Package ‘BayesianReasoning’

October 12, 2022

Type Package

Title Plot Positive and Negative Predictive Values for Medical Tests

Version 0.4.1

Date 2022-01-03

Maintainer Gorka Navarrete <gorkang@gmail.com>

License CC0

URL https://github.com/gorkang/BayesianReasoning

BugReports https://github.com/gorkang/BayesianReasoning/issues

Depends R (>= 3.5.0)

Imports dplyr, ggforce, ggplot2, magrittr, reshape2, stats, tibble, tidyr, utils

Suggests curl, htr, knitr, patchwork, purrr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Gorka Navarrete [aut, cre] (<https://orcid.org/0000-0001-7678-8656>)

Repository CRAN

Date/Publication 2022-01-07 13:53:16 UTC
R topics documented:

- `min_possible_prevalence` ... 2
- `PPV_diagnostic_vs_screening` .. 3
- `PPV_heatmap` ... 4

Index

`min_possible_prevalence`

Show minimum possible prevalence given the test characteristics

Description

Given a FP and a desired PPV, what is the Minimum Prevalence of a Condition

Usage

```r
min_possible_prevalence(Sensitivity = 95, FP_test = 1, min_PPV_desired = 90)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Sensitivity</code></td>
<td>Sensitivity of the test: [0-100]</td>
</tr>
<tr>
<td><code>FP_test</code></td>
<td>False positive rate (1-Specificity): [0-100]</td>
</tr>
<tr>
<td><code>min_PPV_desired</code></td>
<td>Which PPV is what you consider the minimum to trust a positive result in the test: [0-100]</td>
</tr>
</tbody>
</table>

Value

A description showing the minimum necessary prevalence.

Examples

```r
# Example 1
min_possible_prevalence(Sensitivity = 99.9, FP_test = .1, min_PPV_desired = 70)
"To reach a PPV of 70 when using a test with 99.9 % Sensitivity and 0.1 % False Positive Rate, you need a prevalence of at least 1 out of 429"

# Example 2
min_possible_prevalence(100, .1, 98)
"To reach a PPV of 98 when using a test with 100 % Sensitivity and 0.1 % False Positive Rate, you need a prevalence of at least 1 out of 21"
```
PPV_diagnostic_vs_screening

Plot PPV values for a diagnostic and a screening group

Description

Plot PPV associated to different levels of FP and a specific Sensitivity, for two different Prevalence groups.

Usage

PPV_diagnostic_vs_screening(
 max_FP = 10,
 Sensitivity = 100,
 prevalence_screening_group = 100,
 prevalence_diagnostic_group = 2,
 labels_prevalence = c("Screening", "Diagnostic"),
 folder = ""
)

Arguments

max_FP False positive rate (1-Specificity) [0-100].
Sensitivity Sensitivity of the test [0-100].
prevalence_screening_group Prevalence of the screening group, 1 out of x [1-Inf].
prevalence_diagnostic_group Prevalence of the diagnostic group, 1 out of x [1-Inf].
labels_prevalence Labels to use for both groups.
folder Where to save the plot (the filename would be automatically created using the plot parameters)

Value

Shows a plot or, if given a folder argument, saves a .png version of the plot

Examples

Example 1
PPV_diagnostic_vs_screening(max_FP = 10, Sensitivity = 100,
 prevalence_screening_group = 1500,
 prevalence_diagnostic_group = 3)

Example 2. With custom labels
PPV_diagnostic_vs_screening(max_FP = 10, Sensitivity = 100,
PPV_heatmap

prevalence_screening_group = 1667,
prevalence_diagnostic_group = 44,
labels_prevalence = c("20 y.o.", "50 y.o.")

PPV_heatmap

Plot PPV and NPV heatmaps

Description

Plot heatmaps showing the PPV for a given Sensitivity and a range of Prevalences and False Positive values or NPV values for a given Specificity and a range of Prevalences and True Positive values

Usage

PPV_heatmap(
 min_Prevalence = 1,
 max_Prevalence = 1000,
 Sensitivity = NULL,
 Specificity = NULL,
 limits_Sensitivity = NULL,
 limits_Specificity = NULL,
 one_out_of = FALSE,
 overlay = "no",
 overlay_labels = "",
 overlay_extra_info = FALSE,
 overlay_position_FP = NULL,
 overlay_position_FN = NULL,
 overlay_prevalence_1 = NULL,
 overlay_prevalence_2 = NULL,
 uncertainty_prevalence = "high",
 label_title = "",
 label_subtitle = "",
 Language = "en",
 folder = "",
 PPV_NPV = "PPV",
 steps_matrix = 100,
 DEBUG = FALSE,
 ...
)

Arguments

 min_Prevalence [x] out of y prevalence of disease: [1-Inf]
 max_Prevalence x out of [y] prevalence of disease: [1-Inf]
 Sensitivity Sensitivity of test: [0-100]
 Specificity Specificity of test: [0-100]
PPV_heatmap

limits_Sensitivity
c(min Sensitivity, max Sensitivity)

limits_Specificity
c(min Specificity, max Specificity)

one_out_of Show y scale as 1 out of x [TRUE, FALSE] FALSE by default

overlay Type of overlay: ["line", "area"]

overlay_labels Labels for each point in the overlay. For example: c("80", "70", "60", "50", "40", "30", "20 y.o.")

overlay_extra_info show extra info in overlay? [TRUE/FALSE]

overlay_position_FP FP value (position in the x-axis) for each point in the overlay. For example: c(7, 8, 9, 12, 14, 14)

overlay_position_FN FN value (position in the x-axis) for each point in the overlay. For example: c(7, 8, 9, 12, 14, 14)

overlay_prevalence_1 Prevalence value (position in the y-axis) for each point in the overlay. For example: c(1, 1, 1, 2, 1, 1)

overlay_prevalence_2 Prevalence value (position in the y-axis) for each point in the overlay. For example: c(26, 29, 44, 69, 227, 1667)

uncertainty_prevalence How much certainty we have about the prevalence ["high"/"low"]

label_title Title for the plot

label_subtitle Subtitle for the plot

Language Language for the plot labels: ["sp", "en"]

folder Where to save the plot (the filename would be automatically created using the plot parameters)

PPV_NPV Should show PPV or NPV ["PPV", "NPV"]

steps_matrix width of PPV/NPV matrix. 100 by default

DEBUG Shows debug warnings [TRUE/FALSE]

... Other parameters. Now used to pass dpi, height and width in the Show and Save plot section

Value

Shows a plot or, if given a folder argument, saves a .png version of the plot

Examples

PPV_heatmap(min_Prevalence = 1,
max_Prevalence = 1000,
Sensitivity = 100,
Specificity = 98,
Language = "en")
Index

min_possible_prevalence, 2

PPV_diagnostic_vs_screening, 3
PPV_heatmap, 4