Package ‘BayesianTools’

January 21, 2019

Title General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics

Version 0.1.6

Date 2019-01-22

Author Florian Hartig [aut, cre],
 Francesco Minunno [aut],
 Stefan Paul [aut],
 David Cameron [ctb],
 Tankred Ott [ctb],
 Maximilian Pichler [ctb]

Maintainer Florian Hartig <florian.hartig@biologie.uni-regensburg.de>

Description General-purpose MCMC and SMC samplers, as well as plot and diagnostic functions for Bayesian statistics, with a particular focus on calibrating complex system models. Implemented samplers include various Metropolis MCMC variants (including adaptive and/or delayed rejection MH), the T-walk, two differential evolution MCMCs, two DREAM MCMCs, and a sequential Monte Carlo (SMC) particle filter.

Depends R (>= 3.1.2)

License GPL-3

Imports coda, emulator, mvtnorm, tmvtnorm, IDPmisc, Rcpp (>= 0.12.12), ellipse, numDeriv, msm, MASS, Matrix, stats, utils, graphics, DHARMa, gap, bridgesampling

Suggests DEoptim, lhs, sensitivity, knitr, rmarkdown, roxygen2, testthat

LinkingTo Rcpp

LazyData true

RoxygenNote 6.1.1

URL https://github.com/florianhartig/BayesianTools

BugReports https://github.com/florianhartig/BayesianTools/issues

VignetteBuilder knitr
NeedsCompilation: yes
Repository: CRAN
Date/Publication: 2019-01-21 19:40:03 UTC

R topics documented:

applySettingsDefault ... 3
BayesianTools ... 4
calibrationTest .. 5
checkBayesianSetup .. 6
convertCoda ... 7
correlationPlot ... 7
createBayesianSetup ... 9
createBetaPrior ... 12
createLikelihood .. 13
createMcmcSamplerList ... 14
createMixWithDefaults ... 14
createPosterior ... 15
createPrior ... 15
createPriorDensity ... 17
createProposalGenerator 18
createSmcSamplerList ... 20
createTruncatedNormalPrior 21
createUniformPrior ... 22
DE ... 23
DEzs ... 25
DIC ... 26
dream ... 27
dreamzs .. 29
gelmanDiagnostics ... 31
generateParallelExecutor 32
generateTestDensityMultiNormal 33
getCredibleIntervals .. 34
getDharmaResiduals ... 35
getPossibleSamplerTypes 35
getPredictiveDistribution 36
getPredictiveIntervals ... 36
getSample ... 37
getVolume ... 39
gof ... 40
likelihoodAR1 .. 41
likelihoodIidNormal .. 42
map ... 42
marginalLikelihood ... 43
marginalPlot .. 46
mergeChains ... 48
Metropolis ... 48
applySettingsDefault

Provides the default settings for the different samplers in runMCMC

Description

Provides the default settings for the different samplers in runMCMC

Usage

applySettingsDefault(settings = NULL, sampler = "DEzs", check = FALSE)

Arguments

settings optional list with parameters that will be used instead of the defaults
sampler one of the samplers in runMCMC
check logical determines whether parameters should be checked for consistency

Details

see runMCMC
Author(s)

Florian Hartig

Description

A package with general-purpose MCMC and SMC samplers, as well as plots and diagnostic functions for Bayesian statistics.

Details

A package with general-purpose MCMC and SMC samplers, as well as plots and diagnostic functions for Bayesian statistics, particularly for process-based models.

The package contains 2 central functions, `createBayesianSetup`, which creates a standardized Bayesian setup with likelihood and priors, and `runMCMC`, which allows to run various MCMC and SMC samplers.

The package can of course also be used for general (non-Bayesian) target functions.

To use the package, a first step to use `createBayesianSetup` to create a BayesianSetup, which usually contains prior and likelihood densities, or in general a target function.

Those can be sampled with `runMCMC`, which can call a number of general purpose Metropolis sampler, including the `Metropolis` that allows to specify various popular Metropolis variants such as adaptive and/or delayed rejection Metropolis; two variants of differential evolution MCMC `DE`, `DEzs`, two variants of DREAM `DREAM` and `DREAMzs`, the `Twalk` MCMC, and a Sequential Monte Carlo sampler `smcSampler`.

The output of `runMCMC` is of class `mcmcSampler` / `smcSampler` if one run is performed, or `mcmcSamplerList` / `smcSamplerList` if several sampler are run. Various functions are available for plotting, model comparison (DIC, marginal likelihood), or to use the output as a new prior.

For details on how to use the package, run `vignette("BayesianTools", package="BayesianTools")`.

To get the suggested citation, run `citation("BayesianTools")`

To report bugs or ask for help, post a reproducible example via the BayesianTools issue tracker on GitHub.

Acknowledgements: The creation and maintenance of this package profited from funding and collaboration through Cost Action FP 1304 PROFOUND and EU FP7 ERA-NET Sumforest REFORCE
calibrationTest

Simulation-based calibration tests

Description

This function data averaged posterior

Usage

calibrationTest(posteriorList, priorDraws, ...)

Arguments

- posteriorList: a list with posterior samples. List items must be of a class that is supported by getSample.
- priorDraws: a matrix with parameter values, drawn from the prior, that were used to simulate the data underlying the posterior list. If colnames are provided, these will be used in the plots.
- ...: arguments to be passed to getSample. Consider in particular the thinning option.

Details

The purpose of this function is to evaluate the results of a simulation-based calibration of an MCMC analysis.

Briefly, the idea is to repeatedly

1. sample parameters from the prior, 2. simulate new data based on these parameters, 3. calculate the posterior for these data.

If the sampler and the likelihood are implemented correctly, the average of over all the posterior distribution should then again yield the prior (e.g., Cook et al., 2006).

To test if this is the case, we implement the methods suggested by Talts et al., which is to calculate the rank statistics between the parameter draws and the posterior draws, which we then formally evaluate with a qq unif plot, and a ks.test.

We speculate that a ks.test between the two distribution would likely give an identical result, but this is not noted in Talts et al.

checkBayesianSetup

Checks if an object is of class 'BayesianSetup'

Description

Function used to assure that an object is of class 'BayesianSetup'. If you pass a function, it is coverted to an object of class 'BayesianSetup' (using `createBayesianSetup`) before it is returned.

Usage

```r
checkBayesianSetup(bayesianSetup, parallel = F)
```

Arguments

- `bayesianSetup`: either object of class `bayesianSetup` or a log posterior function
- `parallel`: if `bayesianSetup` is a function, this will set the parallelization option for the class `BayesianSetup` that is created internally. If `bayesianSetup` is already a `BayesianSetup`, then this will check if `parallel = T` is requested but not supported by the `BayesianSetup`. This option is for internal use in the samplers.

Note

The recommended option to use this function in the samplers is to have `parallel` with default `NULL` in the samplers, so that `checkBayesianSetup` with a function will create a `bayesianSetup` without parallelization, while it will do nothing with an existing `BayesianSetup`. If the user sets parallelization, it will set the appropriate parallelization for a function, and check in case of an existing `BayesianSetup`. The `checkBayesianSetup` call in the samplers should then be followed by a check for `parallel = NULL` in sampler, in which case `paralell` can be set from the `BayesianSetup`.

Author(s)

Florian Hartig

See Also

- `createBayesianSetup`
convertCoda

Convert coda::mcmc objects to BayesianTools::mcmcSampler

Description

Function is used to make the plot and diagnostic functions available for coda::mcmc objects

Usage

```r
convertCoda(sampler, names = NULL, info = NULL, likelihood = NULL)
```

Arguments

- `sampler`: An object of class mcmc or mcmc.list
- `names`: vector giving the parameter names (optional)
- `info`: matrix (or list with matrices for mcmc.list objects) with three columns containing log posterior, log likelihood and log prior of the sampler for each time step (optional; but see Details)
- `likelihood`: likelihood function used in the sampling (see Details)

Details

The parameter 'likelihood' is optional for most functions but can be needed e.g. for using the DIC function.

Also the parameter info is optional for most uses. However for some functions (e.g. MAP) the matrix or single columns (e.g. log posterior) are necessary for the diagnostics.

correlationPlot
Flexible function to create correlation density plots

Description

Flexible function to create correlation density plots

Usage

```r
correlationPlot(mat, density = "smooth", thin = "auto",  
                 method = "pearson", whichParameters = NULL, scaleCorText = T, ...)
```
correlationPlot

Arguments

- **mat**: object of class "bayesianOutput" or a matrix or data frame of variables
- **density**: type of plot to do. Either "smooth" (default), "corellipseCor", or "ellipse"
- **thin**: thinning of the matrix to make things faster. Default is to thin to 5000
- **method**: method for calculating correlations. Possible choices are "pearson" (default), "kendall" and "spearman"
- **whichParameters**: indices of parameters that should be plotted
- **scaleCorText**: should the text to display correlation be scaled to the strength of the correlation
- **...**: additional parameters to pass on to the `getSample`, for example parametersOnly = F, or start = 1000

Author(s)

Florian Hartig

References

See Also

- `marginalPlot`
- `plotTimeSeries`
- `tracePlot`

Examples

```r
## Generate a test likelihood function.
ll <- generateTestDensityMultiNormal(sigma = "no correlation")

## Create a BayesianSetup object from the likelihood
## is the recommended way of using the runMCMC() function.
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))

## Finally we can run the sampler and have a look
settings <- list(iterations = 1000)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

## Correlation density plots:
correlationPlot(out)

## additional parameters can be passed to getSample (see ?getSample for further information)
## e.g. to select which parameters to show or thinning (faster plot)
correlationPlot(out, scaleCorText = FALSE, thin = 100, start = 200, whichParameters = c(1,2))
```
createBayesianSetup

Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc.

Description

Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc.

Usage

```r
createBayesianSetup(likelihood, prior = NULL, priorSampler = NULL,
                    parallel = FALSE, lower = NULL, upper = NULL, best = NULL,
                    names = NULL, parallelOptions = list(variables = "all",
                    packages = "all", dlls = NULL), catch_duplicates = FALSE,
                    plotLower = NULL, plotUpper = NULL, plotBest = NULL)
```

Arguments

- **likelihood**: log likelihood density function
- **prior**: either a prior class (see `createPrior`) or a log prior density function
- **priorSampler**: if a prior density (and not a prior class) is provided to prior, the optional prior sampling function can be provided here
- **parallel**: parallelization option. Default is F. Other options are T, or "external". See details.
- **lower**: vector with lower prior limits
- **upper**: vector with upper prior limits
- **best**: vector with best prior values
- **names**: optional vector with parameter names
- **parallelOptions**: list containing three lists. First "packages" determines the R packages necessary to run the likelihood function. Second "variables" the objects in the global environment needed to run the likelihood function and third "dlls" the DLLs needed to run the likelihood function (see Details and Examples).
- **catchDuplicates**: Logical, determines whether unique parameter combinations should only be evaluated once. Only used when the likelihood accepts a matrix with parameter as columns.

Example

```r
# text to display correlation will be not scaled to the strength of the correlation
correlationPlot(out, scaleCorText = FALSE)

# We can also switch the method for calculating correlations
correlationPlot(out, scaleCorText = FALSE, method = "spearman")
```
createBayesianSetup

plotLower vector with lower limits for plotting
plotUpper vector with upper limits for plotting
plotBest vector with best values for plotting

Details
If prior is of class prior (e.g. create with createPrior), priorSampler, lower, upper and best will be ignored.
If prior is a function (log prior density), priorSampler (custom sampler), or lower/upper (uniform sampler) is required.
If prior is NULL, and lower and upper are passed, a uniform prior (see createUniformPrior) will be created with boundaries lower and upper.
For parallelization, option T means that an automatic parallelization via R is attempted, or "external", in which case it is assumed that the likelihood is already parallelized. In this case it needs to accept a matrix with parameters as columns. Further you can specify the packages, objects and DLLs that are exported to the cluster. By default a copy of your workspace is exported. However, depending on your workspace this can be very inefficient.
For more details, make sure to read the vignette (run vignette("BayesianTools", package="BayesianTools")

Author(s)
Florian Hartig, Tankred Ott

See Also
checkBayesianSetup
createLikelihood
createPrior

Examples
ll <- function(x) sum(dnorm(x, log = TRUE))

test <- createBayesianSetup(ll, prior = NULL, priorSampler = NULL, lower = -10, upper = 10)
str(test)
test$prior$density(0)

test$likelihood$density(c(1,1))
test$likelihood$density(1)
test$posterior$density(1)
test$posterior$density(1, returnAll = TRUE)

test$likelihood$density(matrix(rep(1,4), nrow = 2))
#test$posterior$density(matrix(rep(1,4), nrow = 2), returnAll = TRUE)
test$likelihood$density(matrix(rep(1,4), nrow = 4))

Not run:
Example of how to use parallelization using the VSEM model
Create Bayesian Setup

```r
# Note that the parallelization produces overhead and is not always
# speeding things up. In this example, due to the small
# computational cost of the VSEM the parallelization is
# most likely to reduce the speed of the sampler.

# Creating reference data
PAR <- VSEMcreatePAR(1:1000)
refPars <- VSEMgetDefaults()
refPars[12,] <- c(0.2, 0.001, 1)
rownames(refPars)[12] <- "error-sd"

referenceData <- VSEM(refPars$best[1:11], PAR)
obs = apply(referenceData, 2, function(x) x + rnorm(length(x),
    sd = abs(x) * refPars$best[12]))

# Selecting parameters
parSel = c(1:6, 12)

## Building the likelihood function
likelihood <- function(par, sum = TRUE){
  x = refPars$best
  x[parSel] = par
  predicted <- VSEM(x[1:11], PAR)
  diff = c(predicted[,1:3] - obs[,1:3])
  llValues = dnorm(diff, sd = max(abs(c(predicted[,1:3])), 0.0001) * x[12], log = TRUE)
  if (sum == False) return(sum(llValues))
  else return(sum(llValues))
}

# Prior
prior <- createUniformPrior(lower = refPars$lower[parSel], upper = refPars$upper[parSel])

####
#### Definition of the packages and objects that are exported to the cluster.
# These are the objects that are used in the likelihood function.
opts <- list(packages = list("BayesianTools"), variables = list("refPars", "obs", "PAR" ), dlls = NULL)

# Create Bayesian Setup
BSVSEM <- createBayesianSetup(likelihood, prior, best = refPars$best[parSel],
    names = rownames(refPars)[parSel], parallel = 2,
    parallelOptions = opts)

## The bayesianSetup can now be used in the runMCMC function.
# Note that not all samplers can make use of parallel
# computing.

# Remove the Bayesian Setup and close the cluster
stopParallel(BSVSEM)
rm(BSVSEM)
```
createBetaPrior

Convenience function to create a beta prior

Description
Convenience function to create a beta prior

Usage
createBetaPrior(a, b, lower = 0, upper = 1)

Arguments
- a: shape1 of the beta distribution
- b: shape2 of the beta distribution
- lower: lower values for the parameters
- upper: upper values for the parameters

Details
This creates a beta prior, assuming that lower / upper values for parameters are fixed. The beta is the calculated relative to this lower / upper space.

Note
for details see createPrior

Author(s)
Florian Hartig

See Also
- createPriorDensity
- createPrior
- createTruncatedNormalPrior
- createUniformPrior
- createBayesianSetup
createLikelihood

Creates a standardized likelihood class

Description

Creates a standardized likelihood class

Usage

createLikelihood(likelihood, names = NULL, parallel = F, catchDuplicates = T, sampler = NULL, parallelOptions = NULL)

Arguments

likelihood Log likelihood density
names Parameter names (optional)
parallel parallelization, either i) no parallelization -> F, ii) native R parallelization -> T / "auto" will select n-1 of your available cores, or provide a number for how many cores to use, or iii) external parallelization -> "external". External means that the likelihood is already able to execute parallel runs in form of a matrix with

catchDuplicates Logical, determines whether unique parameter combinations should only be evaluated once. Only used when the likelihood accepts a matrix with parameter as columns.
sampler sampler
parallelOptions list containing two lists. First "packages" determines the R packages necessary to run the likelihood function. Second "objects" the objects in the global environment needed to run the likelihood function (for details see createBayesianSetup).

Author(s)

Florian Hartig

See Also

likelihoodIIDNormal
likelihoodAR1
createMcmcSamplerList
Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers

Description
Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers

Usage
createMcmcSamplerList(mcmcList)

Arguments
mcmcList
a list with each object being an mcmcSampler

Value
Object of class "mcmcSamplerList"

Author(s)
Florian Hartig

createMixWithDefaults
Allows to mix a given parameter vector with a default parameter vector

Description
This function is deprecated and will be removed by v0.2.

Usage
createMixWithDefaults(pars, defaults, locations)

Arguments
pars
vector with new parameter values
defaults
vector with default parameter values
locations
indices of the new parameter values
createPosterior

Creates a standardized posterior class

Usage

createPosterior(prior, likelihood)

Arguments

prior prior class
likelihood Log likelihood density

Details

Function is internally used in createBayesianSetup to create a standarized posterior class.

Author(s)

Florian Hartig

createPrior

Creates a standardized prior class

Usage

createPrior(density = NULL, sampler = NULL, lower = NULL, upper = NULL, best = NULL)

Arguments

density Prior density
sampler Sampling function for density (optional)
lower vector with lower bounds of parameters
upper vector with upper bounds of parameter
best vector with "best" parameter values
Details

This is the general prior generator. It is highly recommended to not only implement the density, but also the sampler function. If this is not done, the user will have to provide explicit starting values for many of the MCMC samplers. Note the existing, more specialized prior function. If your prior can be created by those, they are preferred. Note also that priors can be created from an existing MCMC output from BT, or another MCMC sample, via `createPriorDensity`.

Note

min and max truncate, but not re-normalize the prior density (so, if a pdf that integrated to one is truncated, the integral will in general be smaller than one). For MCMC sampling, this doesn’t make a difference, but if absolute values of the prior density are a concern, one should provide a truncated density function for the prior.

Author(s)

Florian Hartig

See Also

`createPriorDensity`
`createBetaPrior`
`createUniformPrior`
`createTruncatedNormalPrior`
`createBayesianSetup`

Examples

```r
# Create a general prior distribution by specifying an arbitrary density function and a
# corresponding sampling function
density = function(par){
  d1 = dunif(par[1], -2,6, log =TRUE)
  d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
  return(d1 + d2)
}
# The sampling is optional but recommended because the MCMCs can generate automatic starting
# conditions if this is provided
sampler = function(n=1){
  d1 = runif(n, -2,6)
  d2 = rnorm(n, mean= 2, sd = 3)
  return(cbind(d1,d2))
}
prior <- createPrior(density = density, sampler = sampler,
                      lower = c(-3,-3), upper = c(3,3), best = NULL)
# Use this prior in an MCMC
```
createPriorDensity

ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)

settings = list(iterations = 1000)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)

see ?createPriorDensity for how to create a new prior from this output

createPriorDensity

Fits a density function to a multivariate sample

Description

Fits a density function to a multivariate sample

Usage

createPriorDensity(sampler, method = "multivariate", eps = 1e-10,
 lower = NULL, upper = NULL, best = NULL, ...)

Arguments

sampler an object of class BayesianOutput or a matrix
method method to generate prior - default and currently only option is multivariate
eps numerical precision to avoid singularity
lower vector with lower bounds of parameter for the new prior, independent of the
 input sample
upper vector with upper bounds of parameter for the new prior, independent of the
 input sample
best vector with "best" values of parameter for the new prior, independent of the
 input sample
 ...
parameters to pass on to the getSample function

Author(s)

Florian Hartig

See Also

createPrior
createBetaPrior
createTruncatedNormalPrior
createUniformPrior
createBayesianSetup
createProposalGenerator

Factory that creates a proposal generator

Description

Factory that creates a proposal generator

Usage

createProposalGenerator(covariance, gibbsProbabilities = NULL, gibbsWeights = NULL, otherDistribution = NULL, otherDistributionLocation = NULL, otherDistributionScaled = F, message = F, method = "chol", scalingFactor = 2.38)

Arguments

covariance
covariance matrix. Can also be vector of the sqrt of diagonal elements -- standard deviation
gibbsProbabilities
optional probabilities for the number of parameters to vary in a Metropolis within gibbs style - for 4 parameters, c(1,1,0.5,0) means that at most 3 parameters will be varied, and it is double as likely to vary one or two than varying 3
gibbsWeights optional probabilities for parameters to be varied in a Metropolis within gibbs style - default ist equal weight for all parameters - for 4 parameters, c(1,1,1,100) would mean that if 2 parameters would be selected, parameter 4 would be 100 times more likely to be picked than the others. If 4 is selected, the remaining parameters have equal probability.

otherDistribution optional additional distribution to be mixed with the default multivariate normal. The distribution needs to accept a parameter vector (to allow for the option of making the distribution depend on the parameter values), but it is still assumed that the change from the current values is returned, not the new absolute values.

otherDistributionLocation a vector with 0 and 1, denoting which parameters are modified by the otherDistribution

otherDistributionScaled should the other distribution be scaled if gibbs updates are calculated?

message print out parameter settings

method method for covariance decomposition

scalingFactor scaling factor for the proposals

Author(s)

Florian Hartig

See Also

updateProposalGenerator

Examples

testMatrix = matrix(rep(c(0,0,0,0), 1000), ncol = 4)
testVector = c(0,0,0,0)

Standard multivariate normal proposal generator
testGenerator <- createProposalGenerator(covariance = c(1,1,1,1), message = TRUE)

methods(class = "proposalGenerator")
print(testGenerator)
x = testGenerator$returnProposal(testVector)
x

x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

Changing the covariance
testGenerator$covariance = diag(rep(100,4))
testGenerator <- testGenerator$updateProposalGenerator(testGenerator, message = TRUE)
testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##-Changing the gibbs probabilities / probability to modify 1-n parameters
testGenerator$gibbsProbabilities = c(1,1,0,0)
testGenerator <- testGenerator$updateProposalGenerator(testGenerator)
testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##-Changing the gibbs weights / probability to pick each parameter
testGenerator$gibbsWeights = c(0.3,0.3,0.3,0.1)
testGenerator <- testGenerator$updateProposalGenerator(testGenerator)
testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##-Adding another function
otherFunction <- function(x) sample.int(10,1)
testGenerator <- createProposalGenerator(
covariance = c(1,1,1),
onotherDistribution = otherFunction,
onotherDistributionLocation = c(0,0,0,1),
onotherDistributionScaled = TRUE
)
testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)
table(x[,4])

createSmcSamplerList
Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers

Description

Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers
createTruncatedNormalPrior

Usage

createSmcSamplerList(...)

Arguments

... a list of MCMC samplers

Value

a list of class smcSamplerList with each object being an smcSampler

Author(s)

Florian Hartig

createTruncatedNormalPrior

Convenience function to create a truncated normal prior

Description

Convenience function to create a truncated normal prior

Usage

createTruncatedNormalPrior(mean, sd, lower, upper)

Arguments

mean best estimate for each parameter
sd standard deviation
lower vector of lower prior range for all parameters
upper vector of upper prior range for all parameters

Note

for details see createPrior

Author(s)

Florian Hartig
createUniformPrior

Description
Convenience function to create a simple uniform prior distribution

Usage
createUniformPrior(lower, upper, best = NULL)

Arguments
- lower: vector of lower prior range for all parameters
- upper: vector of upper prior range for all parameters
- best: vector with "best" values for all parameters

Note
for details see createPrior

Author(s)
Florian Hartig

See Also
createPriorDensity, createPrior, createBetaPrior, createTruncatedNormalPrior, createBayesianSetup
Examples

```r
set.seed(1)

prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))

# c(2, 3) outside of limits
prior$density(c(2, 3))
# -Inf

# c(0.2, 2) within limits
prior$density(c(0.2, 2))
# -0.6931472

# sample from prior
prior$sampler()
# [1] 0.2291413 4.5410389

## the prior object can be passed to createBayesianSetup()

# log-likelihood density function (needed for createBayesianSetup)
ll <- function(x) sum(dnorm(x, log = TRUE))

setup <- createBayesianSetup(prior = prior, likelihood = ll)
```

Description

Differential-Evolution MCMC

Usage

```r
DE(bayesianSetup, settings = list(startValue = NULL, iterations = 10000,
    f = -2.38, burnin = 0, thin = 1, eps = 0, consoleUpdates = 100,
    blockUpdate = list("none", k = NULL, h = NULL, pSel = NULL, pGroup =
    NULL, groupStart = 1000, groupIntervall = 1000), currentChain = 1,
    message = TRUE))
```

Arguments

- **bayesianSetup**: a BayesianSetup with the posterior density function to be sampled from
- **settings**: list with parameter settings
- **startValue**: (optional) enter a matrix with start population, a number to define the number of chains that are run or a function that samples a starting population.
- **iterations**: number of function evaluations.
burnin number of iterations treated as burn-in. These iterations are not recorded in the chain.

thin thinning parameter. Determines the interval in which values are recorded.

f scaling factor gamma

eps small number to avoid singularity

blockUpdate list determining whether parameters should be updated in blocks. For possible settings see Details.

message logical determines whether the sampler's progress should be printed

Details

For blockUpdate the first element in the list determines the type of blocking. Possible choices are

- "none" (default), no blocking of parameters
- "correlation" blocking based on correlation of parameters. Using h or k (see below)
- "random" random blocking. Using k (see below)
- "user" user defined groups. Using groups (see below)

Further seven parameters can be specified. "k" determined the number of groups, "h" the strength of the correlation used to group parameter and "groups" is used for user defined groups. "groups" is a vector containing the group number for each parameter. E.g. for three parameters with the first two in one group, "groups" would be c(1,1,2). Further pSel and pGroup can be used to influence the choice of groups. In the sampling process a number of groups is randomly drawn and updated. pSel is a vector containing relative probabilities for an update of the respective number of groups. E.g. for always updating only one group pSel = 1. For updating one or two groups with the same probability pSel = c(1,1). By default all numbers have the same probability. The same principle is used in pGroup. Here the user can influence the probability of each group to be updated. By default all groups have the same probability. Finally "groupStart" defines the starting point of the groupUpdate and "groupIntervall" the interval in which the groups are evaluated.

Author(s)

Francesco Minunno and Stefan Paul

References

See Also

DEzs
DEzs

Differential-Evolution MCMC zs

Description

Differential-Evolution MCMC zs

Usage

DEzs(bayesiansetup, settings = list(iterations = 10000, Z = NULL, startValue = NULL, pSnooker = 0.1, burnin = 0, thin = 1, f = 2.38, eps = 0, parallel = NULL, pGamma1 = 0.1, eps.mult = 0.2, eps.add = 0, consoleUpdates = 100, zUpdateFrequency = 1, currentChain = 1, blockUpdate = list("none", k = NULL, h = NULL, pSel = NULL, pGroup = NULL, groupStart = 1000, groupIntervall = 1000), message = TRUE))

Arguments

bayesiansetup a BayesianSetup with the posterior density function to be sampled from
settings list with parameter settings
startValue (optional) either a matrix with start population, a number to define the number of chains that are run or a function that samples a starting population.
Z starting Z population
iterations iterations to run
pSnooker probability of Snooker update
burnin number of iterations treated as burn-in. These iterations are not recorded in the chain.
thin thinning parameter. Determines the interval in which values are recorded.
eps small number to avoid singularity
f scaling factor gamma
parallel logical, determines whether parallel computing should be attempted (see details)
pGamma1 probability determining the frequency with which the scaling is set to 1 (allows jumps between modes)
eps.mult random term (multiplicative error)
eps.add random term
blockUpdate list determining whether parameters should be updated in blocks. For possible settings see Details.
message logical determines whether the sampler’s progress should be printed
Details
For parallel computing, the likelihood density in the bayesianSetup needs to be parallelized, i.e. needs to be able to operate on a matrix of proposals

For blockUpdate the first element in the list determines the type of blocking. Possible choices are

- "none" (default), no blocking of parameters
- "correlation" blocking based on correlation of parameters. Using h or k (see below)
- "random" random blocking. Using k (see below)
- "user" user defined groups. Using groups (see below)

Further seven parameters can be specified. "k" determined the number of groups, "h" the strength of the correlation used to group parameter and "groups" is used for user defined groups. "groups" is a vector containing the group number for each parameter. E.g. for three parameters with the first two in one group, "groups" would be c(1,1,2). Further pSel and pGroup can be used to influence the choice of groups. In the sampling process a number of groups is randomly drawn and updated. pSel is a vector containing relative probabilities for an update of the respective number of groups. E.g. for always updating only one group pSel = 1. For updating one or two groups with the same probability pSel = c(1,1). By default all numbers have the same probability. The same principle is used in pGroup. Here the user can influence the probability of each group to be updated. By default all groups have the same probability. Finally "groupStart" defines the starting point of the groupUpdate and "groupIntervall" the interval in which the groups are evaluated.

Author(s)
Francesco Minunno and Stefan Paul

References

See Also

DE

DIC

Deviance information criterion

Description
Deviance information criterion

Usage

DIC(sampler, ...)

DIC
Arguments

sampler An object of class bayesianOutput (mcmcSampler, smcSampler, or mcmcList)

Details

Output: list with the following elements:
DIC : Deviance Information Criterion
IC : Bayesian Predictive Information Criterion
pD : Effective number of parameters (pD = Dbar - Dhat)
pV : Effective number of parameters (pV = Var(D)/2)
Dbar : Expected value of the deviance over the posterior
Dhat : Deviance at the mean posterior estimate

Author(s)

Florian Hartig

References

See Also

WAIC, MAP, marginalLikelihood

Description

DREAM

Usage

DREAM(bayesianSetup, settings = list(iterations = 10000, nCR = 3, gamma = NULL, eps = 0, e = 0.05, pCRupdate = TRUE, updateInterval = 10, burnin = 0, thin = 1, adaptation = 0.2, DEpairs = 2, consoleUpdates = 10, startValue = NULL, currentChain = 1, message = TRUE))
Arguments

- `bayesianSetup`: Object of class 'bayesianSetup' or 'bayesianOutput'.
- `settings`: list with parameter values
- `iterations`: Number of model evaluations
- `nCR`: parameter determining the number of cross-over proposals. If nCR = 1 all parameters are updated jointly.
- `updateInterval`: determining the interval for the pCR update
- `gamma`: Kurtosis parameter Bayesian Inference Scheme
- `eps`, `e`: Ergodicity term
- `pCRupdate`: Update of crossover probabilities
- `burnin`: number of iterations treated as burn-in. These iterations are not recorded in the chain.
- `thin`: thin thinning parameter. Determines the interval in which values are recorded.
- `adaptation`: Number or percentage of samples that are used for the adaptation in DREAM (see Details).
- `DEpairs`: Number of pairs used to generate proposal
- `startValue`: either a matrix containing the start values (see details), an integer to define the number of chains that are run, a function to sample the start values or NULL, in which case the values are sampled from the prior.
- `consoleUpdates`: Intervall in which the sampling progress is printed to the console
- `message`: logical determines whether the sampler’s progress should be printed

Details

Instead of a bayesianSetup, the function can take the output of a previous run to restart the sampler from the last iteration. Due to the sampler’s internal structure you can only use the output of DREAM. If you provide a matrix with start values the number of rows determines the number of chains that are run. The number of columns must be equivalent to the number of parameters in your bayesianSetup.

There are several small differences in the algorithm presented here compared to the original paper by Vrugt et al. (2009). Mainly the algorithm implemented here does not have an automatic stopping criterion. Hence, it will always run the number of iterations specified by the user. Also, convergence is not monitored and left to the user. This can easily be done with `coda::gelman.diag(chain)`. Further the proposed delayed rejection step in Vrugt et al. (2009) is not implemented here.

During the adaptation phase DREAM is running two mechanisms to enhance the sampler’s efficiency. First the distribution of crossover values is tuned to favor large jumps in the parameter space. The crossover probabilities determine how many parameters are updated simultaneously. Second outlier chains are replaced as they can largely deteriorate the sampler’s performance. However, these steps destroy the detailed balance of the chain. Consequently these parts of the chain should
be discarded when summarizing posterior moments. This can be done automatically during the sampling process (i.e. burnin > adaptation) or subsequently by the user. We chose to distinguish between the burnin and adaptation phase to allow the user more flexibility in the sampler’s settings.

Value

mcmc.object containing the following elements: chains, X, pCR

Author(s)

Stefan Paul

References

See Also

Dreamzs

Description

DREAMzs

Usage

DREAMzs(bayesianSetup, settings = list(iterations = 10000, nCR = 3, gamma = NULL, eps = 0, e = 0.05, pCRUpdate = FALSE, updateInterval = 10, burnin = 0, thin = 1, adaptation = 0.2, parallel = NULL, Z = NULL, ZupdateFrequency = 10, pSnooker = 0.1, DEpairs = 2, consoleUpdates = 10, startValue = NULL, currentChain = 1, message = FALSE))

Arguments

bayesianSetup Object of class ’bayesianSetup’ or ’bayesianOuput’.
settings list with parameter values
iterations Number of model evaluations
nCR parameter determining the number of cross-over proposals. If nCR = 1 all parameters are updated jointly.
updateInterval determining the interval for the pCR (crossover probabilities) update
gamma Kurtosis parameter Bayesian Inference Scheme.
eps Ergodicity term
e Ergodicity term
pCRUpdate Update of crossover probabilities
burnin number of iterations treated as burn-in. These iterations are not recorded in the chain.
thin thin thinning parameter. Determines the interval in which values are recorded.
adaptation Number or percentage of samples that are used for the adaptation in DREAM (see Details)
DEpairs Number of pairs used to generate proposal
ZupdateFrequency frequency to update Z matrix
pSnooker probability of snooker update
Z starting matrix for Z
startValue either a matrix containing the start values (see details), an integer to define the number of chains that are run, a function to sample the start values or NULL, in which case the values are sampled from the prior.
consoleUpdates Intervall in which the sampling progress is printed to the console
message logical determines whether the sampler’s progress should be printed

Details

Instead of a bayesianSetup, the function can take the output of a previous run to restart the sampler from the last iteration. Due to the sampler’s internal structure you can only use the output of DREAMzs. If you provide a matrix with start values the number of rows determines the number of chains that are run. The number of columns must be equivalent to the number of parameters in your bayesianSetup.

There are several small differences in the algorithm presented here compared to the original paper by Vrugt et al. (2009). Mainly the algorithm implemented here does not have an automatic stopping criterion. Hence, it will always run the number of iterations specified by the user. Also, convergence is not monitored and left to the user. This can easily be done with coda::gelman.diag(chain). Further the proposed delayed rejection step in Vrugt et al. (2009) is not implemented here.

During the adaptation phase DREAM is running two mechanisms to enhance the sampler’s efficiency. First the distribution of crossover values is tuned to favor large jumps in the parameter space. The crossover probabilities determine how many parameters are updated simultaneously. Second outlier chains are replaced as they can largely deteriorate the sampler’s performance. However, these steps destroy the detailed balance of the chain. Consequently these parts of the chain should be discarded when summarizing posterior moments. This can be done automatically during the sampling process (i.e. burnin > adaptation) or subsequently by the user. We chose to distinguish between the burnin and adaptation phase to allow the user more flexibility in the sampler’s settings.

Value

mcmc.object containing the following elements: chains, X, pCR, Z
gelmanDiagnostics

Author(s)
Stefan Paul

References

See Also
DREAM

Description
Runs Gelman Diagnostics over an BayesianOutput

Usage
gelmanDiagnostics(sampler, thin = "auto", plot = F, ...)

Arguments
 sampler an object of class mcmcSampler or mcmcSamplerList
 thin parameter determining the thinning intervall. Either an integer or "auto" (default) for automatic thinning.
 plot should a Gelman plot be generated
 ... further arguments passed to getSample

Details
The function calls the coda package to calculate Gelman diagnostics and plots.
The original idea is that this function is applied to the outcome of several independent MCMC runs. Technically and practically, it can also be applied to a single MCMC run that has several internal chains, such as DE, DEzs, DREAM, DREAMzs or T-Walk. As argued in ter Braak et al. (2008), the internal chains should be independent after burn-in. While this is likely correct, it also means that they are not completely independent before, and we observed this behavior in the use of the algorithms (i.e. that internal DEzs chains are more similar to each other than the chains of independent DEzs algorithms). A concern is that this non-independence could lead to a failure to detect that the sampler hasn’t converged yet. We would therefore recommend to run several DEzs and check convergence with those, instead of running only one.
generateParallelExecutor

Factory to generate a parallel executer of an existing function

Description

Factory to generate a parallel executer of an existing function

Usage

generateParallelExecutor(fun, parallel = F, parallelOptions = list(variables = "all", packages = "all", dlls = NULL))

Arguments

- fun: function to be changed to parallel execution
- parallel: should a parallel R cluster be used or not. If set to T, cores will be detected automatically and n-1 of the available n cores of the machine will be used. Alternatively, you can set the number of cores used by hand
- parallelOptions: list containing three lists. First "packages" determines the R packages necessary to run the likelihood function. Second "variables" the objects in the global environment needed to run the likelihood function and third "dlls" the DLLs needed to run the likelihood function (see Details).

Details

For parallelization, option T means that an automatic parallelization via R is attempted, or "external", in which case it is assumed that the likelihood is already parallelized. In this case it needs to accept a matrix with parameters as columns. Further you can specify the packages, objects and DLLs that are exported to the cluster. By default a copy of your workspace is exported. However, depending on your workspace this can be very inefficient.

Alternatively you can specify the environments and packages in the likelihood function (e.g. BayesianTools::VSEM() instead of VSEM()).

Note

Can also be used to make functions compatible with library sensitivity
generateTestDensityMultiNormal

Author(s)

Florian Hartig

Examples

```r
testDensityMultiNormal <- generateTestDensityMultiNormal()

parDen <- generateParallelExecutor(testDensityMultiNormal)$parallelFun
x = matrix(runif(9,0,1), nrow = 3)
parDen(x)
```

Multivariate normal likelihood

Description

Generates a 3 dimensional multivariate normal likelihood function.

Usage

```r
generateTestDensityMultiNormal(mean = c(0, 0, 0),
   sigma = "strongcorrelation", sample = F, n = 1, throwErrors = -1)
```

Arguments

- `mean`: vector with the three mean values of the distribution
- `sigma`: either a correlation matrix, or "strongcorrelation", or "no correlation"
- `sample`: should the function create samples
- `n`: number of samples to create
- `throwErrors`: parameter for test purpose. Between 0 and 1 for proportion of errors

Details

3-d multivariate normal density function with mean 2,4,0 and either strong correlation (default), or no correlation.

Author(s)

Florian Hartig

See Also

- `testDensityBanana`
- `testLinearModel`
getCredibleIntervals

Calculate confidence region from an MCMC or similar sample

Description

Calculate confidence region from an MCMC or similar sample

Usage

getcredibleintervals(sampleMatrix, quantiles = c(0.025, 0.975))

Arguments

sampleMatrix matrix of outcomes. Could be parameters or predictions
quantiles quantiles to be calculated

Author(s)

Florian Hartig

See Also

getPredictiveDistribution
getPredictiveIntervals
getDharmaResiduals *Creates a DHARMa object*

Description

Creates a DHARMa object

Usage

getDharmaResiduals(model, parMatrix, numSamples, observed, error, plot = TRUE)

Arguments

- `model`: function that calculates model predictions for a given parameter vector
- `parMatrix`: a parameter matrix from which the simulations will be generated
- `numSamples`: the number of samples
- `observed`: a vector of observed values
- `error`: function with signature f(mean, par) that generates error expectations from mean model predictions. Par is a vector from the matrix with the parameter samples (full length). f needs to know which of these parameters are parameters of the error function
- `plot`: logical, determining whether the simulated residuals should be plotted

Author(s)

Tankred Ott

getPossibleSamplerTypes *Returns possible sampler types*

Description

Returns possible sampler types

Usage

getPossibleSamplerTypes()

Author(s)

Florian Hartig
getPredictiveDistribution

Calculates predictive distribution based on the parameters

Description

Calculates predictive distribution based on the parameters

Usage

getPredictiveDistribution(parMatrix, model, numSamples = 1000)

Arguments

parMatrix matrix of parameter values
model model / function to calculate predictions. Outcome should be a vector
numSamples number of samples to be drawn

Details

If numSamples is greater than the number of rows in parMatrix, or NULL, or FALSE, or less than
1 all samples in parMatrix will be used.

Author(s)

Florian Hartig

See Also

generate
getCredibleIntervals

getPredictiveIntervals

Calculates Bayesian credible (confidence) and predictive intervals
based on parameter sample

Description

Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample

Usage

generateIntervals(parMatrix, model, numSamples = 1000,
quantiles = c(0.025, 0.975), error = NULL)
getSample

Arguments

- parMatrix: matrix of parameter values
- model: model / function to calculate predictions. Outcome should be a vector
- numSamples: number of samples to be drawn
- quantiles: quantiles to calculate
- error: function with signature f(mean, par) that generates error expectations from mean model predictions. Par is a vector from the matrix with the parameter samples (full length). f needs to know which of these parameters are parameters of the error function. If supplied, will calculate also predictive intervals additional to credible intervals

Details

If numSamples is greater than the number of rows in parMatrix, or NULL, or FALSE, or less than 1 all samples in parMatrix will be used.

Author(s)

Florian Hartig

See Also

- getPredictiveDistribution
- getCredibleIntervals

getSample

Extracts the sample from a bayesianOutput

Description

Extracts the sample from a bayesianOutput

Usage

getSample(sampler, parametersOnly = T, coda = F, start = 1, end = NULL, thin = 1, numSamples = NULL, whichParameters = NULL, includesProbabilities = F, reportDiagnostics = FALSE, ...)

Arguments

- sampler: an object of class mcmcSampler, mcmcSamplerList, smcSampler, smcSamplerList, mcmc, mcmc.list, double, numeric
- parametersOnly: if F, likelihood, posterior and prior values are also provided in the output
getSample

coda works only for mcmc classes - provides output as a coda object. Note: if mcmcSamplerList contains mcmc samplers such as DE that have several chains, the internal chains will be collapsed. This may not be the desired behavior for all applications.

start for mcmc samplers start value in the chain. For SMC samplers, start particle

dend for mcmc samplers end value in the chain. For SMC samplers, end particle

thin thinning parameter. Either an integer determining the thinning interval (default is 1) or "auto" for automatic thinning.

numSamples sample size (only used if thin = 1). If you want to use numSamples set thin to 1.

whichParameters possibility to select parameters by index

includesProbabilities applies only to getSample.Matrix. logical, determining whether probabilities should be included in the result.

reportDiagnostics logical, determines whether settings should be included in the output

... further arguments

Details

If thin is greater than the total number of samples in the sampler object the first and the last element (of each chain if a sampler with multiple chains is used) are sampled. If numSamples is greater than the total number of samples all samples are selected. In both cases a warning is displayed.

If thin and numSamples is passed, the function will use the thin argument if it is valid and greater than 1, else numSamples will be used.

Author(s)

Florian Hartig

Examples

ll = function(x) sum(dnorm(x, log = TRUE))

setup = createBayesianSetup(ll, lower = c(-10,-10), upper = c(10,10))

settings = list(nrChains = 2, iterations = 1000)
out <- runMCMC(bayesianSetup = setup, sampler = "DEzs", settings = settings)

population MCMCs divide the iterations by the number of internal chains,
so the end of the 3 chains is 1000/3 = 333
sample <- getSample(out, start = 100, end = 334, thin = 10)

sampling with number of samples instead of thinning and
returning a coda object
sample <- getSample(out, start = 100, numSamples = 60, coda = TRUE)
plot(sample)
getVolume

Calculate posterior volume

description

Calculate posterior volume

Usage

getVolume(sampler, prior = F, method = "MVN", ...)

Arguments

sampler an object of superclass bayesianOutput or any other class that has the getSample function implemented (e.g. Matrix)
prior should also prior volume be calculated
method method for volume estimation. Currently, the only option is "MVN"
... additional parameters to pass on to the getSample

Details

The idea of this function is to provide an estimate of the "posterior volume", i.e. how "broad" the posterior is. One potential application is to the overall reduction of parametric uncertainty between different data types, or between prior and posterior.

Implemented methods for volume estimation:

Option "MVN" - in this option, the volume is calculated as the determinant of the covariance matrix of the prior / posterior sample.

Author(s)

Florian Hartig

Examples

bayesianSetup = createBayesianSetup(
 likelihood = generateTestDensityMultiNormal(sigma = "no correlation"),
 lower = rep(-10, 3), upper = rep(10, 3))

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis",
 settings = list(iterations = 2000, message = FALSE))
getVolume(out, prior = TRUE)

bayesianSetup = createBayesianSetup(
 likelihood = generateTestDensityMultiNormal(sigma = "strongcorrelation"),
 lower = rep(-10, 3), upper = rep(10, 3))

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis",
 settings = list(iterations = 2000, message = FALSE))

getVolume(out, prior = TRUE)

GOF

Standard GOF metrics

Startvalues for sampling with nrChains > 1:
if you want to provide different start values for the different chains, provide a list

Description

Standard GOF metrics Startvalues for sampling with nrChains > 1: if you want to provide different start values for the different chains, provide a list

Usage

GOF(observed, predicted, plot = F)

Arguments

- observed: observed values
- predicted: predicted values
- plot: should a plot be created

Details

The function considers predicted ~ observed and calculates
1) rmse = root mean squared error 2) mae = mean absolute error 3) a linear regression with slope, intercept and coefficient of determination R2

For the linear regression, the x axis is centered, meaning that the intercept is the difference between observed / predicted for the MEAN predicted value. This setting avoids a correlation between slope and intercept (that the intercept is != 0 as soon as the slope is != 0)

Value

A list with the following entries: rmse = root mean squared error, mae = mean absolute error, slope = slope of regression, offset = intercept of regression, R2 = R2 of regression
Author(s)

Florian Hartig

Examples

```r
x = runif(500, -1, 1)
y = 0.2 + 0.9 * x + rnorm(500, sd = 0.5)

summary(lm(y ~ x))

GOF(x, y)

GOF(x, y, plot = TRUE)
```

Description

AR1 type likelihood function

Usage

```r
likelihoodAR1(predicted, observed, sd, a)
```

Arguments

- `predicted`: vector of predicted values
- `observed`: vector of observed values
- `sd`: standard deviation of the iid normal likelihood
- `a`: temporal correlation in the AR1 model

Note

The AR1 model considers the process:

```r
y(t) = a y(t-1) + E
e = i.i.d. N(0, sd)
```

|a| < 1

At the moment, no NAs are allowed in the time series.

Author(s)

Florian Hartig
likelihood iidNormal
Normal / Gaussian Likelihood function

Description

Normal / Gaussian Likelihood function

Usage

`likelihoodiidNormal(predicted, observed, sd)`

Arguments

- **predicted**: vector of predicted values
- **observed**: vector of observed values
- **sd**: standard deviation of the i.i.d. normal likelihood

Author(s)

Florian Hartig

MAP
calculates the Maximum APosteriori value (MAP)

Description

calculates the Maximum APosteriori value (MAP)

Usage

`MAP(bayesianOutput, ...)`

Arguments

- **bayesianOutput**: an object of class BayesianOutput (mcmcSampler, smcSampler, or mcmcList)
- **...**: optional values to be passed on the the getSample function

Details

Currently, this function simply returns the parameter combination with the highest posterior in the chain. A more refined option would be to take the MCMC sample and do additional calculations, e.g. use an optimizer, a kernel density estimator, or some other tool to search / interpolate around the best value in the chain.
marginalLikelihood

Author(s)
Florian Hartig

See Also
WAIC, DIC, marginalLikelihood

marginalLikelihood Calculated the marginal likelihood from a set of MCMC samples

Description
Calculated the marginal likelihood from a set of MCMC samples

Usage
marginalLikelihood(sampler, numSamples = 1000, method = "Chib", ...)

Arguments
 sampler an object that implements the getSample function, i.e. a mcmc / smc Sampler (list)
 numSamples number of samples to use. How this works, and if it requires recalculating the likelihood, depends on the method
 method method to choose. Currently available are "Chib" (default), the harmonic mean "HM", sampling from the prior "prior", and bridge sampling "Bridge". See details
 ... further arguments passed to getSample

Details
The marginal likelihood is the average likelihood across the prior space. It is used, for example, for Bayesian model selection and model averaging.

It is defined as
\[ML = \int L(\Theta)p(\Theta)d\Theta \]

Given that MLs are calculated for each model, you can get posterior weights (for model selection and/or model averaging) on the model by
\[P(M_i|D) = ML_i * p(M_i) / \left(\sum_i ML_i * p(M_i) \right) \]

In BSS, we return the log ML, so you will have to exp all values for this formula.

It is well-known that the ML is VERY dependent on the prior, and in particular the choice of the width of uninformative priors may have major impacts on the relative weights of the models. It
has therefore been suggested to not use the ML for model averaging / selection on uninformative priors. If you have no informative priors, and option is to split the data into two parts, use one part to generate informative priors for the model, and the second part for the model selection. See Dormann et al., 2018, in particular the Appendix, for an example.

The marginalLikelihood function currently implements four ways to calculate the marginal likelihood. Be aware that marginal likelihood calculations are notoriously prone to numerical stability issues. Especially in high-dimensional parameter spaces, there is no guarantee that any of the implemented algorithms will converge reasonably fast. The recommended (and default) method is the method "Chib" (Chib and Jeliazkov, 2001), which is based on MCMC samples, with a limited number of additional calculations. Despite being the current recommendation, note there are some numeric issues with this algorithm that may limit reliability for larger dimensions.

The harmonic mean approximation, is implemented only for comparison. Note that the method is numerically unreliable and usually should not be used.

The third method is simply sampling from the prior. While in principle unbiased, it will only converge for a large number of samples, and is therefore numerically inefficient.

The Bridge method uses bridge sampling as implemented in the R package "bridgesampling". It is potentially more exact than the Chib method, but might require more computation time. However, this may be very dependent on the sampler.

Value

A list with log of the marginal likelihood, as well as other diagnostics depending on the chose method

Author(s)

Florian Hartig

References

See Also

WAIC, DIC, MAP

Examples

```R
# Comparison of ML for two regression models

sampleSize = 30
x <- -(sampleSize-1)/2:((sampleSize-1)/2)
y <- 1 * x + 1*x^2 + rnorm(n=sampleSize,mean=0, sd=10)
#plot(x,y, main="Test Data")
```
linear and quadratic effect
likelihood1 <- function(param){
 singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[4]^2), log = TRUE)
 return(sum(singlelikelihoods))
}

linear effect
likelihood2 <- function(param){
 pred = param[1] + param[2]*x
 singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[3]^2), log = TRUE)
 return(sum(singlelikelihoods))
}

setUp1 <- createBayesianSetup(likelihood1, lower = c(-5,-5,-5,0.01), upper = c(5,5,5,30))
setUp2 <- createBayesianSetup(likelihood2, lower = c(-5,-5,0.01), upper = c(5,5,30))

out1 <- runMCMC(bayesianSetup = setUp1)
m1 = marginalLikelihood(out1, start = 1000)

out2 <- runMCMC(bayesianSetup = setUp2)
m2 = marginalLikelihood(out2, start = 1000)

Bayes factor
exp(m1$ln.ML - m2$ln.ML)

BF > 1 means the evidence is in favor of m1. See Kass, R. E. & Raftery, A. E.

Posterior weight
exp(m1$ln.ML) / (exp(m1$ln.ML) + exp(m2$ln.ML))

If models have different model priors, multiply with the prior probabilities of each model.

##

Performance comparison

Low dimensional case with narrow priors - all methods have low error
we use a truncated normal for the likelihood to make sure that the density
integrates to 1 - makes it easier to calculate the theoretical ML
likelihood <- function(x) sum(msm::dnorm(x, log = TRUE, lower = -1, upper = 1))
prior = createUniformPrior(lower = rep(-1,2), upper = rep(1,2))
bayesianSetup <- createBayesianSetup(likelihood = likelihood, prior = prior)
out = runMCMC(bayesianSetup = bayesianSetup, settings = list(iterations = 5000))
plot(out)

theoretical value
theory = log(1/(2\^2))

marginalLikelihood(out)$ln.ML - theory
marginalLikelihood(out, method = "Prior", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "HM", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "Bridge", numSamples = 500)$ln.ML - theory

higher dimensions - wide prior - HM and bridge don't work.
likelihood <- function(x) sum(msm::dtorm(x, log = TRUE, lower = -10, upper = 10))
prior = createUniformPrior(lower = rep(-10,3), upper = rep(10,3))
bayesianSetup <- createBayesianSetup(likelihood = likelihood, prior = prior)
out = runMCMC(bayesianSetup = bayesianSetup, settings = list(iterations = 5000))

plot(out)

theoretical value
theory = log(1/(20^3))

marginalLikelihood(out)$ln.ML - theory
marginalLikelihood(out, method = "Prior", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "HM", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "Bridge", numSamples = 500)$ln.ML - theory

marginalPlot
Plot MCMC marginals

Description

Plot MCMC marginals

Usage

marginalPlot(x, prior = FALSE, xrange = NULL, type = "d",
 singlePanel = TRUE, settings = NULL, npriorDraws = 10000, ...)

Arguments

- **x**
 - bayesianOutput, or matrix or data.frame containing with samples as rows and parameters as columns
- **prior**
 - logical determining whether the prior should be plotted, or if x is matrix or data.frame, a matrix of prior draws with draws as rows and parameters as columns
marginalPlot

- `xrange`: vector or matrix of plotting ranges for the x axis. If matrix, the rows must be parameters and the columns min and max values.
- `type`: character determining the plot type. Either 'd' for density plot, or 'v' for violin plot.
- `singlePanel`: logical, determining whether the parameter should be plotted in a single panel or each in its own panel.
- `settings`: optional list of additional settings for `marginalPlotDensity` and `marginalPlotViolin`, respectively.
- `nPriorDraws`: number of draws from the prior, if x is bayesianOutput.
- `...`: additional arguments passed to `getSample`. If you have a high number of draws from the posterior it is advised to set numSamples (to e.g. 5000) for performance reasons.

Author(s)

Tankred Ott

Examples

```r
## Generate a test likelihood function.
ll <- generateTestDensityMultiNormal(sigma = "no correlation")

## Create a BayesianSetup
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))

## Finally we can run the sampler and have a look
settings <- list(iterations = 1000, adapt = FALSE)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis", settings = settings)
marginalPlot(out, prior = TRUE)

## We can plot the marginals in several ways:
## violin plots
marginalPlot(out, type = 'v', singlePanel = TRUE)
marginalPlot(out, type = 'v', singlePanel = FALSE)
marginalPlot(out, type = 'v', singlePanel = TRUE, prior = TRUE)

## density plot
marginalPlot(out, type = 'd', singlePanel = TRUE)
marginalPlot(out, type = 'd', singlePanel = FALSE)
marginalPlot(out, type = 'd', singlePanel = TRUE, prior = TRUE)

## if you have a very wide prior you can use the xrange option to plot only
## a certain parameter range
marginalPlot(out, type = 'v', singlePanel = TRUE, xrange = matrix(rep(c(-5, 5), 3), ncol = 3))

## Further options
# We can pass arguments to getSample (check ?getSample) and to the density and violin plots
marginalPlot(out, type = 'v', singlePanel = TRUE, 
             settings = list(col = c("#FC086299",'#00BBA88')), prior = TRUE)
marginalPlot(out, type = 'v', singlePanel = TRUE, numSamples = 500)
```
mergeChains \hspace{1cm} \textit{Merge Chains}

\begin{description}
\item[Description] Merge a list of MCMCs or chains
\item[Usage] \texttt{mergeChains(l, \ldots)}
\item[Arguments]
\begin{itemize}
\item \texttt{l} \hspace{1cm} the list with MCMC outputs
\item \texttt{\ldots} \hspace{1cm} arguments to be passed on to \texttt{getSample}
\end{itemize}
\item[Details] The function merges a list of MCMC objects. Requirement is that the list contains classes for which the \texttt{getSample} function works
\item[Value] a matrix
\item[Author(s)] Florian Hartig
\end{description}

\begin{description}
\item[Metropolis] \textit{Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering}
\item[Description] Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering
\item[Usage] \texttt{Metropolis(bayesianSetup, settings = list(startValue = NULL, optimize = T, proposalGenerator = NULL, consoleUpdates = 100, burnin = 0, thin = 1, parallel = NULL, adapt = T, adaptationInterval = 500, adaptationNotBefore = 3000, DRlevels = 1, proposalScaling = NULL, adaptationDepth = NULL, temperingFunction = NULL, gibbsProbabilities = NULL, message = TRUE))}
\end{description}
Arguments

bayesianSetup either an object of class bayesianSetup created by createBayesianSetup (recommended), or a log target function

settings a list of settings - possible options follow below

startValue startValue for the MCMC and optimization (if optimize = T). If not provided, the sampler will attempt to obtain the startValue from the bayesianSetup

optimize logical, determines whether an optimization for start values and proposal function should be run before starting the sampling

proposalGenerator optional proposalgenerator object (see createProposalGenerator)

proposalscaling additional scaling parameter for the proposals that controls the different scales of the proposals after delayed rejection (typical, after a rejection, one would want to try a smaller scale). Needs to be as long as DRlevels. Defaults to \(0.5^{(-0:(\text{mcmcSampler}$settings$DRlevels} -1))\)

burnin number of iterations treated as burn-in. These iterations are not recorded in the chain.

thin thinning parameter. Determines the interval in which values are recorded.

consoleUpdates integer, determines the frequency with which sampler progress is printed to the console

adapt logical, determines wheter an adaptive algorithm should be implemented. Default is TRUE.

adaptationInterval integer, determines the interval of the adaption if adapt = TRUE.

adaptationNotBefore integer, determines the start value for the adaption if adapt = TRUE.

DRlevels integer, determines the number of levels for a delayed rejection sampler. Default is 1, which means no delayed rejection is used.

temperingFunction function to implement simulated tempering in the algorithm. The function describes how the acceptance rate will be influenced in the course of the iterations.

gibbsProbabilities vector that defines the relative probabilities of the number of parameters to be changes simultaniously.

message logical determines whether the sampler’s progress should be printed

Details

The 'Metropolis' function is the main function for all Metropolis based samplers in this package. To call the derivatives from the basic Metropolis-Hastings MCMC, you can either use the corresponding function (e.g. AM for an adaptive Metropolis sampler) or use the parameters to adapt the basic Metropolis-Hastings. The advantage of the latter case is that you can easily combine different properties (e.g. adapive sampling and delayed rejection sampling) without changing the function.
Author(s)
Florian Hartig

References

Examples

```
# Running the metropolis via the runMCMC with a proposal covariance generated from the prior
# (can be useful for complicated priors)

ll = function(x) sum(dnorm(x, log = TRUE))
setup = createBayesianSetup(ll, lower = c(-10,-10), upper = c(10,10))
samples = setup$prior$sampler(1000)

generator = createProposalGenerator(diag(1, setup$numPars))
generator = updateProposalGenerator(generator, samples, manualScaleAdjustment = 1, message = TRUE)

settings = list(proposalGenerator = generator, optimize = FALSE, iterations = 500)

out = runMCMC(bayesianSetup = setup, sampler = "Metropolis", settings = settings)
```

Description
This function plots the DIC, WAIC, mPSRF, PSRF(with upper C.I.) and traces of the parameters in dependence of iterations. DIC, WAIC are plotted separately for the chains and the trace plots also for the internal chains.
Usage

```r
plotDiagnostic(out, start = 50, numSamples = 100, window = 0.2,
    plotWAIC = F, plotPSRF = T, plotDIC = T, plotTrace = T,
    graphicParameters = NULL, ...)
```

Arguments

- `out`: object of class "bayesianOutput"
- `start`: start value for calculating DIC, WAIC, mPSRF and PSRF, default = 50
- `numSamples`: for calculating WAIC, default = 10 because of high computational costs
- `window`: plot range to show, vector of percents or only one value as start value for the window
- `plotWAIC`: whether to calculate WAIC or not, default = T
- `plotPSRF`: calculate and plot mPSRF/PSRF or not, default = T
- `plotDIC`: calculate and plot DIC or not, default = T
- `plotTrace`: show trace plots or not, default = T
- `graphicParameters`: graphic parameters as list for plot function
- `...`: parameters to give to `getSample`

Author(s)

Maximilian Pichler

Examples

```r
# Create bayesian setup with
bayesianSetup <- createBayesianSetup(likelihood = testDensityNormal,
    prior = createUniformPrior(lower = -10,
        upper = 10))

# running MCMC
out = runMCMC(bayesianSetup = bayesianSetup)

# diagnostic plots
## Not run:
plotDiagnostic(out)

## End(Not run)
```
plotSensitivity

Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range.

Description

Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range.

Usage

```r
plotSensitivity(bayesianSetup, selection = NULL)
```

Arguments

- `bayesianSetup`: An object of class BayesianSetup
- `selection`: indices of selected parameters

Note

This function can also be used for sensitivity analysis of an arbitrary output - just create a BayesianSetup with this output.

Author(s)

Florian Hartig

plotTimeSeries

Plots a time series, with the option to include confidence and prediction band

Description

Plots a time series, with the option to include confidence and prediction band

Usage

```r
plotTimeSeries(observed = NULL, predicted = NULL, x = NULL,
               confidenceBand = NULL, predictionBand = NULL, xlab = "Time",
               ylab = "Observed / predicted values", ...)
```
plotTimeSeriesResiduals

Arguments

- observed: observed values
- predicted: predicted values
- x: optional values for x axis (time)
- confidenceBand: matrix with confidenceBand
- predictionBand: matrix with predictionBand
- xlab: a title for the x axis
- ylab: a title for the y axis
- ...: further arguments passed to plot

Author(s)

Florian Hartig

See Also

plotTimeSeriesResults
marginalPlot
tracePlot
correlationPlot

Examples

Create time series
ts <- VSEMcreatePAR(1:100)

Create fake "predictions"
pred <- ts + rnorm(length(ts), mean = 0, sd = 2)

Plot time series
par(mfrow=c(1,2))
plotTimeSeries(observed = ts, main="Observed")
plotTimeSeries(observed = ts, predicted = pred, main = "Observed and predicted")

par(mfrow=c(1,1))

plotTimeSeriesResiduals

Plots residuals of a time series

Description

Plots residuals of a time series
plotTimeSeriesResults

Usage

plotTimeSeriesResiduals(residuals, x = NULL, main = "residuals")

Arguments

residuals x
x optional values for x axis (time)
main title of the plot

Author(s)

Florian Hartig

plotTimeSeriesResults Creates a time series plot typical for an MCMC / SMC fit

Description

Creates a time series plot typical for an MCMC / SMC fit

Usage

plotTimeSeriesResults(sampler, model, observed, error = NULL,
plotResiduals = TRUE, start = 1, prior = FALSE, ...)

Arguments

sampler Either a) a matrix b) an MCMC object (list or not), or c) an SMC object
model function that calculates model predictions for a given parameter vector
observed observed values as vector
error function with signature f(mean, par) that generates observations with error (error = stochasticity according to what is assumed in the likelihood) from mean model predictions. Par is a vector from the matrix with the parameter samples (full length). f needs to know which of these parameters are parameters of the error function. See example in VSEM
plotResiduals logical determining whether residuals should be plotted
start numeric start value for the plot (see getSample)
prior if a prior sampler is implemented, setting this parameter to TRUE will draw model parameters from the prior instead of the posterior distribution
... further arguments passed to plot

Author(s)

Florian Hartig
runMCMC

Examples

Create time series
ts <- VSEMcreatePAR(1:100)

create fake "predictions"
pred <- ts + rnorm(length(ts), mean = 0, sd = 2)

plot time series
par(mfrow=c(1,2))

plotTimeSeries(observed = ts, main="Observed")
plotTimeSeries(observed = ts, predicted = pred, main = "Observed and predicted")

par(mfrow=c(1,1))

runMCMC

Main wrapper function to start MCMCs, particle MCMCs and SMCs

Description

Main wrapper function to start MCMCs, particle MCMCs and SMCs

Usage

runMCMC(bayesianSetup, sampler = "DEzs", settings = NULL)

Arguments

bayesianSetup either one of a) an object of class BayesianSetup with prior and likelihood function (recommended, see createBayesianSetup), b) a log posterior or other target function, or c) an object of class BayesianOutput created by runMCMC. The latter allows to continue a previous MCMC run. See details for further details.
sampler sampling algorithm to be run. Default is DEzs. Options are "Metropolis", "AM", "DR", "DRAM", "DE", "DEzs", "DREAM", "DREAMzs", "SMC". For details see the help of the individual functions.
settings list with settings for each sampler (see help of sampler for details). If a setting is not provided, defaults (see applySettingsDefault) will be used. You can see the default values by running applySettingsDefault with the respective sampler name, or in the help of the samplers.

Details

The runMCMC function can be started with either one of a) an object of class BayesianSetup with prior and likelihood function (recommended, see createBayesianSetup), b) a log posterior or other target function, or c) an object of class BayesianOutput created by runMCMC. The latter allows to continue a previous MCMC run. If a bayesianSetup is provided, check if appropriate
parallization options are used - many samplers can make use of parallelization if this option is activated when the class is created.

For details about the different MCMC samplers, make sure you have read the Vignette (run vignette("BayesianTools", package="BayesianTools"). Also, see Metropolis for Metropolis based samplers, DE and DEzs for standard differential evolution samplers, DREAM and DREAMzs for DREAM sampler, Twalk for the Twalk sampler, and smcSampler for rejection and Sequential Monte Carlo sampling.

The samplers "AM", "DR", and "DRAM" are special cases of the "Metropolis" sampler and are shortcuts for predefined settings ("AM": adapt=TRUE; "DR": DRIlevels=2; "DRAM": adapt=True, DRIlevels=2).

The settings list allows to change the settings for the MCMC samplers and some other options. For the MCMC sampler settings, see their help files. Global options that apply for all MCMC samplers are: iterations (number of MCMC iterations), and nrChains (number of chains to run). Note that running several chains is not done in parallel, so if time is an issue it will be better to run the MCMCs individually and then combine them via createMcmcSamplerList into one joint object.

Startvalues: all samplers allow to provide explicit startvalues. If startvalues are not provided, they are sampled from the prior. Usually, this is a good choice, so don’t feel compelled to provide startvalues.

Note that DE and DREAM variants as well as SMC and T-walk require a population to start, which should be provided as a matrix. Default (NULL) sets the population size for DE to 3 x dimensions of parameters, for DREAM to 2 x dimensions of parameters and for DEzs and DREAMzs to three, sampled from the prior. Note also that the zs variants of DE and DREAM require two populations, the current population and the z matrix (a kind of memory) - if you want to set both, provide a list with startvalue$X and startvalue$Z.

setting startValue for sampling with nrChains > 1: if you want to provide different start values for the different chains, provide them as a list

Value

The function returns an object of class mcmcSampler (if one chain is run) or mcmcSamplerList. Both have the superclass bayesianOutput. It is possible to extract the samples as a coda object or matrix with getSample. It is also possible to summarize the posterior as a new prior via createPriorDensity.

Author(s)

Florian Hartig

See Also

createBayesianSetup

Examples

Generate a test likelihood function.

ll <- generateTestDensityMultiNormal(sigma = "no correlation")
smcSampler

SMC sampler

Description

Sequential Monte Carlo Sampler

Usage

```
smcSampler(bayesianSetup, initialParticles = 1000, iterations = 10,
            resampling = T, resamplingSteps = 2, proposal = NULL,
            adaptive = T, proposalScale = 0.5)
```

Arguments

- **bayesianSetup**: either an object of class `bayesianSetup` created by `createBayesianSetup` (recommended), or a log target function
- **initialParticles**: initial particles - either a draw from the prior, provided as a matrix with the single parameters as columns and each row being one particle (parameter vector), or a numeric value with the number of desired particles. In this case, the sampling option must be provided in the prior of the `BayesianSetup`
- **iterations**: number of iterations
- **resampling**: if new particles should be created at each iteration
- **resamplingSteps**: how many resampling (MCMC) steps between the iterations
- **proposal**: optional proposal class
should the covariance of the proposal be adapted during sampling
scaling factor for the proposal generation. Can be adapted if there is too much / too little rejection

Details
The sampler can be used for rejection sampling as well as for sequential Monte Carlo. For the former case set the iterations to one.

Note
The SMC currently assumes that the initial particle is sampled from the prior. If a better initial estimate of the posterior distribution is available, this the sampler should be modified to include this. Currently, however, this is not included in the code, so the appropriate adjustments have to be done by hand.

Author(s)
Florian Hartig

Examples
```r
## Example for the use of SMC
# First we need a bayesianSetup - SMC makes most sense if we can  for demonstration,
# we'll write a function that puts out the number of model calls
MultiNomialNoCor <- generateTestDensityMultiNormal(sigma = "no correlation")

parallelLL <- function(parMatrix){
  print(paste("Calling likelihood with", nrow(parMatrix), "parameter combinations"))
  out = apply(parMatrix, 1, MultiNomialNoCor)
  return(out)
}

bayesianSetup <- createBayesianSetup(likelihood = parallelLL, lower = rep(-10, 3),
  upper = rep(10, 3), parallel = "external")

# Defining settings for the sampler
# First we use the sampler for rejection sampling
settings <- list(initialParticles = 1000, iterations = 1, resampling = FALSE)

# Running the sampler
out1 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "SMC", settings = settings)
#plot(out1)

# Now for sequential Monte Carlo
settings <- list(initialParticles = 100, iterations = 5, resamplingSteps = 1)
out2 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "SMC", settings = settings)
#plot(out2)

## Not run:
```
Example for starting a new SMC run with results from a previous SMC run

Generate example data (time series)
x1 and x2 are predictory, yObs is the response
t <- seq(1, 365)
x1 <- (sin(1 / 160 * 2 * pi * t) + pi) * 5
x2 <- cos(1 / 182.5 * 1.25 * pi * t) * 12

the model
mod <- function(par, t1 = 1, tn = 365) {
}

the true parameters
par1 <- 1.65
par2 <- 0.75
yObs <- mod(c(par1, par2)) + rnorm(length(x1), 0, 2)

split the time series in half
plot(yObs ~ t)
abline(v = 182, col = "red", lty = 2)

First half of the data
ll_1 <- function(x, sum = TRUE) {
 out <- dnorm(mod(x, 1, 182) - yObs[1:182], 0, 2, log = TRUE)
 if (sum == TRUE) sum(out) else out
}

Fit the first half of the time series
(e.g. fit the model to the data soon as you collect the data)
setup_1 <- createBayesianSetup(ll_1, lower = c(-10, -10), upper = c(10, 10))
settings_1 <- list(initialParticles = 1000)
out_1 <- runMCMC(setup_1, "SMC", settings_1)
summary(out_1)

Second half of the data
ll_2 <- function(x, sum = TRUE) {
 out <- dnorm(mod(x, 183, 365) - yObs[183:365], 0, 2, log = TRUE)
 if (sum == TRUE) sum(out) else out
}

Fit the second half of the time series
(e.g. fit the model to the data soon as you collect the data)
setup_2 <- createBayesianSetup(ll_2, lower = c(-10, -10), upper = c(10, 10))

This is the important step, we use the final particles from the
previous SMC run to initialize the new SMC run
settings_2 <- list(initialParticles = out_1$particles)
out_2 <- runMCMC(setup_2, "SMC", settings_2)
summary(out_2)
stopParallel

Function to close cluster in BayesianSetup

Description

Function closes the parallel executer (if available)

Usage

stopParallel(bayesianSetup)

Arguments

bayesianSetup object of class BayesianSetup

Author(s)

Stefan Paul

testDensityBanana

Banana-shaped density function

Description

Banana-shaped density function

Usage

testDensityBanana(p)

Arguments

p 2-dim parameter vector
testDensityInfinity

Note

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testLinearModel

testDensityInfinity Test function infinity ragged

Description

Test function infinity ragged

Usage

testDensityInfinity(x, error = F)

Arguments

x 2-dim parameter vector
error should error or infinity be returned

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testDensityBanana
testDensityMultiNormal

3d Mutivariate Normal likelihood

Description

3d Mutivariate Normal likelihood

Usage

testDensityMultiNormal(x, sigma = "strongcorrelation")

Arguments

 x a parameter vector of arbitrary length
 sigma either a correlation matrix, or "strongcorrelation", or "no correlation"

testDensityNormal

Normal likelihood

Description

Normal likelihood

Usage

testDensityNormal(x, sum = T)

Arguments

 x a parameter vector of arbitrary length
 sum if likelihood should be summed or not

Author(s)

Florian Hartig
testLinearModel

Fake model, returns a \(ax + b \) linear response to 2-param vector

Description

Fake model, returns a \(ax + b \) linear response to 2-param vector

Usage

testLinearModel(x, env = NULL)

Arguments

- \(x \): 2-dim parameter vector
- \(env \): optional, environmental covariate

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testDensityBanana

Examples

\[
x = \text{c}(1, 2)
y = \text{testLinearModel}(x)
\text{plot}(y)
\]

tracePlot

Trace plot for MCMC class

Description

Trace plot for MCMC class

Usage

tracePlot(sampler, thin = "auto", ...)

testLinearModel

Fake model, returns a \(ax + b \) linear response to 2-param vector

Description

Fake model, returns a \(ax + b \) linear response to 2-param vector

Usage

testLinearModel(x, env = NULL)

Arguments

- \(x \): 2-dim parameter vector
- \(env \): optional, environmental covariate

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testDensityBanana

Examples

\[
x = \text{c}(1, 2)
y = \text{testLinearModel}(x)
\text{plot}(y)
\]

tracePlot

Trace plot for MCMC class

Description

Trace plot for MCMC class

Usage

tracePlot(sampler, thin = "auto", ...)

Arguments

sampler an object of class MCMC sampler
thin determines the thinning interval of the chain
... additional parameters to pass on to the getSample, for example parametersOnly =F, or start = 1000

See Also

marginalPlot
plotTimeSeries
correlationPlot

Examples

set up and run the MCMC
ll <- function(x) sum(dnorm(x, log = TRUE))
setup <- createBayesianSetup(likelihood = ll, lower = c(-10, -10), upper = c(10,10))
settings <- list(iterations = 2000)
out <- runMCMC(bayesianSetup = setup, settings = settings, sampler = "Metropolis")

plot the trace
tracePlot(sampler = out, thin = 10)
tracePlot(sampler = out, thin = 50)

additional parameters can be passed on to getSample (see help)
tracePlot(sampler = out, thin = 10, start = 500)
select parameter by index
tracePlot(sampler = out, thin = 10, start = 500, whichParameters = 2)
at "traverse" move proposal parameter. Default to 6
aw "walk" move proposal parameter. Default to 1.5
pnn Probability determining the number of parameters that are changed
Ptrav Move probability of "traverse" moves, default to 0.4918
Pwalk Move probability of "walk" moves, default to 0.4918
Pblow Move probability of "traverse" moves, default to 0.0082
burnin number of iterations treated as burn-in. These iterations are not recorded in the chain.
thin thinning parameter. Determines the interval in which values are recorded.
startValue Matrix with start values
consoleUpdates Intervall in which the sampling progress is printed to the console
message logical determines whether the sampler’s progress should be printed

Details
The probability of "hop" moves is 1 minus the sum of all other probabilities.

Value
Object of class bayesianOutput.

Author(s)
Stefan Paul

References

updateProposalGenerator
To update settings of an existing proposal generator

Description
To update settings of an existing proposal generator

Usage
updateProposalGenerator(proposal, chain = NULL, message = F,
eps = 1e-10, manualScaleAdjustment = 1)
VSEM

Arguments

- **proposal**: an object of class proposalGenerator
- **chain**: a chain to create the covariance matrix from (optional)
- **message**: whether to print an updating message
- **eps**: numeric tolerance for covariance
- **manualScaleAdjustment**: optional adjustment for the covariance scale (multiplicative)

Details

The `vsem` function can be applied in 2 ways: 1) update the covariance given an MCMC chain, and 2) update the proposal generator after parameters have been changed.

VSEM

Very simple ecosystem model

Description

A very simple ecosystem model, based on three carbon pools and a basic LUE model.

Usage

```r
VSEM(pars = c(KEXT = 0.5, LAR = 1.5, LUE = 0.002, GAMMA = 0.4, tauV = 1440, tauS = 27370, tauR = 1440, Av = 0.5, Cv = 3, Cs = 15, Cr = 3), PAR, C = TRUE)
```

Arguments

- **pars**: a parameter vector with parameters and initial states
- **PAR**: Forcing, photosynthetically active radiation (PAR) MJ/m²/day
- **C**: switch to choose whether to use the C or R version of the model. C is much faster.

Details

This Very Simple Ecosystem Model (VSEM) is a ‘toy’ model designed to be very simple but yet bear some resemblance to deterministic processed based ecosystem models (PBM) that are commonly used in forest modelling.

The model determines the accumulation of carbon in the plant and soil from the growth of the plant via photosynthesis and senescence to the soil which respires carbon back to the atmosphere.

The model calculates Gross Primary Productivity (GPP) using a very simple light-use efficiency (LUE) formulation multiplied by light interception. Light interception is calculated via Beer’s law with a constant light extinction coefficient operating on Leaf Area Index (LAI).

A parameter (GAMMA) determines the fraction of GPP that is autotrophic respiration. The Net Primary Productivity (NPP) is then allocated to above and below-ground vegetation via a fixed
allocation fraction. Carbon is lost from the plant pools to a single soil pool via fixed turnover rates.
Heterotrophic respiration in the soil is determined via a soil turnover rate.
The model equations are
– Photosynthesis

\[\text{LAI} = \text{LAR} \times C_v \]
\[\text{GPP} = \text{PAR} \times \text{LUE} \times (1 - \exp(-K_{\text{EXT}} \times \text{LAI})) \]
\[\text{NPP} = (1 - \text{GAMMA}) \times \text{GPP} \]

– State equations

\[\frac{dC_v}{dt} = A_v \times \text{NPP} - C_v / \tau_V \]
\[\frac{dC_r}{dt} = (1.0 - A_v) \times \text{NPP} - C_r / \tau_R \]
\[\frac{dC_s}{dt} = C_r / \tau_R + C_v / \tau_V - C_s / \tau_S \]

The model time-step is daily.
– VSEM inputs:
PAR Photosynthetically active radiation (PAR) MJ/m²/day
– VSEM parameters:
KEXT Light extinction coefficient m² ground area / m² leaf area
LAR Leaf area ratio m² leaf area / kg aboveground vegetation
LUE Light-Use Efficiency (kg C MJ⁻¹ PAR)
GAMMA Autotrophic respiration as a fraction of GPP
\(\tau_V \) Longevity of aboveground vegetation days
\(\tau_R \) Longevity of belowground vegetation days
\(\tau_S \) Residence time of soil organic matter days
– VSEM states:
Cv Above-ground vegetation pool kg C / m²
Cr Below-ground vegetation pool kg C / m²
Cs Carbon in organic matter kg C / m²
– VSEM fluxes:
G Gross Primary Productivity kg C / m² / day
NPP Net Primary Productivity kg C / m² / day
NEE Net Ecosystem Exchange kg C / m² / day

Value

a matrix with columns NEE, CV, CR and CS units and explanations see details

Author(s)

David Cameron, R and C implementation by Florian Hartig
See Also

VSEMgetDefaults, VSEMcreatePAR, VSEMcreateLikelihood

Examples

```r
## This example shows how to run and calibrate the VSEM model

library(BayesianTools)

# Create input data for the model
PAR <- VSEMcreatePAR(1:1000)
plot(PAR, main = "PAR (driving the model)", xlab = "Day")

# load reference parameter definition (upper, lower prior)
refPars <- VSEMgetDefaults()
# this adds one additional parameter for the likelihood standard deviation (see below)
refPars[12,] <- c(2, 0.1, 4)
rownames(refPars)[12] <- "error-sd"
head(refPars)

# create some simulated test data
# generally recommended to start with simulated data before moving to real data
referenceData <- VSEM(refPars$best[1:11], PAR) # model predictions with reference parameters
referenceData[,1] = 1000 * referenceData[,1]
# this adds the error - needs to conform to the error definition in the likelihood
obs <- referenceData + rnorm(length(referenceData), sd = refPars$best[12])
oldpar <- par(mfrow = c(2, 2))
for (i in 1:4) plotTimeSeries(observed = obs[,i],
  predicted = referenceData[,i], main = colnames(referenceData)[i])

# Best to program in a way that we can choose easily which parameters to calibrate
parSel = c(1:6, 12)

# here is the likelihood
likelihood <- function(par, sum = TRUE){
  # set parameters that are not calibrated on default values
  x = refPars$best
  x[parSel] = par
  predicted <- VSEM(x[1:11], PAR) # replace here VSEM with your model
  predicted[,1] = 1000 * predicted[,1] # this is just rescaling
  diff <- c(predicted[,1:4] - obs[,1:4]) # difference between observed and predicted
  # univariate normal likelihood. Note that there is a parameter involved here that is fit
  llValues <- dnorm(diff, sd = x[12], log = TRUE)
  if (sum == FALSE) return(llValues)
  else return(sum(llValues))
}

# optional, you can also directly provide lower, upper in the createBayesianSetup, see help
prior <- createUniformPrior(lower = refPars$lower[parSel],
  upper = refPars$upper[parSel], best = refPars$best[parSel])
```
bayesianSetup <- createBayesianSetup(likelihood, prior, names = rownames(refPars)[parSel])

settings for the sampler, iterations should be increased for real applicatoin
settings <- list(iterations = 2000, nrChains = 2)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

Not run:

plot(out)
summary(out)
marginalPlot(out)
gelmanDiagnositics(out) # should be below 1.05 for all parameters to demonstrate convergence

Posterior predictive simulations

Create a prediction function
createPredictions <- function(par){
 # set the parameters that are not calibrated on default values
 x = refPars$best
 x[parSel] = par
 predicted <- VSEM(x[1:11], PAR) # replace here VSEM with your model
 return(predicted[,1] * 1000)
}

Create an error function
createError <- function(mean, par){
 return(rnorm(length(mean), mean = mean, sd = par[7]))
}

plot prior predictive distribution and prior predictive simulations
plotTimeSeriesResults(sampler = out, model = createPredictions, observed = obs[,1],
 error = createError, prior = TRUE, main = "Prior predictive")

plot posterior predictive distribution and posterior predictive simulations
plotTimeSeriesResults(sampler = out, model = createPredictions, observed = obs[,1],
 error = createError, main = "Posterior predictive")

Demonstrating the updating of the prior from old posterior
Note that it is usually more exact to rerun the MCMC
with all (old and new) data, instead of updating the prior
because likely some information is lost when approximating the
Prior by a multivariate normal

settings <- list(iterations = 5000, nrChains = 2)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

plot(out)
correlationPlot(out, start = 1000)
newPrior = createPriorDensity(out, method = "multivariate",
 eps = 1e-10,
 lower = refPars$lower[parSel],
 upper = refPars$upper[parSel], start= 1000)

bayesianSetup <- createBayesianSetup(likelihood = likelihood,
 prior = newPrior,
 names = rownames(refPars)[parSel])

check boundaries are correct set
bayesianSetup$prior$sampler() < refPars$lower[parSel]
bayesianSetup$prior$sampler() > refPars$upper[parSel]

check prior looks similar to posterior
x = bayesianSetup$prior$sampler(2000)
correlationPlot(x, thin = F)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

plot(out)
correlationPlot(out)

plotTimeSeriesResults(sampler = out,
 model = createPredictions,
 observed = obs[,1],
 error = createError,
 prior = F, main = "Posterior predictive")

plotTimeSeriesResults(sampler = out,
 model = createPredictions,
 observed = obs[,1],
 error = createError,
 prior = T, main = "Prior predictive")

End(Not run)

par(oldpar)

vsemC

C version of the VSEM model

Description

C version of the VSEM model
Create an example dataset, and from that a likelihood or posterior for the VSEM model

Usage

\texttt{vsemC(par, PAR)}

Arguments

\begin{itemize}
 \item \texttt{par} parameter vector
 \item \texttt{PAR} Photosynthetically active radiation (PAR) MJ/m2/day
\end{itemize}

Description

Create an example dataset, and from that a likelihood or posterior for the VSEM model

Usage

\texttt{VSEMcreateLikelihood(likelihoodOnly = F, plot = F, selection = c(1:6, 12))}

Arguments

\begin{itemize}
 \item \texttt{likelihoodOnly} switch to devide whether to create only a likelihood, or a full bayesianSetup with uniform priors.
 \item \texttt{plot} switch to decide whether data should be plotted
 \item \texttt{selection} vector containing the indices of the selected parameters
\end{itemize}

Details

The purpose of this function is to be able to conveniently create a likelihood for the VSEM model for demonstration purposes. The function creates example data \rightarrow likelihood \rightarrow BayesianSetup, where the latter is the

Author(s)

Florian Hartig
VSEMcreatePAR
Create a random radiation (PAR) time series

Description
Create a random radiation (PAR) time series

Usage
VSEMcreatePAR(days = 1:(3 * 365))

Arguments
- days: days to calculate the PAR for

Author(s)
David Cameron, R implementation by Florian Hartig

VSEMgetDefaults
returns the default values for the VSEM

Description
returns the default values for the VSEM

Usage
VSEMgetDefaults()

Value
- a data.frame
WAIC

Description

calculates the WAIC

Usage

WAIC(bayesianOutput, numSamples = 1000, ...)

Arguments

bayesianOutput an object of class BayesianOutput. Must implement a log-likelihood density
function that can return point-wise log-likelihood values ("sum" argument).
numSamples the number of samples to calculate the WAIC
... optional values to be passed on the the getSample function

Details

The WAIC is constructed as

\[WAIC = -2 \times (lppd - p_{WAIC}) \]

The lppd (log pointwise predictive density), defined in Gelman et al., 2013, eq. 4 as

\[lppd = \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i|\theta^s) \right) \]

The value of \(p_{WAIC} \) can be calculated in two ways, the method used is determined by the method argument.

Method 1 is defined as,

\[p_{WAIC1} = 2 \sum_{i=1}^{n} \left(\log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i|\theta^s) \right) - \frac{1}{S} \sum_{s=1}^{S} \log p(y_i|\theta^s) \right) \]

Method 2 is defined as,

\[p_{WAIC2} = 2 \sum_{i=1}^{n} V_{s=1}^{S} (\log p(y_i|\theta^s)) \]

where \(V_{s=1}^{S} \) is the sample variance.

Note

The function requires that the likelihood passed on to BayesianSetup contains the option sum = T/F,
with default F. If set to true, the likelihood for each data point must be returned.
Author(s)
Florian Hartig

References

See Also
DIC, MAP, marginalLikelihood

Examples

bayesianSetup <- createBayesianSetup(likelihood = testDensityNormal,
 prior = createUniformPrior(lower = rep(-10,2),
 upper = rep(10,2)))

likelihood density needs to have option sum = FALSE

testDensityNormal(c(1,1,1), sum = FALSE)
bayesianSetup$likelihood$density(c(1,1,1), sum = FALSE)
bayesianSetup$likelihood$density(matrix(rep(1,9), ncol = 3), sum = FALSE)

running MCMC

testDensityNormal(c(1,1,1), sum = FALSE)

out = runMCMC(bayesianSetup = bayesianSetup)

WAIC(out)
Index

AM, 49
applySettingsDefault, 3, 55
BayesianTools, 4
BayesianTools-package (BayesianTools), 4
calibrationTest, 5
checkBayesianSetup, 6, 10
correlateCoda, 7
correlationPlot, 7, 53, 64
createBayesianSetup, 4, 6, 9, 12, 13, 15–17, 22, 49, 55–57
createBetaPrior, 12, 16, 17, 22
createLikelihood, 10, 13
createMcmcSamplerList, 14, 56
createMixWithDefaults, 14
createPosterior, 15
createPrior, 9, 10, 12, 15, 17, 21, 22
createPriorDensity, 12, 16, 17, 22, 56
createProposalGenerator, 18, 49
createSmcSamplerList, 20
createTruncatedNormalPrior, 12, 16, 17, 21, 22
createUniformPrior, 10, 12, 16, 17, 22, 22
de, 4, 23, 26, 56
dezs, 4, 24, 25, 56
dic, 7, 26, 43, 44, 74
dream, 4, 27, 31, 56
dreamzs, 4, 29, 29, 56
gelmanDiagnostics, 31
generateParallelExecutor, 32
generateTestDensityMultiNormal, 33, 61, 63
getCredibleIntervals, 34, 36, 37
getDharmaResiduals, 35
getPossibleSamplerTypes, 35
getPredictiveDistribution, 34, 36, 37
getPredictiveIntervals, 34, 36, 36
getSample, 5, 8, 27, 31, 37, 39, 43, 47, 54, 56, 64
getVolume, 39
GOF, 40
likelihoodAR1, 13, 41
likelihoodIidNormal, 13, 42
MAP, 7, 27, 42, 44, 74
marginalLikelihood, 27, 43, 43, 74
marginalPlot, 8, 46, 53, 64
marginalPlotDensity, 47
marginalPlotViolin, 47
mergeChains, 48
Metropolis, 4, 48, 56
plot, 53, 54
plotDiagnostic, 50
plotSensitivity, 52
plotTimeSeries, 8, 52, 64
plotTimeSeriesResiduals, 53
plotTimeSeriesResults, 53, 54
runMCMC, 3, 4, 55
smcSampler, 4, 56, 57
stopParallel, 60
testDensityBanana, 33, 60, 61, 63
testDensityInfinity, 61
testDensityMultiNormal, 62
testDensityNormal, 62
testLinearModel, 33, 61, 63
tracePlot, 8, 53, 63
twalk, 4, 56, 64
updateProposalGenerator, 19, 65
VSEM, 54, 66
vsemC, 70
VSEMccreateLikelihood, 68, 71

75
VSEMcreatePAR, 68, 72
VSEMgetDefaults, 68, 72
WAIC, 27, 43, 44, 73