Package ‘BayesSpec’

February 22, 2017

Type Package
Title Bayesian Spectral Analysis Techniques
Version 0.5.3
Author Rosen, O., Wood, S. and Stoffer, D.
Maintainer Andrew Ferris <andrew.ferris@sydney.edu.au>
Description An implementation of methods for spectral analysis using the Bayesian framework. It includes functions for modelling spectrum as well as appropriate plotting and output estimates. There is segmentation capability with RJ MCMC (Reversible Jump Markov Chain Monte Carlo). The package takes these methods predominantly from the 2012 paper "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series" <DOI:10.1080/01621459.2012.716340>.
Imports mvtnorm (>= 1.0-5), pscl (>= 1.4.9), trust (>= 0.1-7)
License GPL-3
LazyLoad TRUE
LazyData TRUE
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-02-22 08:42:14

R topics documented:

adaptspec ... 2
intracranial_eeg .. 3
simulated_piecewise 4

Index 5
Description

Methodology for analyzing possibly non-stationary time series by adaptively dividing the time series into an unknown but finite number of segments and estimating the corresponding local spectra by smoothing splines.

Usage

adaptspec(nloop, nwarmup, nexp_max, x, tmin, sigmasqalpha, tau_prior_a, tau_prior_b, tau_up_limit, prob_mm1, step_size_max, var_inflate, nbasis, nfreq_hat, plotting)

Arguments

nloop The total number of MCMC iterations
nwarmup The number of burn-in iterations
nexp_max The maximum number of segments allowed
x The data, a univariate time series, not a time series object
tmin The minimum number of observations per segment. An optional argument defaulted to tmin = 40.
sigmasqalpha An optional argument defaulted to sigmasqalpha = 100.
tau_prior_a An optional argument defaulted to tau_prior_a = -1.
tau_prior_b An optional argument defaulted to tau_prior_b = 0.
tau_up_limit An optional argument defaulted to tau_up_limit = 10000.
prob_mm1 An optional argument defaulted to prob_mm1 = 0.8.
step_size_max An optional argument defaulted to step_size_max = 10.
var_inflate An optional argument defaulted to var_inflate = 1.
nbasis An optional argument defaulted to nbasis = 7.
nfreq_hat An optional argument defaulted to nfreq_hat = 50.
plotting An optional argument for displaying output plots defaulted to FALSE. When set to TRUE, this displays the spectral and partition points.

Value

xi The partition points
log_spec_hat Estimates of the log spectra for all segments
nexp_curr The number of segments in each iteration.
intracranial_eeg

Author(s)
Rosen, O., Wood, S. and Stoffer, D.

References

Examples

```r
#Running adaptspec with the simulated_piecewise data.
data(simulated_piecewise)
m1 <- adaptspec(nloop = 80, nwarmup = 20, nexp_max = 5, x = simulated_piecewise[1:100])
str(m1)
summary(m1$nexp_curr)
plot(m1$nexp_curr)
```

intracranial_eeg
Intracranial Electroencephalograph (IEEG) Dataset

Description
A sample of IEEG data from a subject in an interictal state.

Usage
data(intracranial_eeg)

Format
A vector time series of 6,000 observations of intracranial electroencephalograph

Source
kaggle.com

References
https://www.kaggle.com/c/melbourne-university-seizure-prediction
Description

This dataset is simulated from a piecewise autoregressive process (model (11), p. 1581, in Rosen et al. (2012)), see Examples.

Usage

data(simulated_piecewise)

Format

A univariate numeric vector with 1,024 observations.

Source

Simulated

References

Examples

```r
# Created using the following script:
simulated_piecewise <- c(x1, x2, x3)
plot.ts(simulated_piecewise)
```
Index

*Topic datasets
 intracranial_eeg, 3
 simulated_piecewise, 4

adaptspec, 2

intracranial_eeg, 3

simulated_piecewise, 4