Package ‘Bayesrel’

June 27, 2022

Type Package
Title Bayesian Reliability Estimation
Version 0.7.4.2
Date 2022-06-27
Description Functionality for reliability estimates. For 'unidimensional' tests:
 Coefficient alpha, 'Guttman's' lambda-2/-4/-6, the Greatest lower
 bound and coefficient omega_u ('unidimensional') in a Bayesian and a frequentist version.
 For multidimensional tests: omega_t (total) and omega_h (hierarchical).
 The results include confidence and credible intervals, the
 probability of a coefficient being larger than a cutoff,
 and a check for the factor models, necessary for the omega coefficients.
 The method for the Bayesian 'unidimensional' estimates, except for omega_u,
 is sampling from the posterior inverse 'Wishart' for the
 covariance matrix based measures (see 'Murphy', 2007,
 The Bayesian omegas (u, t, and h) are obtained by
 'Gibbs' sampling from the conditional posterior distributions of
 (1) the single factor model and (2) the second-order factor model

URL https://github.com/juliuspf/Bayesrel
BugReports https://github.com/juliuspf/Bayesrel/issues
License GPL-3
Encoding UTF-8
LazyData true
Imports LaplacesDemon, MASS, lavaan, coda, methods, stats, graphics,
 progress, Rdpack, Rcpp (>= 1.0.4.6)
LinkingTo Rcpp, RcppArmadillo
RdMacros Rdpack
RoxygenNote 7.2.0
Depends R (>= 2.10)
Suggests testthat (>= 2.1.0), knitr, rmarkdown
asrm

Description

A dataset consisting of 78 participants who filled out the 5-item Altman Self-Rating Mania Scale, rating from 1 to 5 on a Likert scale

Usage

asrm

Format

The format is a 5-column datamatrix containing 78 observations

Source

article

Index

asrm 5-Item questionnaire data from Nicolai (2018)
References

Description
A dataset consisting of 78 participants who filled out the 5-item Altman Self-Rating Mania Scale, rating from 1 to 5 on a Likert scale, 10 % missings were inserted at random

Usage
asrm_mis

Format
The format is a 5-column data matrix containing 78 observations, missing are NA

Source
article

References

Description
When supplying a multidimensional data set the function estimates the reliability of the set by means of omega_total and the general factor saturation of the set by means of omega_hierarchical. The prior distributions of omega_t and omega_h are computed from the prior distributions of the second-order factor model. Specifically, a multivariate normal distribution for the group factor loadings and the factor scores; a normal distribution for the general factor loadings; an inverse gamma distribution for the manifest and latent residuals; an inverse Wishart distribution for the covariance matrix of the latent variables. A Gibbs sampler iteratively draws samples from the conditional posterior distributions of the second-order factor model parameters. The posterior distributions of omega_t and omega_h are computed from the posterior samples of the factor model parameters. The output contains the posterior distributions of omega_t and omega_h, their mean and credible intervals.
Usage

bomegas(
 data,
 n.factors,
 model = "balanced",
 n.iter = 2000,
 n.burnin = 200,
 n.chains = 3,
 thin = 1,
 interval = 0.95,
 missing = "impute",
 a0 = 2,
 b0 = 1,
 l0 = 0,
 A0 = 1,
 c0 = 2,
 d0 = 1,
 beta0 = 0,
 B0 = 2.5,
 p0 = NULL,
 R0 = NULL,
 param.out = FALSE,
 callback = function() {
 }
)

Arguments

data A matrix or data.frame containing multivariate observations, rows = observations, columns = variables/items
n.factors A number specifying the number of group factors that the items load on
model A string that by default ("balanced") distributes the items evenly among the number of group factors. This only works if the items are a multiple of the number of group factors and the items are already grouped in the data set, meaning, e.g., items 1-5 load on one factor, 6-10 on another, and so on. A model file can be specified in lavaan syntax style (f1 =~ x+.+) to relate the items to the group factors. The items can either be named as the columns in the data set or x1, ..., xn, where 1,...,n correspond to the column numbers
n.iter A number for the iterations of the Gibbs Sampler
n.burnin A number for the burnin in the Gibbs Sampler
n.chains A number for the chains to run for the MCMC sampling
thin A number for the thinning of the MCMC samples
interval A number specifying the credible interval, the interval is the highest posterior density interval (HPD)
missing A string denoting the missing data handling, can be "impute" or "listwise". With impute the missing data will be estimated during the MCMC sampling as further unknown parameters
bomegas

a0 A number for the shape of the prior inverse gamma distribution for the manifest residual variances, by default 2
b0 A number for the scale of the prior inverse gamma distribution for the manifest residual variances, by default 1
l0 A number for the mean of the prior normal distribution for the manifest loadings, by default 0, can be a single value or a loading matrix
A0 A number for scaling the variance of the prior normal distribution for the manifest loadings, by default 1
c0 A number for the shape of the prior inverse gamma distribution for the latent residual variances, by default 2
d0 A number for the scale of the prior inverse gamma distribution for the latent residual variances, by default 1
beta0 A number for the mean of the prior normal distribution for the latent loadings, by default 0, can be a single value or a vector
B0 A number for scaling the variance of the prior normal distribution for the latent loadings, by default 1
p0 A number for the shape of the prior inverse gamma distribution for the variance of the g-factor, by default set to \(q^2-q\) when \(q\) are the number of group factors
R0 A number for the scale of the prior inverse gamma distribution for the variance of the g-factor, by default set to the number of items
param.out A logical indicating if loadings and residual variances should be attached to the result, by default FALSE because it saves memory
callback An empty function for implementing a progressbar call from a higher program (e.g., JASP)

Value

The posterior means and the highest posterior density intervals for omega_t and omega_h

References

Examples

note that the iterations are set very low for smoother running examples, you should use # at least the defaults
res <- bomegas(upps, n.factors = 5, model = "balanced", n.iter = 200, n.burnin = 50, n.chains = 2, missing = "listwise")

or with specified model syntax relating the group factors to the items:
model <- "f1 =~ U17_r + U22_r + U29_r + U34_r
f2 =~ U4 + U14 + U19 + U27
f3 =~ U6 + U16 + U28 + U48
f4 =~ U23_r + U31_r + U36_r + U46_r
f5 =~ U10_r + U20_r + U35_r + U52_r"
res <- bomegas(upps, n.factors = 5, model = model, n.iter = 200, n.burnin = 50,
n.chains = 2, missing = "listwise")

cavalini

8-Item Questionnaire Data from Cavalini (1992)

Description

A dataset consisting of eight item questionnaire data. It's Likert scaled from 0-3. It is data measuring how annoyed people were by malodors

Usage

`cavalini`

Format

The format is a 8-column datamatrix containing 828 observations

Source

Doctoral Dissertation

References

omegaFit

graphical posterior predictive check for the 1-factor omega model, based on covariance matrix eigenvalues

Description

gives posterior predictive check for the 1-factor model: comparison between model implied covariance matrix and sample covariance matrix also displays frequentist fit indices

Usage

`omegaFit(x, data, ppc = TRUE, cutoff = 0.08, ci = 0.9)`
Arguments

x
A strel output object (list)
data
A matrix or data.frame containing the data set that produced x
ppc
A logical indicating if the PPC should be printed or not, the default is TRUE
cutoff
A value to compare the posterior sample of RMSEAs against. The result will contain the probability that the RMSEA is smaller than the cutoff value
cl
A value between 0 and 1 indicating the credible interval for the RMSEA

References

Examples

omegasCFA(data, n.factors, model = "balanced", model.type = "higher-order", interval = 0.95, missing = "pairwise", fit.measures = FALSE)

omegasCFA
Estimate reliability estimates for multidimensional scales in the frequentist framework

Description

When supplying a data set that is multidimensional the function estimates the reliability of the set by means of omega_total and the general factor saturation of the set by means of omega_hierarchical. The procedure entails fitting a hierarchical factor model using a CFA. Both the higher-order (second-order) and the bi-factor model can be used in the CFA. The CFA is fit using lavaan ‘Yves Rosseel’, <https://CRAN.R-project.org/package=lavaan>. Coefficients omega_t and omega_h can be computed from the factor model parameters.

Usage

omegasCFA(data, n.factors, model = "balanced", model.type = "higher-order", interval = 0.95, missing = "pairwise", fit.measures = FALSE)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A matrix or data.frame containing multivariate observations, rows = observations, columns = variables/items</td>
</tr>
<tr>
<td>n.factors</td>
<td>A number specifying the number of group factors that the items load on</td>
</tr>
<tr>
<td>model</td>
<td>A string that by default ("balanced") distributes the items evenly among the number of group factors. This only works if the items are a multiple of the number of group factors and the items are already grouped in the data set, meaning, e.g., items 1-5 load on one factor, 6-10 on another, and so on. A model file can be specified in lavaan syntax style (f1=~.+.+) to relate the items to the group factors. The items can either be named as the columns in the data set or x1, ..., xn, where 1,...,n correspond to the column numbers</td>
</tr>
<tr>
<td>model.type</td>
<td>A string denoting if the model that should be fit is the higher-order or bi-factor model. This comes down to the researcher’s theory about the measurement and the model fit</td>
</tr>
<tr>
<td>interval</td>
<td>A number specifying the confidence interval, which is Wald-type</td>
</tr>
<tr>
<td>missing</td>
<td>A string denoting the missing data handling, can be "fiml" (full information ML) or "listwise". pairwise uses FIML in lavaan.</td>
</tr>
<tr>
<td>fit.measures</td>
<td>A logical denoting if fit.measures from the CFA should be computed</td>
</tr>
</tbody>
</table>

Value

The point estimates and the Wald-type confidence intervals for omega_t and omega_h

Examples

```r
res <- omegasCFA(upps, n.factors = 5, model = "balanced", model.type = "bi-factor", missing = "listwise")
# or with specified model syntax relating the group factors to the items:
model <- "f1 =~ x1+x2+x3+x4
f2 =~ x5+x6+x7+x8
f3 =~ x9+x10+x11+x12
f4 =~ x13+x14+x15+x16
f5 =~ x17+x18+x19+x20"
res <- omegasCFA(upps, n.factors = 5, model = model, model.type = "higher-order", missing = "listwise")
```

Description

takes mcmc posterior samples of omega_t and omega_h and calculates the prior and posterior probability of the estimate being bigger or smaller than an arbitrary value
pStrel

Usage

```r
pOmegas(x, cutoff.t = 0.8, cutoff.h = 0.6)
```

Arguments

- **x**: A strel output object (list)
- **cutoff.t**: A number indicating the threshold for omega_t
- **cutoff.h**: A number indicating the threshold for omega_h

Examples

```r
pOmegas(bomegas(upps, n.factors = 5, n.chains = 2, n.iter = 100, n.burnin = 50, missing = "listwise"))
```

Description

takes a mcmc posterior sample of any of the single test reliability estimates and calculates the prior and posterior probability of the estimate being bigger or smaller than an arbitrary value (priors are stored in the package)

Usage

```r
pStrel(x, estimate, low.bound)
```

Arguments

- **x**: A strel output object (list)
- **estimate**: A character string indicating what estimate to plot from the strel output object
- **low.bound**: A number for the threshold to be tested against

Examples

```r
pStrel(strel(asrm, "lambda2", n.chains = 2, n.iter = 100, freq = FALSE), "lambda2", .80)
```
secoFit

model fit for the second-order factor model,

Description

Fit indices and posterior predictive check for the higher-factor model: comparison between posterior sample of model implied covariance matrices and sample covariance matrix. Gray bars should enclose the black dots for good fit. Also prints fit indices, LR (likelihood-ratio), RMSEA, SRMR. The RMSEA is from Garnier-Villareal & Jorgensen (2020)

Usage

secoFit(x, data, ppc = TRUE, cutoff = 0.08, ci = 0.9)

Arguments

- **x** A bomegas output object (list)
- **data** A matrix or data.frame containing the data set that produced x
- **ppc** A logical indicating if the PPC should be printed or not, the default is TRUE
- **cutoff** A value to compare the posterior sample of RMSEAs against. The result will contain the probability that the RMSEA is smaller than the cutoff value
- **ci** A value between 0 and 1 indicating the credible interval for the RMSEA

References

Examples

secoFit(bomegas(upps, n.factors = 5, n.chains = 2, n.iter = 100, n.burnin = 50, missing = "listwise"), upps)

strel

Estimate single test reliability coefficients for unidimensional scales

Description

Reliability estimation of alpha, lambda2, the glb, and omega in a Bayesian and frequentist way. The results include posterior and bootstrapped distributions, point estimates, credible intervals, and confidence intervals.
Usage

```r
strel(
  data = NULL,
  estimates = c("alpha", "lambda2", "glb", "omega"),
  interval = 0.95,
  n.iter = 1000,
  n.burnin = 50,
  thin = 1,
  n.chains = 3,
  n.boot = 1000,
  cov.mat = NULL,
  n.obs = NULL,
  freq = TRUE,
  Bayes = TRUE,
  para.boot = FALSE,
  item.dropped = FALSE,
  missing = "pairwise",
  omega.freq.method = "cfa",
  omega.int.analytic = TRUE,
  alpha.int.analytic = TRUE,
  callback = function() {
    ...
  },
  k0 = 1e-10,
  df0 = NULL,
  a0 = 2,
  b0 = 1,
  m0 = 0
)
```

Arguments

- **data**: The dataset to be analyzed, observations are rows, items are columns
- **estimates**: A character vector containing the estimands, we recommend using lambda2 with only a few items due to the computation time
- **interval**: A number specifying the uncertainty interval
- **n.iter**: A number for the iterations of the Gibbs Sampler
- **n.burnin**: A number for the burnin in the Gibbs Sampler
- **thin**: A number for the thinning of the MCMC samples
- **n.chains**: A number for the chains to run for the MCMC sampling
- **n.boot**: A number for the bootstrap samples
- **cov.mat**: A covariance matrix can be supplied instead of a dataset, but number of observations needs to be specified
- **n.obs**: A number for the sample observations when a covariance matrix is supplied and the factor model is calculated
- **freq**: A logical for calculating the frequentist estimates
Bayes A logical for calculating the Bayesian estimates
para.boot A logical for calculating the parametric bootstrap, the default is the non-parametric
item.dropped A logical for calculating the if-item-dropped statistics
missing A string specifying the way to handle missing data, 'listwise' is self-explanatory, 'pairwise' in the Bayesian paradigm means sampling the missing values as additional parameters from the joint conditional distribution, in the frequentist paradigm this means using the 'pairwise' covariance matrix, except the full information ML method for omega
omega.freq.method A character string for the method of frequentist omega, either "cfa" (confirmatory factor analysis), or "pfa" (principal factor analysis), with "pfa" the interval is always bootstrapped
omega.int.analytic A logical for calculating the omega confidence interval analytically, only works with cfa as the omega.freq.method
alpha.int.analytic A logical for calculating the alpha confidence interval analytically
callback Empty function call for external use
k0 A scalar multiplier for the diagonal of the scaling matrix of the inverse Wishart prior distribution for alpha, lambda2, and the glb
df0 The degrees of freedom of the inverse Wishart prior distribution for alpha, lambda2, and the glb, the default is NULL, which sets the df as the number of items
a0 The shape parameter of the inverse gamma prior distribution for the residual variances in the single factor model for omega
b0 The scale parameter of the inverse gamma prior distribution for the residual variances in the single factor model for omega
m0 The prior mean of the normal distribution on the factor loadings for omega

details Reported are point estimates (posterior mean), Bayesian credible intervals (highest posterior density) and frequentist confidence intervals (non parametric or parametric bootstrap). The estimates supported are Cronbach alpha, Guttman’s lambda2/4/6, the glb, and Mcdonald’s omega_u (unidimensional). Beware of lambda4 with many indicators, the computational effort is considerable. The glb method uses adjusted code from the ‘Rcsdp’ package by ‘Hector Corrada Bravo’, <https://CRAN.R-project.org/package=Rcsdp>. This process applies a slightly adjusted solving algorithm from the ‘CSDP’ library by ‘Brian Borchers’ <https://github.com/coin-or/Csdp/wiki>, <doi:10.1080/10556789908805765>, but is wrapped in ‘RcppArmadillo’. Guttman’s Lambda-4 method is from ‘Benton’ (2015) <doi:10.1007/978-3-319-07503-7_19>. The principal factor analysis (pfa) for a version of frequentist omega_u can be found in ‘Rencher’ (2007) and is described in 'Schlegel' (2017) <https://www.r-bloggers.com/2017/03/iterated-principal-factor-method-of-factor-analysis-with-r/>. Coefficients alpha, lambda2/4, and the glb are estimated from the data covariance matrix. Coefficient omega is estimated from the centered data matrix. The analytic confidence interval of alpha is from ‘Bonett’ and ‘Wright’ (2015) <doi:10.1002/job.1960>
The prior distribution on Cronbach’s alpha (as well as lambda2 and the glb) is induced by the prior distribution on the covariance matrix, which is an inverse Wishart distribution with the identity
matrix (multiplied by a scalar) as a scaling matrix and the number of items k as the degrees of freedom. The prior distribution on McDonald’s omega is induced by the prior distributions on the single-factor model parameters, which are: a normal distribution centered on zero for the factor loadings and scores; an inverse gamma distribution with shape=2 and scale=1 for the residuals; and for the variance of the latent variables an inverse Wishart distribution with the number of items k as a scaling matrix (scalar, since it is of dimension one) and the sum k+2 as the degrees of freedom.

Value

The basic output displays the interval bounds of the coefficients, highest posterior density intervals for the Bayesian coefficients, and confidence intervals for the frequentist coefficients. The summary output shows the point estimates of the coefficients together with the interval bounds. The point estimates for the Bayesian coefficients are posterior means.

References

Examples

note that these are very few iterations just for the example execution, # you should use the defaults at least
summary(strel(asrm, estimates = "lambda2", n.chains = 2, n.iter = 200, n.boot = 200))
summary(strel(asrm, estimates = "lambda2", item.dropped = TRUE, n.chains = 2, n.iter = 100, n.boot = 200))

uppss 20-item questionnaire data from Lozano et al. (2018)

Description

A dataset consisting of 455 participants who filled out the 20-item short form of the UPPS-P, and impulsivity scale, rating from 0 to 4 on a Likert scale. The scale has five subscales measured by four items each: negative urgency (columns 1-4), perserverance (columns 5-8), premeditation (columns 9-12), sensation seeking (columns 13-16), positive urgency (columns 17-20). The data contain 13 missing values.
Usage

Format

The format is a 20-column datamatrix containing 455 observations

Source

References

Index

* datasets
 asrm, 2
 asrm_mis, 3
 cavalini, 6
 upps, 13

asrm, 2
asrm_mis, 3
bomegas, 3
cavalini, 6
omegaFit, 6
omegasCFA, 7
pOmegas, 8
pStrel, 9
secoFit, 10
strel, 10
upps, 13