message = TRUE)
Initializer

Arguments

tree a ClusterTree object
var the variables to be queried
message type of desired distribution

Value

a vector of the possible values of discrete variable. If the variable is continuous, the returned value will be NULL.

Author(s)

Han Yu

Examples

data(toytree)
GetValue(toytree, "HDL")

Initialiser Initialize a ClusterTree object

Description

Initialize a ClusterTree object

Usage

Initializer(dag, data, node.class, propagate = TRUE)

Arguments

dag a graphNEL object of the Bayesian network
data a data.frame object
node.class a named vector of logical values, TRUE if node is discrete, FALSE if otherwise
propagate logical TRUE if the discrete part of the ClusterTree to be propagated

Details

A wrapper function to initialize a ClusterTree object. It combines the functions of ClusterTreeCompile, LocalModelCompile, ElimTreeInitialize and Propagate, thus initialize the ClusterTree object in a single step.

Value

ClusterTree object
Author(s)
Han Yu

References

See Also
ClusterTreeCompile, LocalModelCompile, ElimTreeInitialize, Propagate

Examples
```r
data(liver)
tree.init.p <- Initialize(dag=liver$dag, data=liver$data,
                          node.class=liver$node.class,
                          propagate = TRUE)
```

```r
default(liver)
```

```r
Description
Liver QTL data was obtained from a F2 inner-cross between inbred MRL/MpJ and SM/J strains of mice.

Usage
data(liver)

Format
The data set liver contains three objects: the data, a learned Bayesian network structure and vector specifying node type. The fields are described as follows:

*data* a data.frame object that contains 280 samples (rows) and 15 variables: genotype data (genotype states at 5 SNP markers) and phenotype data (HDL levels and normalized expression values of 10 genes). Three of these phenotypes are dichotomized, including Cyp2b10, Spgl1 and HDL. Genotypes and dichotomized phenotypes are of class factor and continuous phenotypes are of class numeric.

dag a graphNEL object, which is the network structure learned by qtlnet package.

node.class a named vector of logical values indicating whether each node is discrete.

References
LocalModelCompile  Model compilation

Description

Compile the local models

Usage

LocalModelCompile(data, dag = NULL, node.class = NULL)

Arguments

data  a data.frame object or a qtlnet object
dag  NULL if data is qtlnet object, or a graphNEL object of conditional Gaussian Bayesian network if data is data.frame.
node.class  NULL if data is qtlnet object, or a vector of logical values named by node names, TRUE for discrete, FALSE for continuous variables if data is data.frame.

Details

This function compiles the local models, including the conditional probability tables for discrete variables, and linear predictor potentials for continuous variables.

Value

pots a list of discrete potentials (conditional probability tables) for each discrete variable.
bags a list of sets of continuous potentials (lppotentials), each set for a continuous variables.

Author(s)

Han Yu

References


See Also

ElimTreeInitialize

Examples

data(liver)
models <- LocalModelCompile(data=liver$data, dag=liver$dag, node.class=liver$node.class)
Obtain marginal distributions

Description
Get the marginal distributions of multiple variables

Usage
Marginals(tree, vars)

Arguments
- tree: a ClusterTree object
- vars: a vector of variables for query of marginal distributions

Details
Get the marginal distributions of multiple variables. The function Marginals returns a list of marginal distributions. The marginal distribution of a discrete variable is a named vector of probabilities. Meanwhile, the marginal distributions of continuous variables in a CG-BN model are mixtures of Gaussian distributions. To fully represent this information, the marginal of a continuous variable is represented by a data.frame with three columns to specify parameters for each Gaussian distribution in the mixture, which are

- mean: the mean value of a Gaussian distribution.
- sd: the standard deviation of a Gaussian distribution.
- n: the number of Gaussian mixtures

Value
- marginals: a list of marginal distributions
- types: a named vector indicating the types of the variables whose marginals are queried: TRUE for discrete, FALSE for continuous.

Author(s)
Han Yu

References

See Also
PlotMarginals for visualization of the marginal distributions, SummaryMarginals for summarization of the marginal distributions of continuous variables.
Examples

data(liver)
tree.init.p <- Initialize(dag=liver$dag, data=liver$data,
node.class=liver$node.class,
propagate = TRUE)
tree.post <- AbsorbEvidence(tree.init.p, c("Nr1l3", "chr1_42.65"), list(1,"1"))
marg <- Marginals(tree.post, c("HDL", "Ppap2a"))
marg$ marginals$HDL
head(marg$marginals$Ppap2a)

Description
Plot and compare two Bayesian networks with different evidence(s) absorbed and propagated.

Usage
PlotCGBN(tree.1, tree.2, fontsize = NULL, pbar = FALSE, plotting = TRUE)

Arguments
- tree.1: a ClusterTree
- tree.2: a ClusterTree
- fontsize: font size for the node labels
- pbar: logical(1) whether to show progress bar
- plotting: logical(1) whether to output plot

Details
Network visualization of the node-specific differences between Bayesian Networks with the same
 topology, but evidence that has been absorbed and propagated. The change of marginal distribution
 of each node is measured by signed and symmetric Kullback-Leibler divergence. The sign indicates
 the direction of change, with tree.1 considered as the baseline. The magnitude of the change is
 reflected by the value. Nodes that are white are d-separated from the evidence.

Value
- a plot of Bayesian network
- a vector of signed symmetric Kullback-Leibler divergence

Author(s)
Han Yu
References


Examples

```r
Not run:
data(toytree)
tree.post <- AbsorbEvidence(toytree, c("Nr1i3"), list(TRUE))
PlotCGBN(tree.1=toytree, tree.2=tree.post)

End(Not run)
```

---

PlotMarginals  
*Plot the marginal distributions*

**Description**

Plot the marginal distributions.

**Usage**

```r
PlotMarginals(marginals, groups = NULL)
```

**Arguments**

- `marginals`: the marginal distributions returned by `Marginals` for plotting
- `groups`: names of the marginals to be shown on plots

**Details**

Plot the marginal distributions. Marginals of discrete variables are plotted as bar plots, while those of continuous variables as density plots.

**Author(s)**

Han Yu

**References**


**See Also**

*Marginals*
Examples

```r
data(toytree)
marg <- Marginals(toytree, c("Neu1", "Nr1i3", "chr1_42.65", "Spgl1"))
PlotMarginals(marginals=marg, groups=NULL)
```

---

Description

Plot the structure of a `ClusterTree` object

Usage

```r
PlotTree(tree, color = "gray90")
```

Arguments

- `tree`  
  a `ClusterTree` object

- `color`  
  nodes color

Details

Plot the structure of `clusterTree` object, with the nodes labeled by corresponding elimination node. The circles represent continuous clusters, while the boxes represent discrete clusters.

Author(s)

Han Yu

References


Examples

```r
data(toytree)
PlotTree(toytree)
```
Propagate

Propagate the cluster tree

Description
This function propagates the discrete compartment of a ClusterTree object.

Usage
Propagate(tree)

Arguments
tree an initialized ClusterTree object

details
The discrete compartment must be propagated to get the joint distributions of discrete variables in each discrete clusters. A ClusterTree object must be propagated before absorbing evidence and making queries.

Value
a ClusterTree object

Examples

```r
data(liver)
tree.init <- Initialize(dag=liver$dag, data=liver$data, node.class=liver$node.class, propagate = FALSE)
tree.init@propagated
tree.init.p <- Propagate(tree.init)
tree.init.p@propagated
```

runBayesNetApp

Launch the BayesNetBP Shiny App

Description
Launch the BayesNetBP Shiny App

Usage
runBayesNetApp(launch.browser = TRUE)
Arguments

launchNbrowser  logical(1) whether launch the App in browser

Details

The function runBayesNetApp lauches the Shiny App accompanied with this package. The app loads the toytree example by default and allows users to load customized ClusterTree object. In order to use this feature, a ClusterTree object should be built, propagated and named tree.init.p, and then saved as a .RDATA file. This file can be read in by the app.

The console of BayesNetBP Shiny App comprises three panels. The first part controls the model loading and network layouts. It also allows user to subset the network to facilitate visualization. The Expand function can trace the ancestors, descendants, or both, of a selected node in a stepwise manner. The expanded nodes will be colored orange. By clicking Add to list, the expanded nodes will be selected and be purple. The user can continue selecting other nodes by using Expand and Add to list functions at this stage. After selecting desired node sets, the user can subset the graph by the Subset function. The nodes in subsetted graph retain all properties before subsetting, including their colors and divergence.

The second panel is used for absorption of fixed and hard evidences. The users can add multiple pieces of evidence to a list and absorb them into the model simultaneously. The nodes with evidence absorbed will be colored green when the absorption is complete. Marginals of the nodes can be queried as density or bar plots by node types. If a set of evidence has been absorbed, the marginals both before and after absorption will be returned to facilitate comparison. To query the marginals, the user can select the node of interest in the graph, and then click Plot Marginals. The Shift in Marginals function computes the signed and symmetric Kullback-Liebler divergence for all applicable nodes in the network, and colors the nodes in a similar manner as the function PlotCGBN.

The function for systematic assessment of variable marginal shifts is provided in the third panel. It allows user to specify which node to absorb the spectrum of evidence in a menu, and to select whose divergence to be calculated by firstly selecting the node on the graph and then clicking Add to Plot List. Alternatively, the user can use Add All function to select all applicable nodes into the plotting list. The result is visualized in an interactive plot.

Author(s)

Han Yu

Examples

```r
Not run:
load or install required packages to run App
library("shiny")
library("googleVis")
library("devtools")
devtools::install_github("cytoscape/r-cytoscape.js")
```
# run the App in browser
runBayesNetApp(launch.browser=TRUE)

## End(Not run)

---

### Sampler

#### Sampling from the Bayesian network

**Description**

Sampling from the joint distribution of all applicable nodes in the Bayesian network.

**Usage**

```r
Sampler(tree, n)
```

**Arguments**

- `tree`  
  - a `ClusterTree` object
- `n`  
  - a integer number of observations to generate

**Value**

- a dataframe of generated data

**Author(s)**

Han Yu

**References**


**Examples**

```r
data(toytree)
Sampler(tree = toytree, n = 10)
```
SummaryMarginals

Summary a continuous marginal distribution

Description

This function summarises the marginal distributions of continuous variables by outputting the mean, standard deviation, and number of subpopulations.

Usage

SummaryMarginals(marginals)

Arguments

marginals the marginal distributions obtained from Marginals function

Value

a data.frame object containing information about the marginal distributions for continuous variables. The marginal distributions of continuous variables in a CG-BN model are mixtures of Gaussian distributions. Therefore, besides the mean and standard deviation, the object has an additional column to specify the number of Gaussian mixtures.

- mean the mean value of a Gaussian distribution.
- sd the standard deviation of a Gaussian distribution.
- n the number of Gaussian distributions in the mixture.

See Also

Marginals

Examples

data(liver)
tree.init.p <- Initializer(dag=liver$dag, data=liver$data, node.class=liver$node.class, propagate = TRUE)
marg <- Marginals(tree.init.p, c("HDL", "Ppap2a", "Neu1"))SummaryMarginals(marginals=marg)
Description

A propagated ClusterTree object named toytree, obtained from liver QTL data.

Usage

data(toytree)

Format

The data set contains a propagated ClusterTree object toytree, which is ready for evidence absorption and making queries.

Description

eQTL data from 112 F1 segregants from a cross between BY4716 and RM11-1a strains of Saccharomyces Cerevisiae.

Usage

data(yeast)

Format

The data set yeast is a data frame of 112 observations of 50 variables: genotype data (genotype states at 12 SNP markers) and phenotype data (normalized and discretized expression values of 38 genes). Both genotypes and phenotypes are of class factor.

Details

The yeast dataset is a subset of the widely studied yeast expression dataset comprising of 112 F1 segregants from a cross between BY4716 and RM11-1a strains of Saccharomyces Cerevisiae. The original dataset consists of expression values reported as log2(sample/ BY reference) for 6216 genes. The data can be accessed in Gene Expression Omnibus (GEO) by accession number (GSE1990). After linkage analysis and filtering based on location and significance of QTL, a final set of 38 genes and their corresponding 12 SNP markers were identified and included in the yeast dataset. The gene expression values are discretized around the median and have two states, 1 (above or equal to median) and -1 (below median). re are two genotype states: 1 or 2. Thus the final dataset is a data frame of 112 observations (genotype) of 12 variables (SNP markers) and normalized gene expression of 38 variables (genes).
References


Index

AbsorbEvidence, 2
bn_to_graphNEL, 3
chest, 4
ClusterTree, 2, 3, 6–9, 11, 14, 15, 17–20, 22
ClusterTree-class, 4
ClusterTreeCompile, 5, 7, 8, 11, 12
ComputeKLDs, 6
ElimTreeInitialize, 6, 7, 11–13
emission, 8
emission1000, 9
FactorQuery, 9
GetValue, 10
Initializer, 11
liver, 12, 22
LocalModelCompile, 7, 8, 11, 12, 13
Marginals, 14, 16, 21
PlotCGBN, 15, 19
PlotMarginals, 14, 16
PlotTree, 17
Propagate, 11, 12, 18
runBayesNetApp, 18
Sampler, 20
SummaryMarginals, 14, 21
toytree, 22
yeast, 22