Package ‘Bergm’

November 4, 2019

Type Package
Title Bayesian Exponential Random Graph Models
Version 5.0.1
Date 2019-11-1
Author Alberto Caimo [aut, cre],
 Lampros Bouranis [aut],
 Robert Krause [aut]
 Nial Friel [ctb]
Maintainer Alberto Caimo <acaimo.stats@gmail.com>
Description Bayesian analysis for exponential random graph models using advanced computational algorithms. More information can be found at: <https://acaimo.github.io/Bergm>.
License GPL (>= 2)
Depends ergm, R (>= 2.10)
Imports network, coda, MCMCpack, Matrix, mvtnorm, matrixcalc
URL http://acaimo.github.io/Bergm/
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-11-04 12:00:02 UTC

R topics documented:

Bergm-package .. 2
bergm .. 2
bergmC ... 3
bergmM ... 5
bgof ... 6
ergmAPL .. 8
Description

Bergm provides a range of tools to analyse Bayesian exponential random graph models using advanced computational methods.

Usage

bergm(formula, prior.mean = NULL, prior.sigma = NULL, burn.in = 100,
main.iters = 1000, aux.iters = 1000, nchains = NULL, gamma = 0.5,
V.proposal = 0.0025, startVals = NULL, ...)

Arguments

formula formula; an ergm formula object, of the form <network> ~ <model terms> where <network> is a network object and <model terms> are ergm-terms.

prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector of 0’s.

prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.

burn.in count; number of burn-in iterations for every chain of the population.

main.iters count; number of iterations for every chain of the population.

aux.iters count; number of auxiliary iterations used for network simulation.

nchains count; number of chains of the population MCMC. By default set to twice the model dimension (number of model terms).

gamma scalar; parallel adaptive direction sampling move factor.
bergmC

Description

Function to transform a sample from the pseudo-posterior to one that is approximately sampled from the intractable posterior distribution.

Usage

bergmC(formula, prior.mean = NULL, prior.sigma = NULL,
 burn.in = 10000, main.iters = 40000, aux.iters = 3000,
 V.proposal = 1.5, thin = 1, rm.iters = 500, rm.a = 0.001,
 rm.alpha = 0, n.aux.draws = 400, aux.thin = 50,
 estimate = c("MLE", "CD"), ...)

References

Examples

Load the florentine marriage network
data(florentine)

Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2)

Posterior summaries:
summary(p.flo)

call

bergmC

Calibrating misspecified Bayesian ERGMs

References

Examples

Load the florentine marriage network
data(florentine)

Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2)

Posterior summaries:
summary(p.flo)

bergmC

Calibrating misspecified Bayesian ERGMs

Description

Function to transform a sample from the pseudo-posterior to one that is approximately sampled from the intractable posterior distribution.

Usage

bergmC(formula, prior.mean = NULL, prior.sigma = NULL,
 burn.in = 10000, main.iters = 40000, aux.iters = 3000,
 V.proposal = 1.5, thin = 1, rm.iters = 500, rm.a = 0.001,
 rm.alpha = 0, n.aux.draws = 400, aux.thin = 50,
 estimate = c("MLE", "CD"), ...)

References

Examples

Load the florentine marriage network
data(florentine)

Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2)

Posterior summaries:
summary(p.flo)

bergmC

Calibrating misspecified Bayesian ERGMs

Description

Function to transform a sample from the pseudo-posterior to one that is approximately sampled from the intractable posterior distribution.

Usage

bergmC(formula, prior.mean = NULL, prior.sigma = NULL,
 burn.in = 10000, main.iters = 40000, aux.iters = 3000,
 V.proposal = 1.5, thin = 1, rm.iters = 500, rm.a = 0.001,
 rm.alpha = 0, n.aux.draws = 400, aux.thin = 50,
 estimate = c("MLE", "CD"), ...)

References

Examples

Load the florentine marriage network
data(florentine)

Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2)

Posterior summaries:
summary(p.flo)
Arguments

- **formula**: formula; an `ergm` formula object, of the form `<network> ~ <model terms>` where `<network>` is a `network` object and `<model terms>` are `ergm`-terms.
- **prior.mean**: vector; mean vector of the multivariate Normal prior. By default set to a vector of 0's.
- **prior.sigma**: square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.
- **burn.in**: count; number of burn-in iterations at the beginning of an MCMC run for the pseudo-posterior estimation.
- **main.iters**: count; number of MCMC iterations after burn-in for the pseudo-posterior estimation.
- **aux.iters**: count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood (Robbins-Monro). See `control.simulate.formula`.
- **V.proposal**: count; diagonal entry for the multivariate Normal proposal. By default set to 1.5.
- **thin**: count; thinning interval used in the simulation for the pseudo-posterior estimation. The number of MCMC iterations must be divisible by this value.
- **rm.iters**: count; number of iterations for the Robbins-Monro stochastic approximation algorithm.
- **rm.a**: scalar; constant for sequence alpha_n (Robbins-Monro).
- **rm.alpha**: scalar; noise added to gradient (Robbins-Monro).
- **n.aux.draws**: count; number of auxiliary networks drawn from the ERGM likelihood (Robbins-Monro). See `control.simulate.formula`.
- **aux.thin**: count; number of auxiliary iterations between network draws after the first network is drawn (Robbins-Monro). See `control.simulate.formula`.
- **estimate**: If "MLE" (the default), then an approximate maximum likelihood estimator is used as a starting point in the Robbins-Monro algorithm. If "CD" , the Monte-Carlo contrastive divergence estimate is returned. See `ergm`.
- **...**: Additional arguments, to be passed to the `ergm` function. See `ergm`.

References

Examples

```r
# Not run:
# Load the florentine marriage network
data(florentine)

# Calibrated pseudo-posterior:
cpp.flo <- bergmC(flomarriage ~ edges + kstar(2),
  aux.iters = 500,
```
bergmM

Parameter estimation for Bayesian ERGMs under missing data

Description

Function to fit Bayesian exponential random graphs models under missing data using the approximate exchange algorithm.

Usage

bergmM(formula, burn.in = 100, main.iters = 1000, aux.iters = 1000,
 prior.mean = NULL, prior.sigma = NULL, nchains = 3, gamma = 0.5,
 V.proposal = 0.0025, seed = NULL, startVals = NULL, nImp = NULL,
 missingUpdate = NULL, ...)

Arguments

 formula formula; an ergm formula object, of the form <network> ~ <model terms> where <network> is a network object and <model terms> are ergm-terms.
 burn.in count; number of burn-in iterations for every chain of the population.
 main.iters count; number of iterations for every chain of the population.
 aux.iters count; number of auxiliary iterations used for network simulation.
 prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector of 0's.
 prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.
 nchains count; number of chains of the population MCMC. By default set to twice the model dimension (number of model terms).
 gamma scalar; parallel adaptive direction sampling move factor.
 V.proposal count; diagonal entry for the multivariate Normal proposal. By default set to 0.0025.
 seed count; random number seed for the Bergm estimation.
 startVals vector; optional starting values for the parameter estimation.
 nImp count; number of imputed networks to be returned. If null, no imputed network will be returned.
missingUpdate count: number of tie updates in each imputation step. By default equal to number of missing ties. Smaller numbers increase speed. Larger numbers lead to better sampling.

... additional arguments, to be passed to lower-level functions.

References

Examples

Not run:
Load the florentine marriage network
data(florentine)

Create missing data
set.seed(22101992)
ht <- dim(florentine)[1]
missNode <- sample(1:n, 1)
florentine[missNode,] <- NA
florentine[, missNode] <- NA

Posterior parameter estimation:
m.flo <- bergm(florentine ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2,
 nImp = 5)

Posterior summaries:
summary(m.flo)

End(Not run)
Usage

bgof(x, sample.size = 100, aux.iters = 10000, n.deg = NULL, n.dist = NULL, n.esp = NULL, n.ideg = NULL, n.odeg = NULL, ...)

Arguments

- **x**: an R object of class `bergm`.
- **sample.size**: count; number of networks to be simulated and compared to the observed network.
- **aux.iters**: count; number of iterations used for network simulation.
- **n.deg**: count; used to plot only the first \(n \) degree distributions. By default no restrictions on the number of degree distributions is applied.
- **n.dist**: count; used to plot only the first \(n \) geodesic distances distributions. By default no restrictions on the number of geodesic distances distributions is applied.
- **n.esp**: count; used to plot only the first \(n \) edge-wise shared partner distributions. By default no restrictions on the number of edge-wise shared partner distributions is applied.
- **n.ideg**: count; used to plot only the first \(n \) in-degree distributions. By default no restrictions on the number of in-degree distributions is applied.
- **n.odeg**: count; used to plot only the first \(n \) out-degree distributions. By default no restrictions on the number of out-degree distributions is applied.
- **...**: additional arguments, to be passed to lower-level functions.

References

Examples

```r
## Not run:
# Load the florentine marriage network
data(florentine)

# Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
               burn.in = 50,
               aux.iters = 500,
               main.iters = 1000,
               gamma = 1.2)

# Bayesian goodness-of-fit test:
bgof(p.flo,
     aux.iters = 500,
```

```r
```
ergmAPL

Adjustment of ERGM pseudolikelihood

Description

Function to estimate the transformation parameters for adjusting the pseudolikelihood function.

Usage

ergmAPL(formula, aux.iters = NULL, n.aux.draws = NULL,
 aux.thin = NULL, ladder = NULL, estimate = c("MLE", "CD"), ...)

Arguments

formula formula; an ergm formula object, of the form <network> ~ <model terms> where <network> is a network object and <model terms> are ergm-terms.

aux.iters count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood. See control.simulate.formula.

n.aux.draws count; Number of auxiliary networks drawn from the ERGM likelihood. See control.simulate.formula.

aux.thin count; Number of auxiliary iterations between network draws after the first network is drawn. See control.simulate.formula.

ladder count; Length of temperature ladder (>=3).

estimate If "MLE" (the default), then an approximate maximum likelihood estimator is returned. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See ergm.

Additional arguments, to be passed to the ergm function. See ergm.

References

Evidence estimation via Chib and Jeliazkov's method

Description
Function to estimate the evidence (marginal likelihood) with Chib and Jeliazkov's method, based on the adjusted pseudolikelihood function.

Usage
evidenceCJ(formula, prior.mean = NULL, prior.sigma = NULL,
aux.iters = 1000, n.aux.draws = 5, aux.thin = 50, ladder = 30,
main.iters = 30000, burn.in = 5000, thin = 1, V.proposal = 1.5,
num.samples = 25000, seed = NA, estimate = c("MLE", "CD"), ...)

Arguments
formula formula; an `ergm` formula object, of the form `<network> ~ <model terms>` where `<network>` is a `network` object and `<model terms>` are `ergm`-terms.
prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector of 0's.
prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.
aux.iters count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood. See `control.simulate.formula` and `ergmAPL`.
n.aux.draws count; number of auxiliary networks drawn from the ERGM likelihood. See `control.simulate.formula` and `ergmAPL`.
aux.thin count; number of auxiliary iterations between network draws after the first network is drawn. See `control.simulate.formula` and `ergmAPL`.
ladder count; length of temperature ladder (>=3). See `ergmAPL`.
main.iters count; number of MCMC iterations after burn-in for the adjusted pseudo-posterior estimation.
burn.in count; number of burn-in iterations at the beginning of an MCMC run for the adjusted pseudo-posterior estimation.
thin count; thinning interval used in the simulation for the adjusted pseudo-posterior estimation. The number of MCMC iterations must be divisible by this value.
V.proposal count; diagonal entry for the multivariate Normal proposal. By default set to 1.5.
num.samples integer; number of samples used in the marginal likelihood estimate. Must be lower than main.iters - burnin.
seed seed for the random number generator. See `MCMCmetrop1R`.
estimate If "MLE" (the default), then an approximate maximum likelihood estimator is returned. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See `ergm`.
... additional arguments, to be passed to the `ergm` function. See `ergm` and `ergmAPL`.
References

Examples

```r
## Not run:
# Load the florentine marriage network:
data(florentine)

# MCMC sampling and evidence estimation:
CJE <- evidenceCJ(flomarriage ~ edges + kstar(2),
                  main.iters = 2000,
                  burn.in = 200,
                  aux.iters = 500,
                  num.samples = 25000,
                  V.proposal = 2.5)

# Posterior summaries:
summary(CJE)

# MCMC diagnostics plots:
plot(CJE)

# Log-evidence (marginal likelihood) estimate:
CJE$log.evidence

## End(Not run)
```

evidencePP

Evidence estimation via power posteriors

Description

Function to estimate the evidence (marginal likelihood) with Power posteriors, based on the adjusted pseudolikelihood function.

Usage

evidencePP(formula, prior.mean = NULL, prior.sigma = NULL,
aux.iters = 1000, n.aux.draws = 50, aux.thin = 50, ladder = 30,
main.iters = 20000, burn.in = 5000, thin = 1, V.proposal = 1.5,
seed = NA, temps = NULL, estimate = c("MLE", "CD"), ...)

Arguments

- **formula**: formula; an `ergm` formula object, of the form `<network> ~ <model terms>` where `<network>` is a `network` object and `<model terms>` are `ergm`-terms.
- **prior.mean**: vector; mean vector of the multivariate Normal prior. By default set to a vector of 0's.
- **prior.sigma**: square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.
- **aux.iters**: count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood. See `control.simulate.formula` and `ergmAPL`.
- **n.aux.draws**: count; number of auxiliary networks drawn from the ERGM likelihood. See `control.simulate.formula` and `ergmAPL`.
- **aux.thin**: count; number of auxiliary iterations between network draws after the first network is drawn. See `control.simulate.formula` and `ergmAPL`.
- **ladder**: count; length of temperature ladder (>=3). See `ergmAPL`.
- **main.iters**: count; number of MCMC iterations after burn-in for the adjusted pseudo-posterior estimation.
- **burn.in**: count; number of burn-in iterations at the beginning of an MCMC run for the adjusted pseudo-posterior estimation.
- **thin**: count; thinning interval used in the simulation for the adjusted pseudo-posterior estimation. The number of MCMC iterations must be divisible by this value.
- **V.proposal**: count; diagonal entry for the multivariate Normal proposal. By default set to 1.5.
- **seed**: seed for the random number generator. See `MCMCmetrop1R`.
- **temps**: numeric vector; inverse temperature ladder, \(t \in [0,1] \).
- **estimate**: If "MLE" (the default), then an approximate maximum likelihood estimator is returned. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See `ergm`.

... additional arguments, to be passed to the `ergm` function. See `ergm` and `ergmAPL`.

References

Examples

```r
## Not run:
# Load the florentine marriage network:
data(florentine)

PPE <- evidencePP(flomarriage ~ edges + kstar(2),
    aux.iters = 500,
    noisy.nsim = 50,
    aux.thin = 50,)
```
lazega

Lazega lawyers network data

Description

Lazega lawyers network data

Usage

lazega

Format

An object of class network.

Source

This network dataset comes from a network study of corporate law partnership that was carried out in a Northeastern US corporate law firm in New England from 1988 to 1991. It represents collaborative relations among the 36 attorneys (partners and associates) of this firm. Nodal attributes include: Age, Gender, Office, Practice, School, and Years.

References

Examples

Not run:
par(mfrow = c(1, 2), oma = rep(0, 4))
CC <- hcl.colors(3, "Teal")
set.seed(22)
plot.bergm

plot(lazega,
 vertex.col = CC[lazega %v% "Office"],
 vertex.cex = 2)
legend("topright",
 pch = 21,
 pt.bg = CC,
 legend = c("Boston", "Hartford", "Providence"),
 title = "OFFICE")

End(Not run)

plot.bergm

Plot BERGM posterior output

Description

This function creates MCMC diagnostic plots for bergm objects.

Usage

S3 method for class 'bergm'
plot(x, ...)

Arguments

x an R object of class bergm.

... additional arguments, to be passed to lower-level functions.

Examples

Not run:
Load the florentine marriage network
data(florentine)

Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2)

MCMC diagnostics plots:
plot(p.flo)

End(Not run)
summary.bergm

Summary of BERGM posterior output

Description

This function summarises MCMC output for `bergm` objects.

Usage

```r
## S3 method for class 'bergm'
summary(object, ...)  
```

Arguments

- `object` an R object of class `bergm`.
- `...` additional arguments, to be passed to lower-level functions.
Index

∗Topic datasets
 lazega, 12

Bergm (Bergm-package), 2
bergm, 2
Bergm-package, 2
bergmC, 3
bergmM, 5
bgof, 6

control.simulate.formula, 4, 8, 9, 11

ergm, 2, 4, 5, 8, 9, 11
ergmaPL, 8, 9, 11
evidenceCJ, 9
evidencePP, 10

lazega, 12

MCMCmetrop1R, 9, 11

network, 2, 4, 5, 8, 9, 11

plot.bergm, 13

summary.bergm, 14