Package ‘Bchron’

September 1, 2020

Type Package
Title Radiocarbon Dating, Age-Depth Modelling, Relative Sea Level Rate Estimation, and Non-Parametric Phase Modelling
Version 4.7.2
Date 2020-08-18
URL http://andrewcparnell.github.io/Bchron/
BugReports https://github.com/andrewcparnell/Bchron/issues
Depends R (>= 3.4.0),
Imports utils, MASS, coda, mclust, ggplot2, ggridges, magrittr, purrr, ggforce, dplyr, scales, stringr
Encoding UTF-8
Author Andrew Parnell
Maintainer Andrew Parnell <Andrew.Parnell@mu.ie>
Description Enables quick calibration of radiocarbon dates under various calibration curves (including user generated ones); age-depth modelling as per the algorithm of Haslett and Parnell (2008) <DOI:10.1111/j.1467-9876.2008.00623.x>; Relative sea level rate estimation incorporating time uncertainty in polynomial regression models (Parnell and Gehrels 2015) <DOI:10.1002/9781118452547.ch32>; non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM; currently unpublished), and reverse calibration of dates from calibrated into un-calibrated years (also unpublished).
License GPL (>= 2)
Suggests knitr, testthat, rmarkdown, covr
VignetteBuilder knitr
NeedsCompilation yes
RoxygenNote 7.1.1
Language en-US
Repository: CRAN

Date/Publication: 2020-09-01 09:50:47 UTC

R topics documented:

Bchron ... 3
BchronCalibrate ... 3
BchronDensity .. 5
BchronDensityFast 7
Bchronology ... 9
BchronRSL ... 12
choosePositions 13
coreInfluence .. 15
createCalCurve .. 16
dateInfluence ... 18
Glendalough .. 19
hdr .. 20
intcal13 ... 21
intcal20 .. 21
marine13 .. 22
marine20 .. 22
normal ... 23
plot.BchronCalibratedDates 23
plot.BchronDensityRun 24
plot.BchronDensityRunFast 25
plot.BchronologyRun 26
plot.BchronRSLRun 27
predict.BchronologyRun 28
sampleAges ... 29
shcal13 .. 30
shcal20 .. 30
Sluggan .. 31
summary.BchronCalibratedDates 31
summary.BchronDensityRun 32
summary.BchronologyRun 33
summary.BchronRSLRun 34
TestChronData .. 34
TestRSLData ... 35
unCalibrate .. 36

Index ... 38
Bchron

Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non-parametric phase modelling

Description

This package enables quick calibration of radiocarbon dates under various calibration curves (including user generated ones); Age-depth modelling as per the algorithm of Haslett and Parnell (2008); Relative sea level rate estimation incorporating time uncertainty in polynomial regression models; and non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM)

Bchron functions

The most important functions are BchronCalibrate to calibrate radiocarbon (and non-radiocarbon) dates, Bchronology for the age-depth model of Haslett and Parnell (2008), BchronRSL to get rate estimates for relative sea level data, BchronDensity and BchronDensityFast for non-parametric phase modelling of age data. See the help files for these functions for examples. See the vignette for more complete documentation

BchronCalibrate

Fast radiocarbon calibration

Description

A fast function for calibrating large numbers of radiocarbon dates involving multiple calibration curves

Usage

BchronCalibrate(
 ages,
 ageSds,
 calCurves = rep("intcal20", length(ages)),
 ids = NULL,
 positions = NULL,
 pathToCalCurves = system.file("data", package = "Bchron"),
 eps = 1e-05,
 dfs = rep(100, length(ages))
)
Arguments

ages A vector of ages (most likely 14C)
ageSds A vector of 1-sigma values for the ages given above
calCurves A vector of values containing either intcal20, shcal20, marine20, or normal (older calibration curves are supposed such as intcal13). Should be the same length the number of ages supplied. Non-standard calibration curves can be used provided they are supplied in the same format as those previously mentioned and are placed in the same directory. Normal indicates a normally-distributed (non-14C) age.
ids ID names for each age
positions Position values (e.g. depths) for each age
pathToCalCurves File path to where the calibration curves are located. Defaults to the system directory where the 3 standard calibration curves are stored.
eps Cut-off point for density calculation. A value of eps>0 removes ages from the output which have negligible probability density
dfs Degrees-of-freedom values for the t-distribution associated with the calibration calculation. A large value indicates Gaussian distributions assumed for the 14C ages

Details

This function provides a direct numerical integration strategy for computing calibrated radiocarbon ages. The steps for each 14C age are approximately as follows: 1) Create a grid of ages covering the range of the calibration curve 2) Calculate the probability of each age according to the 14C age, the standard deviation supplied and the calibration curve 3) Normalise the probabilities so that they sum to 1 4) Remove any probabilities that are less than the value given for eps Multiple calibration curves can be specified so that each 14C age can have a different curve. For ages that are not 14C, use the ‘normal’ calibration curve which treats the ages as normally distributed with given standard deviation

Value

A list of lists where each element corresponds to a single age. Each element contains:

ages The original age supplied
ageSds The original age standard deviation supplied
positions The position of the age (usually the depth)
calCurves The calibration curve used for that age
ageGrid A grid of age values over which the density was created
densities A vector of probability values indicating the probability value for each element in ageGrid
ageLab The label given to the age variable
positionLab The label given to the position variable
BchronDensity

Non-parametric phase model

Description

This function runs a non-parametric phase model on 14C and non-14C ages via Gaussian Mixture density estimation.

Usage

```r
BchronDensity(
  ages,
  ageSds,
  calCurves,
  pathToCalCurves = system.file("data", package = "Bchron"),
  dfs = rep(100, length(ages)),
  numMix = 50,
  iterations = 10000,
  burn = 2000,
  thin = 8,
  updateAges = FALSE,
  store_density = TRUE
)
```

See Also

`Bchronology, BchronRSL, BchronDensity, BchronDensityFast, createCalCurve`

Examples

```r
# Calibrate a single age
ages1 = BchronCalibrate(ages=11553, ageSds=230, calCurves='intcal20', ids='Date-1')
summary(ages1)
plot(ages1)

# Calibrate multiple ages with different calibration curves
ages2 = BchronCalibrate(ages=c(3445, 11553, 7456), ageSds=c(50, 230, 110),
                        calCurves=c('intcal20', 'intcal20', 'shcal20'))
summary(ages2)
plot(ages2)

# Calibrate multiple ages with multiple calibration curves and including depth
ages3 = BchronCalibrate(ages=c(3445, 11553), ageSds=c(50, 230), positions=c(100, 150),
                        calCurves=c('intcal20', 'normal'))
summary(ages3)
plot(ages3, withPositions=TRUE)
```
Arguments

- **ages**
 A vector of ages (most likely 14C)

- **ageSds**
 A vector of 1-sigma values for the ages given above

- **calCurves**
 A vector of values containing either `intcal20`, `shcal20`, `marine20`, or `normal` (older calibration curves such as `intcal13` are also supported). Should be the same length the number of ages supplied. Non-standard calibration curves can be used provided they are supplied in the same format as those previously mentioned and are placed in the same directory. Normal indicates a normally-distributed (non-14C) age.

- **pathToCalCurves**
 File path to where the calibration curves are located. Defaults to the system directory where the 3 standard calibration curves are stored

- **dfs**
 Degrees-of-freedom values for the t-distribution associated with the calibration calculation. A large value indicates Gaussian distributions assumed for the 14C ages

- **numMix**
 The number of mixture components in the phase model. Might need to be increased if the data set is large and the phase behaviour is very complex

- **iterations**
 The number of iterations to run for

- **burn**
 The number of starting iterations to discard

- **thin**
 The step size of iterations to keep

- **updateAges**
 Whether or not to update ages as part of the MCMC run. Default is FALSE. Changing this to TRUE will improve performance but will fit a slightly invalid model

- **store_density**
 Whether or not to store the density and age grid. Useful for plotting the output in other packages

Details

This model places a Gaussian mixture prior distribution on the calibrated ages and so estimates the density of the overall set of radiocarbon ages. It is designed to be a probabilistic version of the Oxcal SUM command which takes calibrated ages and sums the probability distributions with the aim of estimating activity through age as a proxy.

Value

An object of class `BchronDensityRun` with the following elements:

- **theta**
 The posterior samples of the restricted ages

- **p**
 Posterior samples of the mixture proportions

- **mu**
 Values of the means of each Gaussian mixture

- **calAges**
 The calibrated ages from `BchronCalibrate`

- **G**
 The number of mixture components. Equal to `numMix`

- **age_grid**
 A grid of ages used for the final density estimate

- **density**
 The density estimate based on the above age grid
See Also

Bchronology, BchronRSL, BchronDensityFast for a faster approximate version of this function.

Examples

```r
# Read in some data from Sluggan Moss
data(Sluggan)

# Run the model
SlugDens = BchronDensity(ages=Sluggan$ages, ageSds=Sluggan$ageSds,
calCurves=Sluggan$calCurves)

# plot it
plot(SlugDens)
```

BchronDensityFast Non-parametric phase model (faster version)

Description

This function runs a non-parametric phase model on 14C and non-14C ages via Gaussian Mixture density estimation through the mclust package.

Usage

```r
BchronDensityFast(
  ages,
  ageSds,
  calCurves,
  pathToCalCurves = system.file("data", package = "Bchron"),
  dfs = rep(100, length(ages)),
  samples = 2000,
  G = 30
)
```

Arguments

- **ages**: A vector of ages (most likely 14C).
- **ageSds**: A vector of 1-sigma values for the ages given above.
- **calCurves**: A vector of values containing either intcal20, shcal20, marine20, or normal (older calibration curves such as intcal13 are also supported). Should be the same length the number of ages supplied. Non-standard calibration curves can be used provided they are supplied in the same format as those previously mentioned and are placed in the same directory. Normal indicates a normally-distributed (non-14C) age.
BchronDensityFast

pathToCalCurves
File path to where the calibration curves are located. Defaults to the system directory where the 3 standard calibration curves are stored.

dfs
Degrees-of-freedom values for the t-distribution associated with the calibration calculation. A large value indicates Gaussian distributions assumed for the 14C ages

samples
Number of samples of calibrated dates required

G
Number of Gaussian mixture components

Details
This is a faster approximate version of BchronDensity that uses the densityMclust function to compute the Gaussian mixtures for a set of calibrated ages. The method is an approximation as it does not fit a fully Bayesian model as BchronDensity does. It is designed to be a probabilistic version of the Oxcal SUM command which takes calibrated ages and sums the probability distributions with the aim of estimating activity through age as a proxy.

Value
An object of class BchronDensityRunFast with the following components:

out
The output from the run of densityMclust with the given number of mixture components

calAges
The calibrated ages from the BchronDensity function

See Also
Bchronology, BchronCalibrate, BchronRSL, BchronDensity for a slower exact version of this function

Examples

Read in some data from Sluggan Moss
data(Sluggan)

Run the model
SlugDensFast = BchronDensityFast(ages=Sluggan$ages,ageSds=Sluggan$ageSds, calCurves=Sluggan$calCurves)

plot it
plot(SlugDensFast)
Bchronology

Description

Fits a non-parametric chronology model to age/position data according to the Compound Poisson-Gamma model defined by Haslett and Parnell (2008) [DOI:10.1111/j.1467-9876.2008.00623.x]. This version uses a slightly modified Markov chain Monte Carlo fitting algorithm which aims to converge quicker and requires fewer iterations. It also a slightly modified procedure for identifying outliers.

Usage

Bchronology(
 ages,
 ageSds,
 positions,
 positionThicknesses = rep(0, length(ages)),
 calCurves = rep("intcal20", length(ages)),
 ids = NULL,
 outlierProbs = rep(0.01, length(ages)),
 predictPositions = seq(min(positions), max(positions), length = 100),
 pathToCalCurves = system.file("data", package = "Bchron"),
 jitterPositions = FALSE,
 iterations = 10000,
 burn = 2000,
 thin = 8,
 extractDate = 1950 - as.numeric(format(Sys.time(), "%Y")),
 maxExtrap = 1000,
 thetaMhSd = 0.5,
 muMhSd = 0.1,
 psiMhSd = 0.1,
 ageScaleVal = 1000,
 positionNormalise = TRUE
)

Arguments

ages A vector of ages (most likely 14C)
ageSds A vector of 1-sigma values for the ages given above
positions Position values (e.g. depths) for each age
positionThicknesses Thickness values for each of the positions. The thickness value should be the full thickness value of the slice. By default set to zero.
calCurves: A vector of values containing either 'intcal20', 'shcal20', 'marine20', or 'normal' (older calibration curves are also supported, e.g. intcal13). Should be the same length the number of ages supplied. Non-standard calibration curves can be used provided they are supplied in the same format as those previously mentioned and are placed in the same directory, or created via `createCalCurve`. Normal indicates a normally-distributed (non-14C) age.

ids: ID names for each age

outlierProbs: A vector of prior outlier probabilities, one for each age. Defaults to 0.01

predictPositions: A vector of positions (e.g. depths) at which predicted age values are required. Defaults to a sequence of length 100 from the top position to the bottom position

pathToCalCurves: File path to where the calibration curves are located. Defaults to the system directory where the 3 standard calibration curves are stored.

jitterPositions: Whether to jigger the positions at startup or not. Default is FALSE but if there are lots of dates at similar depths this may resolve some initialisation problems

iterations: The number of iterations to run the procedure for

burn: The number of starting iterations to discard

thin: The step size for every iteration to keep beyond the burnin

extractDate: The top age of the core. Used for extrapolation purposes so that no extrapolated ages go beyond the top age of the core. Defaults to the current year

maxExtrap: The maximum number of extrapolations to perform before giving up and setting the predicted ages to NA. Useful for when large amounts of extrapolation are required, i.e. some of the predictPositions are a long way from the dated positions

thetaMhSd: The Metropolis-Hastings standard deviation for the age parameters

muMhSd: The Metropolis-Hastings standard deviation for the Compound Poisson-Gamma mean

psiMhSd: The Metropolis-Hastings standard deviation for the Compound Poisson-Gamma scale

ageScaleVal: A scale value for the ages. Bchronology works best when the ages are scaled to be approximately between 0 and 100. The default value is thus 1000 for ages given in years.

positionNormalise: Whether to normalise the position values. Bchronology works best when the positions are normalise to be between 0 and 1. The default value is TRUE

Details

The `Bchronology` function fits a compound Poisson-Gamma distribution to the increments between the dated levels. This involves a stochastic linear interpolation step where the age gaps are Gamma distributed, and the position gaps are Exponential. Radiocarbon and non-radiocarbon dates (including outliers) are updated within the function also by MCMC.
Bchronology

Value

A list of class BchronologyRun which include elements:

- **theta**: The posterior estimated values of the ages
- **phi**: The posterior estimated outlier values (1=outlier, 2=not outlier). The means of this parameter give the posterior estimated outlier probabilities
- **mu**: The posterior values of the Compound Poisson-Gamma mean
- **psi**: The posterior values of the Compound Poisson-Gamma scale
- **thetaPredict**: The posterior estimated ages for each of the values in predictPosition
- **predictPositions**: The positions at which estimated ages were required
- **calAges**: The calibrated ages as output from BchronCalibrate
- **inputVals**: All of the input values to the Bchronology run

References

See Also

BchronCalibrate, BchronRSL, BchronDensity, BchronDensityFast

Examples

```
# Data from Glendalough
data(Glendalough)

# Run in Bchronology - all but first age uses intcal20
GlenOut = Bchronology(ages=Glendalough$ages, ageSds=Glendalough$ageSds, calCurves=Glendalough$calCurves, positions=Glendalough$position, positionThicknesses=Glendalough$thickness, ids=Glendalough$id, predictPositions=seq(0,1500,by=10))

# Summarise it a few different ways
summary(GlenOut) # Default is for quantiles of ages at predictPosition values
summary(GlenOut, type='convergence') # Check model convergence
summary(GlenOut, type='outliers') # Look at outlier probabilities

# Predict for some new positions
predictAges = predict(GlenOut, newPositions = c(150,725,1500), newPositionThicknesses=c(5,0,20))

# Plot the output
plot(GlenOut, main="Glendalough", xlab='Age (cal years BP)', ylab='Depth (cm)', las=1)
```
BchronRSL

Relative sea level rate (RSL) estimation

Description

Relative sea level rate (RSL) estimation

Usage

BchronRSL(
 BchronologyRun,
 RSLmean,
 RSLsd,
 degree = 1,
 iterations = 10000,
 burn = 2000,
 thin = 8
)

Arguments

BchronologyRun Output from a run of Bchronology
RSLmean A vector of RSL mean estimates of the same length as the number of predictPo-
positions given to the Bchronology function
RSLsd A vector RSL standard deviations of the same length as the number of predict-
Positions given to the Bchronology function
degree The degree of the polynomial regression: linear=1 (default), quadratic=2, etc. Supports up to degree 5, though this will depend on the data given
iterations The number of MCMC iterations to run
burn The number of starting iterations to discard
thin The step size of iterations to discard

Details

This function fits an errors-in-variables regression model to relative sea level (RSL) data. An errors-
in-variables regression model allows for uncertainty in the explanatory variable, here the age of sea level data point. The algorithm is more fully defined in the reference below

Value

An object of class BchronRSLRun with elements itemize

References

choosePositions

Compute positions to date next which result in maximal decrease of chronological uncertainty

Description

This function finds, for a given current chronology, created via `Bchronology`, which positions (depths) to date next. If N = 1 it just finds the position with the biggest uncertainty. If N>1 it puts a date at the N = 1 position and re-runs `Bchronology` with the extra pseudo date. It uses the `unCalibrate` function with the un-calibrated age estimated at the median of the chronology and the sd as specified via the `newSds` argument. Other arguments specify the new thicknesses, calibration curves, and outlier probabilities for newly inserted pseudo-dates.

Usage

```r
choosePositions( 
  bchrRun, 
  N = 1, 
  newSds = 30, 
)```

See Also

`BchronCalibrate`, `Bchronology`, `BchronDensity`, `BchronDensityFast`
choosePositions

newThicknesses = 0,
positions = bchrRun$predictPositions,
newCalCurve = "intcal20",
newOutlierProb = 0.05,
level = 0.5,
plot = TRUE,
count = 1,
linesAt = NULL
)

Arguments

bchrRun A run of the current chronology as output from Bchronology
N The number of new positions required
newSds The new standard deviations of the pseudo-added dates
newThicknesses The new thicknesses of the pseudo-added dates
positions The positions allowed to estimate the new positions to date. Defaults to the value of predictPositions from the Bchronology run
newCalCurve The new calibration curve of the pseudo-added dates
newOutlierProb The new outlier probabilities of the pseudo-added dates
level The confidence level required for minimising the uncertainty. Defaults to 50%. (Note: this will be estimated more robustly than the 95% level)
plot Whether to plot the chronologies as they are produced
count Counter function (not for use other than by the function itself)
linesAt Horizontal line positions (not for use other than by the function itself)

Value

Some plots and the positions to date next

See Also

Bchronology for the main function to create chronologies, unCalibrate for the ability to invert calendar dates for a given calibration curve.

Examples

data(Glendalough)
GlenOut = Bchronology(ages=Glendalough$ages,
ageSds=Glendalough$ageSds,
calCurves=Glendalough$calCurves,
positions=Glendalough$position,
positionThicknesses=Glendalough$thickness,
ids=Glendalough$id,
predictPositions=seq(0,1500,by=10))
Find the influence of dates in a pair of Bchronology runs across the core

Description

This function takes as input two Bchronology runs and compares the uncertainty intervals. It does this by computing the mean uncertainty across the core (type = "mean") at a specified percentile level (e.g. 95%) and subsequently reporting the reduction/increase in uncertainty between the two runs. Both cores must have the same set of depths/positions at regular intervals.

Usage

coreInfluence(
  bchrRun1,
  bchrRun2,
  percentile = 0.95,
  type = c("plot", "summary", "max"),
  ageTolerance = 500,
  ...
)

Arguments

bchrRun1 The output of a run of the Bchronology function
bchrRun2 The output of another run of the Bchronology function, possibly with different dates. Note this must have the same value of predictPositions as bchrRun1
percentile The value of the percentile to compare the uncertainties. Default is 95%
type if plot will return a plot of the difference in uncertainties at the specified percentile level. If summary will return text output of the reduction in uncertainty at each position. If max will return the position of the maximum decrease in uncertainty and a list of all the positions where the reduction in uncertainty exceeds the value of ageTolerance
ageTolerance A value in years for which to report the positions at which the reduction in uncertainty exceeds this value.
... Additional arguments to plot
createCalCurve

Create a new calibration curve

Details

For example, if the ageTolerance value is 500 years, then coreInfluence will return all of the positions at which the uncertainty reduction is bigger than 500.

Value

Depending on type will outputs some text and plots providing the influence values for the cores in question.

See Also

Bchronology, choosePositions, dateInfluence for finding the influence of removing a single date from a core

Examples

data(Glendalough)
# Start with a run that remove two dates
GlenOut1 = Bchronology(ages=Glendalough$ages[-c(3:4)],
ageSds=Glendalough$ageSds[-c(3:4)],
calCurves=Glendalough$calCurves[-c(3:4)],
positions=Glendalough$position[-c(3:4)],
positionThicknesses=Glendalough$thickness[-c(3:4)],
ids=Glendalough$id[-c(3:4)],
predictPositions=seq(0,1500,by=10))
GlenOut2 = Bchronology(ages=Glendalough$ages,
ageSds=Glendalough$ageSds,
calCurves=Glendalough$calCurves,
positions=Glendalough$position,
positionThicknesses=Glendalough$thickness,
ids=Glendalough$id,
predictPositions=seq(0,1500,by=10))

# Now compare their influence
coreInfluence(GlenOut1,
    GlenOut2,
    type = c('max', 'plot'),
xlab = 'Age (cal years BP)',
    ylab = 'Depth (cm)',
    main = 'Chronology difference at 95% for Glendalough removing two dates',
    las = 1)
createCalCurve

Description

A function for creating a new calibration curve not already available in Bchron

Usage

createCalCurve(
  name,
  calAges,
  uncalAges,
  oneSigma = rep(0, length(calAges)),
  pathToCalCurves = getwd(),
  createFile = TRUE
)

Arguments

name The name of the new calibration curve
calAges A vector of the calendar/calibrated ages in years before present
uncalAges A vector of values of uncalibrated ages in appropriate units (e.g. 14C years BP)
oneSigma The one sigma (one standard deviation) values in uncalibrated units. If left blank it assumes these are all zero
pathToCalCurves The path to the calibration curves. Will write by default to the working directory
createFile whether to write out the new file or not. Only turned off for testing purposes

Details

All calibration curves are stored by Bchron in the standard R gzipped text format. You can find the location of the calibration curves by typing system.file('data', package='Bchron'). Any created calibration curve will be converted to this format. However R packages are not allowed to write to this directory so it is up to the user to put the resulting calibration curve file in the appropriate directory. It can then be used as in the examples below. However note that re-installing Bchron will likely over-write previously created calibration curves so you should make sure to store the code used to create it. As a short-cut to copying it by hand you can instead use the file.copy command in the example below.

See Also

BchronCalibrate

Examples

## Not run:
# Load in the calibration curve with:
intcal09 = read.table(system.file('extdata/intcal09.14c', package = 'Bchron'), sep='
# Run createCalCurve
createCalCurve(name='intcal09',calAges=intcal09[,1],
uncalAges=intcal09[,2],oneSigma=intcal09[,3])
# Copy the file to the right place
file.copy(from = 'intcal09.rda',
          to = system.file('data', package='Bchron'),
          overwrite = TRUE) # Only need this if you've run it more than once

# Calibrate the ages under two calibration curves
age_09 = BchronCalibrate(ages=15500, ageSds=150,
                          calCurves = 'intcal09', ids='My Date',
                          pathToCalCurves = getwd())
age_20 = BchronCalibrate(ages=15500, ageSds=150, calCurves = 'intcal20')

# Finally plot the difference
library(ggplot2)
plot(age_09) +
  geom_line(data = as.data.frame(age_20$Date1),
            aes(x = ageGrid, y = densities), col = 'red') +
  ggtitle('Intcal09 vs Intcal20')

## End(Not run)

dateInfluence

### Find the influence of the dates in a Bchronology run

dateInfluence(bchrRun, whichDate = "all", measure = c("KL", "absMeanDiff", "absMedianDiff"))

**Arguments**

- **bchrRun**: The output of a run of the `Bchronology` function
- **whichDate**: The chosen date to remove. Either 'all' which removes each date in turn, or 'internal' which removes all but the top/bottom dates, or the date number (in the order same order as in argument 1), or the name of the date from the Bchronology run output file.
- **measure**: Either 'KL' for Kullback Leibler divergence (recommended); or 'absMeanDiff' or 'absMedianDiff' for distances in years from the mean/median age respectively
Details

The KL measure is preferred as it takes account of the full probability distributions but it lacks a simple interpretation. The best way to use it is with whichDate = 'all': the largest value corresponds to the most influential date in the chronology. For simpler interpretation use measure = 'absMeanDiff' or measure = 'absMedianDiff' as for these the influence is measured in years.

When the predictPositions from the original Bchronology run do not include those of the date(s) being left out then the function uses the closest position and reports a warning.

Value

Outputs some text providing the influence values for the date(s) in question. If given an assignment value also return a list containing all the probability distributions.

See Also

Bchronology, summary.BchronologyRun, coreInfluence, choosePositions

Examples

data(Glendalough)
GlenOut = Bchronology(ages=Glendalough$ages,
                        ageSds=Glendalough$ageSds,
                        calCurves=Glendalough$calCurves,
                        positions=Glendalough$position,
                        positionThicknesses=Glendalough$thickness,
                        ids=Glendalough$id,
                        predictPositions=seq(0,1500,by=10))
dateInfluence(GlenOut, whichDate = 4, measure = 'absMeanDiff')

---

**Glendalough**  

**Glendalough data**

Description

Chronology data for Glendalough data set

Usage

data(Glendalough)
Format

A data frame with 6 observations on the following 6 variables:

id  ID of each age
ages  Age in (14C) years BP
ageSds  Age standard deviations
position  Depths in cm
thickness  Thicknesses in cm
calCurves  Calibration curve for each age

Details

This Glendalough data can be used with Bchronology or BchronDensity

Source


Description

A function for computing highest density regions (HDRs)

Usage

hdr(date, prob = 0.95)

Arguments

date  A calibrated Bchron date, via e.g. BchronCalibrate
prob  The desired probability interval, in the range(0, 1)

Details

The output of this function is a list of contiguous ranges which cover the probability interval requested. A highest density region might have multiple such ranges if the calibrated date is multimodal. These differ from credible intervals, which are always contiguous but will not be a good representation of a multi-modal probability distribution.

Value

A list where each element is one of the contiguous sets making up the HDR
### intcal13

See Also

- **BchronCalibrate**

Examples

```r
Calibrate multiple ages and summarise them
ages <- BchronCalibrate(ages=11553, ageSds=230,
 calCurves='intcal13')

Get samples
hdr(ages$Date1)
```

<table>
<thead>
<tr>
<th>intcal13</th>
<th><em>Northern hemisphere 2013 calibration curve</em></th>
</tr>
</thead>
</table>

Description

Northern hemisphere 2013 calibration curve

Usage

- data(intcal13)

Format

A data frame with 5141 observations on 5 variables.

Details

For full details and reference see [http://intcal.org/blurb.html](http://intcal.org/blurb.html). For usage details see **BchronCalibrate**

<table>
<thead>
<tr>
<th>intcal20</th>
<th><em>Northern hemisphere 2020 calibration curve</em></th>
</tr>
</thead>
</table>

Description

Northern hemisphere 2020 calibration curve

Usage

- data(intcal20)

Format

A data frame with 9501 observations on 5 variables.

Details

For full details and reference see [http://intcal.org/blurb.html](http://intcal.org/blurb.html). For usage details see **BchronCalibrate**
marine13  
*Marine 2013 calibration curve*

**Description**
Marine 2013 calibration curve

**Usage**

data(marine13)

**Format**
A data frame with 4801 observations on 5 variables

**Details**
For full details and reference see http://intcal.org/blurb.html. For usage details see \texttt{BchronCalibrate}


marine20  
*Marine 2020 calibration curve*

**Description**
Marine 2020 calibration curve

**Usage**

data(marine20)

**Format**
A data frame with 5501 observations on 5 variables

**Details**
For full details and reference see http://intcal.org/blurb.html. For usage details see \texttt{BchronCalibrate}
Data for dummy calibration of normally distributed ages

Description
Data for dummy calibration of normally distributed ages

Usage
data(normal)

Format
A data frame with 2 observations on 3 variables.

Details
This is dummy data so that BchronCalibrate can calibrate normally distributed dates.

plot.BchronCalibratedDates
Plot calibrated dates from a BchronCalibrate run

Description
Plots calibrated radiocarbon dates from a BchronCalibrate run. Has options to plot on a position (usually depth) scale if supplied with the original run

Usage
## S3 method for class 'BchronCalibratedDates'
plot(
  x,
  withPositions = ifelse(length(x) > 1 & !is.null(x[[1]]$positions), TRUE, FALSE),
  dateHeight = 100,
  dateLabels = TRUE,
  fillCol = "darkslategray",
  withHDR = TRUE,
  ageScale = c("bp", "bc", "b2k"),
  scaleReverse = TRUE,
  ...
)
Arguments

- **x**: Output from `BchronCalibrate`
- **withPositions**: Whether to plot with positions (i.e. using the position values as the y axis). By default TRUE if `x` has more than one date and contains positions.
- **dateHeight**: The height of the dates in the plot in the same units as the position values. Only relevant if `withPositions=TRUE`.
- **dateLabels**: Whether to add the names of the dates to the left of them. Default TRUE.
- **fillCol**: A colour to fill the date densities when `withPositions` is TRUE, or HDR ranges when it is FALSE.
- **withHDR**: Whether to plot the 95% highest density region values.
- **ageScale**: Either `bp` for years before present, `bc` for years BC/AD (BC will be negative), `b2k` for years before 2000. Others not supported (yet).
- **scaleReverse**: Whether to reverse the x-axis scale. Defaults to TRUE which works best for dates presented in e.g. years BP.
- **...**: Other arguments to plot (currently ignored).

Details

These plots are intended to be pretty basic and used simply for quick information. Users are encouraged to learn the R plotting features to produce publication quality graphics.

See Also

`BchronCalibrate`, `Bchronology`, `BchronRSL`, `BchronDensity`, `BchronDensityFast`
plot.BchronDensityRunFast

Arguments

- **x**: Output from `BchronDensity`
- **plotDates**: Whether to plot the individual calibrated dates
- **plotRawSum**: Whether to plot the raw sum of the probability distributions
- **plotPhase**: Whether to plot the phase values
- **phaseProb**: The probability value for the phase identification
- **...**: Other graphical commands. See `par`

See Also

See `BchronDensity` for examples, also `Bchronology`, `BchronRSL`, and `BchronDensityFast` for a faster approximate version of this function

---

plot.BchronDensityRunFast

*Plot run from BchronDensityFast*

Description

Plots output from `BchronDensityFast`

Usage

```r
S3 method for class 'BchronDensityRunFast'
plot(x, plotDates = TRUE, plotSum = FALSE, ...)
```

Arguments

- **x**: Output from `BchronDensityFast`
- **plotDates**: Whether to include individual age pdfs (default TRUE)
- **plotSum**: Whether to include sum of age pdfs (default FALSE)
- **...**: Other graphical parameters, see `par`

Details

Creates a basic plot of output for a run of `BchronDensityFast`

See Also

Examples in `BchronDensityFast`, and see `BchronDensity`, for a slower, more accurate version of this function
plot.BchronologyRun

Description

Plots output from a run of Bchronology

Usage

```r
S3 method for class 'BchronologyRun'
plot(x,
 dateHeight = 100,
 dateLabels = TRUE,
 dateCol = "darkslategray",
 chronCol = "deepskyblue4",
 chronTransparency = 0.75,
 alpha = 0.95,
 nudgeX = 0,
 nudgeY = 0,
 expandX = if (dateLabels) { c(0.1, 0) } else { c(0, 0) },
 expandY = c(0.05, 0),
 ageScale = c("bp", "bc", "b2k"),
 scaleReverse = TRUE,
 ...)
```

Arguments

- `x` The object created by Bchronology
- `dateHeight` The height of the dates in the plot (on the same scale as the positions)
- `dateLabels` Whether to label the dates on the vertical axis (default TRUE)
- `dateCol` The colour of the date labels
- `chronCol` The colour of the chronology uncertainty ribbon to be plotted
- `chronTransparency` The amount of transparency for the chronology ribbon
- `alpha` The credible interval of the chronology run to be plotted. Defaults to 95 percent
- `nudgeX` The amount to move the date labels in the x direction. Can be negative. See `geom_text` for details
- `nudgeY` The amount to move the date labels in the y direction. Can be negative. See `geom_text` for details
- `expandX` The amount to expand the horizontal axis in case part are missed off the plot. See `expand_limits` for details
The amount to expand the vertical axis in case part are missed off the plot. See `expand_limits` for details

Either bp for years before present, bc for years BC/AD (BC will be negative), b2k for years before 2000. Others not supported (yet).

Whether to reverse the x-axis scale. Defaults to TRUE which works best for dates presented in e.g. years BP

Other arguments to plot (currently ignored)

Details

Creates a simple plot of the chronology output. The height of the date densities in the plots can be manipulated via the `dateHeight` argument which is represented in the same units as the positions/depths provided. More detailed plots can be created by manipulating the `Bchronology` object as required.

See Also

For examples see `Bchronology`. Also `BchronCalibrate`, `BchronRSL`, `BchronDensity`, `BchronDensityFast`

---

**Description**

Plot output from the `BchronRSL` function

**Usage**

```r
S3 method for class 'BchronRSLRun'
plot(
 x,
 type = c("RSL", "rate", "accel"),
 alpha = 0.95,
 ellipseCol = "darkslategray",
 lineCol = "deepskyblue4",
 ...
)
```

**Arguments**

- `x` An object created by `BchronRSL`
- `type` One of `RSL`, `rate`, or `accel`. If `RSL` produces a plot of `RSL` estimates from the model. If `rate`, produces rate estimates. If `accel` produces acceleration estimates.
- `alpha` confidence level used for plotting ellipses
- `ellipseCol` The colour of the ellipse used for plotting dates
- `lineCol` The colour of the sea level curve lines
- `...` Other arguments to plot (currently ignored)
predict.BchronologyRun

Predict ages of other positions for a BchronologyRun object

Description

This function will predict the ages of new positions (usually depths) based on a previous run of the function Bchronology. It will also allow for thickness uncertainties to be included in the resulting ages, for example when the age of a particular event is desired.

Usage

```r
S3 method for class 'BchronologyRun'
predict(
 object,
 newPositions,
 newPositionThicknesses = NULL,
 maxExtrap = 500,
 ...
)
```

Arguments

- `object` Output from a run of Bchronology
- `newPositions` A vector of new positions at which to find ages
- `newPositionThicknesses` A vector of thicknesses for the above positions. Must be the same length as `newPositions`
- `maxExtrap` The maximum new of extrapolation attempts. It might be worth increasing this if you are extrapolating a long way from the other dated positions
- `...` Other arguments to predict (not currently supported)

Value

A matrix of dimension num_samples by num_positions so that each row represents a set of monotonic sample predicted ages

See Also

BchronCalibrate, Bchronology, BchronRSL, BchronDensity, BchronDensityFast
sampleAges

Get sample ages from a set of Bchron calibrated dates

Description

A function for extracting sample ages from Bchron calibrated dates

Usage

sampleAges(CalDates, n_samp = 10000)

Arguments

CalDates A list created from either BchronCalibrate.
n_samp The desired number of samples

Details

Sometimes it is useful to have a set of sample calendar ages for your calibrated dates. For example the samples might be required to create a credible/confidence interval, or to create another non-trivial function of calibrated dates, such as differences. By default the BchronCalibrate function provides a grid of ages and an associated density, similar to OxCal. This function extracts that information and uses the sample function to output the desired number of samples

Value

A vector of length n_samp containing sample ages for the specified date

See Also

BchronCalibrate

Examples

# Calibrate multiple ages and summarise them
ages = BchronCalibrate(ages=c(3445,11553,7456),ageSds=c(50,230,110),
                          calCurves=c('intcal20','intcal20','shcal20'))

# Get samples
age_samples = sampleAges(ages)

# Create a credible interval and the median for each date
apply(age_samples, 2, quantile, probs = c(0.05, 0.5, 0.95))
shcal13  
*Southern hemisphere 2013 calibration curve*

**Description**

Southern hemisphere 2013 calibration curve

**Usage**

`data(shcal13)`

**Format**

A data frame with 5141 observations on 5 variables.

**Details**

For full details and reference see http://intcal.org/blurb.html. For usage details see `BchronCalibrate`

---

shcal20  
*Southern hemisphere 2020 calibration curve*

**Description**

Southern hemisphere 2020 calibration curve

**Usage**

`data(shcal20)`

**Format**

A data frame with 9501 observations on 5 variables.

**Details**

For full details and reference see http://intcal.org/blurb.html. For usage details see `BchronCalibrate`
### Sluggan

**Sluggan Moss data**

#### Description

Chronology data for Sluggan Moss data set

#### Usage

data(Sluggan)

#### Format

A data frame with 31 observations on the following 6 variables:

- id  ID of each age
- ages  Age in (14C) years BP
- ageSds  Age standard deviations
- position  Depths in cm
- thickness  Thicknesses in cm
- calCurves  Calibration curve for each age

#### Details

This Sluggan Moss data can be downloaded from the European Pollen Database: [http://www.europeanpollendatabase.net](http://www.europeanpollendatabase.net). For usage see `Bchronology` or `BchronDensity`

#### Source


---

### summary.BchronCalibratedDates

*Summarise a BchronCalibrate object*

#### Description

Produces summary output from a `BchronCalibrate` run, including the highest density regions for the calibrated ages for given probability levels

#### Usage

```r
S3 method for class 'BchronCalibratedDates'
summary(object, prob = 95, ..., digits = max(3, getOption("digits") - 3))
```
Arguments

- **object**: The output of a run of `BchronCalibrate`
- **prob**: A percentage value (between 0 and 100) at which the highest density regions for each age are calculated
- **...**: Further arguments (not currently supported)
- **digits**: Significant digits to display (not currently supported)

See Also

- `BchronCalibrate`, `Bchronology`, `BchronRSL`, `BchronDensity`, `BchronDensityFast`

Description

Summarise a `BchronDensity` object

Usage

```r
S3 method for class 'BchronDensityRun'
summary(object, prob = 0.95, ..., digits = max(3, getOption("digits") - 3))
```

Arguments

- **object**: Output from a run of `BchronDensity`
- **prob**: Probability for identifying phases
- **...**: Other arguments (not currently supported)
- **digits**: Number of digits to report values

See Also

- `BchronDensity`
**summary.BchronologyRun**

*Summarise a Bchronology object*

**Description**

Summarise a `Bchronology` object

**Usage**

```r
S3 method for class 'BchronologyRun'
summary(
 object,
 type = c("quantiles", "outliers", "convergence", "sed_rate", "acc_rate", "max_var"),
 probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
 useExisting = TRUE,
 numPos = 3,
 ...,
 digits = max(3,getOption("digits") - 3)
)
```

**Arguments**

- `object` Output from a run of `Bchronology`
- `type` Type of output required. The default (quantiles) gives the quantiles of the ages for each position in `predictPositions` from `Bchronology`. The other options provide outlier probabilities, convergence diagnostics, accumulation rates, sedimentation rate, and positions of maximum age variance
- `probs` Probabilities (between 0 and 1) at which to summarise the predicted chronologies
- `useExisting` Whether to use the predicted chronologies/positions to calculate the sedimentation rate (if TRUE - default) or to re-create them based on a unit-scaled position grid (if FALSE). The latter will be a little bit slower but will provide better sedimentation rate estimates if the original positions are not on a unit scale (e.g. each cm)
- `numPos` The number of positions at which to provide the maximum variance
- `...` Other arguments (not currently supported)
- `digits` Number of digits to report values

**See Also**

`BchronCalibrate`, `Bchronology`, `BchronRSL`, `BchronDensity`, `BchronDensityFast`
The output from a run of BchronRL

The output from a run of BchronRL

One of parameters, RSL, rate, or accel. If parameters, provides posterior credibility intervals of the regression coefficients. If RSL provides predicted RSL values. If rate, provides rate estimates. If accel provides acceleration estimates.

An optional age grid for computing RSL, rate, or acceleration estimates. If not provided uses the age range of the Bchronology run

Other arguments to functions (not currently implemented)

_BchronCalibrate, Bchronology, BchronRL, BchronDensity, BchronDensityFast_

Example chronology file for use with the BchronRL function.

Some example chronology data for use with the BchronRL function

data(TestChronData)
**TestRSLData**

**Format**
A data frame with 27 observations on the following 6 variables:

- **id**  ID names
- **ages**  Ages in years BP
- **ageSds**  Ages standard deviations in years BP
- **position**  Depths in cm
- **thickness**  Thicknesses in cm
- **calCurves**  Calibration curve for each age

**Source**

---

**TestRSLData**  
*Relative sea level data*

**Description**
A set of relative sea level data for use with *BchronRSL*

**Usage**
data(TestRSLData)

**Format**
A data frame with 24 observations on the following 3 variables:

- **Depth**  Depth in cm
- **RSL**  Relative sea level in m
- **Sigma**  Standard deviation of RSL measurement

**Source**
unCalibrate

Uncalibrate a Radiocarbon date

Description

Uncalibrate a Radiocarbon date

Usage

unCalibrate(
  calAges,
  calCurve = "intcal20",
  type = c("samples", "ages"),
  pathToCalCurves = system.file("data", package = "Bchron"),
  ...
)

Arguments

calAges  Either a vector of calibrated ages (when type = 'ages'), or a vector of calibrated samples (type = 'samples')
calCurve  The calibration curve to use. Only a single calibration curve is currently supported
type  Either 'ages' which uncalibrates a calibrated age values without error (i.e. just a lookup on the calibration curve), or a 'samples' which estimates both an uncalibrated mean age and a standard deviation
pathToCalCurves  The path to the calibration curve directory. Defaults to the location of the standard calibration curves given in the package
...

Other arguments to the optim function used to match the probability distributions under type = 'samples'

Value

Either a vector of uncalibrated ages (type = 'ages') or a list containing the estimated mean age and standard deviation (type = 'samples')

Examples

# Single version outputting just an uncalibrated age
unCalibrate(2350, type = 'ages')

# Vector version giving a vector of uncalibrated ages
unCalibrate(calAge = c(2350, 4750, 11440),
  calCurve = 'shcal20',
  type = 'ages')
# A version where calibrated standard deviations are required too
calAge = BchronCalibrate(ages = 11255,
    ageSds = 25,
    calCurves = 'intcal20')
calSampleAges = sampleAges(calAge)

# Uncalibrate the above
unCalibrate(calSampleAges,
    type = 'samples')
Index

* datasets
  Glendalough, 19
  intcal13, 21
  intcal20, 21
  marine13, 22
  marine20, 22
  normal, 23
  shcal13, 30
  shcal20, 30
  Sluggan, 31
  TestChronData, 34
  TestRSLData, 35

Bchron, 3
BchronCalibrate, 3, 5, 6, 8, 11, 13, 17, 20–24, 27–34
BchronDensity, 3, 5, 5, 8, 11, 13, 20, 24, 25, 27, 28, 31–34
BchronDensityFast, 3, 5, 7, 7, 11, 13, 24, 25, 27, 28, 32–34
Bchronology, 3, 5, 7, 8, 9, 12–16, 18–20, 24–28, 31–34
BchronRSL, 3, 5, 7, 8, 11, 12, 24, 25, 27, 28, 32–34

choosePositions, 13, 16, 19
coreInfluence, 15, 19
createCalCurve, 5, 10, 16
dateInfluence, 16, 18
densityMclust, 8
expand_limits, 26, 27

geom_text, 26
Glendalough, 19

hdr, 20

intcal13, 21
intcal20, 21

marine13, 22
marine20, 22

normal, 23

optim, 36

par, 25
plot.BchronCalibratedDates, 23
plot.BchronDensityRun, 24
plot.BchronDensityRunFast, 25
plot.BchronologyRun, 26
plot.BchronRSLRun, 27
predict.BchronologyRun, 28

sample, 29
sampleAges, 29
shcal13, 30
shcal20, 30
Sluggan, 31
summary.BchronCalibratedDates, 31
summary.BchronDensityRun, 32
summary.BchronologyRun, 19, 33
summary.BchronRSLRun, 34

TestChronData, 34
TestRSLData, 35

unCalibrate, 13, 14, 36