Package ‘Bergm’

Type Package

Title Bayesian Exponential Random Graph Models

Version 5.0.3

Date 2021-06-15

Author Alberto Caimo [aut, cre],
Lampros Bouranis [aut],
Robert Krause [aut]
Nial Friel [ctb]

Maintainer Alberto Caimo <acaimo.stats@gmail.com>

Description Bayesian analysis for exponential random graph models using advanced computational algorithms. More information can be found at: <https://acaimo.github.io/Bergm/>.

License GPL (>= 2)

Depends ergm, R (>= 2.10)

Imports network, coda, MCMCpack, Matrix, mvtnorm, matrixcalc,
statnet.common

URL https://acaimo.github.io/Bergm/

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-06-15 12:00:02 UTC

R topics documented:

Bergm-package .. 2
bergm ... 2
bergmC ... 4
bergmM ... 6
bgof ... 8
Bergm-package

Bayesian exponential random graph models

Description

Bergm provides a range of tools to analyse Bayesian exponential random graph models using advanced computational methods.

bergm

Parameter estimation for Bayesian ERGMs

Description

Function to fit Bayesian exponential random graphs models using the approximate exchange algorithm.

Usage

bergm(
 formula,
 prior.mean = NULL,
 prior.sigma = NULL,
 burn.in = 100,
 main.iters = 1000,
 aux.iters = 1000,
 nchains = NULL,
 gamma = 0.5,
 V.proposal = 0.0025,
 startVals = NULL,
 offset.coef = NULL,
 ...
)
Arguments

- **formula**: formula; an **ergm** formula object, of the form `<network> ~ <model terms>` where `<network>` is a **network** object and `<model terms>` are **ergm**-terms.
- **prior.mean**: vector; mean vector of the multivariate Normal prior. By default set to a vector of 0’s.
- **prior.sigma**: square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.
- **burn.in**: count; number of burn-in iterations for every chain of the population.
- **main.iters**: count; number of iterations for every chain of the population.
- **aux.iters**: count; number of auxiliary iterations used for network simulation.
- **nchains**: count; number of chains of the population **MCMC**. By default set to twice the model dimension (number of model terms).
- **gamma**: scalar; parallel adaptive direction sampling move factor.
- **V.proposal**: count; diagonal entry for the multivariate Normal proposal. By default set to 0.0025.
- **startVals**: vector; optional starting values for the parameter estimation.
- **offset.coef**: vector; A vector of coefficients for the offset terms.
- **...**: additional arguments, to be passed to lower-level functions.

References

Examples

```r
## Not run:
# Load the florentine marriage network
data(florentine)

# Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
               burn.in = 50,
               aux.iters = 500,
               main.iters = 1000,
               gamma = 1.2)

# Posterior summaries:
summary(p.flo)

## End(Not run)
```
bergmC

Calibrating misspecified Bayesian ERGMs

Description

Function to transform a sample from the pseudo-posterior to one that is approximately sampled from the intractable posterior distribution.

Usage

bergmC(
 formula,
 prior.mean = NULL,
 prior.sigma = NULL,
 burn.in = 10000,
 main.iters = 40000,
 aux.iters = 3000,
 V.proposal = 1.5,
 thin = 1,
 rm.iters = 500,
 rm.a = 0.001,
 rm.alpha = 0,
 n.aux.draws = 400,
 aux.thin = 50,
 estimate = c("MLE", "CD"),
 seed = 1,
 ...
)

Arguments

formula formula; an \texttt{ergm} formula object, of the form \texttt{<network> \sim <model terms>} where \texttt{<network>} is a \texttt{network} object and \texttt{<model terms>} are \texttt{ergm}-terms.

prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector of 0's.

prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.

burn.in count; number of burn-in iterations at the beginning of an MCMC run for the pseudo-posterior estimation.

main.iters count; number of MCMC iterations after burn-in for the pseudo-posterior estimation.

aux.iters count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood (Robbins-Monro). See \texttt{control.simulate.formula}.

V.proposal count; diagonal entry for the multivariate Normal proposal. By default set to 1.5.
thin count; thinning interval used in the simulation for the pseudo-posterior estimation. The number of MCMC iterations must be divisible by this value.

r.m.iter count; number of iterations for the Robbins-Monro stochastic approximation algorithm.

r.m.a scalar; constant for sequence alpha_n (Robbins-Monro).

r.m.alpha scalar; noise added to gradient (Robbins-Monro).

n.aux.draws count; number of auxiliary networks drawn from the ERGM likelihood (Robbins-Monro). See control.simulate.formula.

aux.thin count; number of auxiliary iterations between network draws after the first network is drawn (Robbins-Monro). See control.simulate.formula.

estimate If "MLE" (the default), then an approximate maximum likelihood estimator is used as a starting point in the Robbins-Monro algorithm. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See ergm.

seed integer; seed for the random number generator. See set.seed.

Additional arguments, to be passed to the ergm function. See ergm.

References

Examples

```r
## Not run:
# Load the florentine marriage network
data(florentine)

# Calibrated pseudo-posterior:  
cpp.flo <- bergmC(flomarriage ~ edges + kstar(2),  
              aux.iters = 500,  
              burn.in = 500,  
              main.iters = 10000,  
              V.proposal = 2.5)

# Posterior summaries:  
summary(cpp.flo)

## End(Not run)
```
Parameter estimation for Bayesian ERGMs under missing data

Description

Function to fit Bayesian exponential random graphs models under missing data using the approximate exchange algorithm.

Usage

bergmM(
 formula,
 burn.in = 100,
 main.iters = 1000,
 aux.iters = 1000,
 prior.mean = NULL,
 prior.sigma = NULL,
 nchains = NULL,
 gamma = 0.5,
 V.proposal = 0.0025,
 seed = NULL,
 startVals = NULL,
 offset.coef = NULL,
 nImp = NULL,
 missingUpdate = NULL,
 ...
)

Arguments

formula formula; an \texttt{ergm} formula object, of the form \texttt{<network> ~ <model terms>} where \texttt{<network>} is a \texttt{network} object and \texttt{<model terms>} are \texttt{ergm}-terms.

burn.in count; number of burn-in iterations for every chain of the population.

main.iters count; number of iterations for every chain of the population.

aux.iters count; number of auxiliary iterations used for network simulation.

prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector of 0’s.

prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.

nchains count; number of chains of the population MCMC. By default set to twice the model dimension (number of model terms).

gamma scalar; parallel adaptive direction sampling move factor.

V.proposal count; diagonal entry for the multivariate Normal proposal. By default set to 0.0025.
bergmM

seed count; random number seed for the Bergm estimation.
startVals vector; optional starting values for the parameter estimation.
offset.coef vector; A vector of coefficients for the offset terms.
nImp count; number of imputed networks to be returned. If null, no imputed network will be returned.
missingUpdate count; number of tie updates in each imputation step. By default equal to number of missing ties. Smaller numbers increase speed. Larger numbers lead to better sampling.

... additional arguments, to be passed to lower-level functions.

References

Examples

Not run:
Load the florentine marriage network
data(florentine)

Create missing data
set.seed(14021994)
n <- dim(florentine)[1]
missNode <- sample(1:n, 1)
florentine[missNode,] <- NA
florentine[, missNode] <- NA

Posterior parameter estimation:
m.flo <- bergmM(florentine ~ edges + kstar(2),
 burn.in = 50,
 aux.iters = 500,
 main.iters = 1000,
 gamma = 1.2,
 nImp = 5)

Posterior summaries:
summary(m.flo)

End(Not run)
bgof

Bayesian goodness-of-fit diagnostics for ERGMs

Description

Function to calculate summaries for degree, minimum geodesic distances, and edge-wise shared partner distributions to diagnose the Bayesian goodness-of-fit of exponential random graph models.

Usage

```r
bgof(
  x,  # an R object of class bergm.
  sample.size = 100,  # count; number of networks to be simulated and compared to the observed network.
  aux.iters = 10000,  # count; number of iterations used for network simulation.
  n.deg = NULL,  # count; used to plot only the first n.deg-1 degree distributions. By default no restrictions on the number of degree distributions is applied.
  n.dist = NULL,  # count; used to plot only the first n.dist-1 geodesic distances distributions. By default no restrictions on the number of geodesic distances distributions is applied.
  n.esp = NULL,  # count; used to plot only the first n.esp-1 edge-wise shared partner distributions. By default no restrictions on the number of edge-wise shared partner distributions is applied.
  n.ideg = NULL,  # count; used to plot only the first n.ideg-1 in-degree distributions. By default no restrictions on the number of in-degree distributions is applied.
  n.odeg = NULL,  # count; used to plot only the first n.odeg-1 out-degree distributions. By default no restrictions on the number of out-degree distributions is applied.
  ...  # additional arguments, to be passed to lower-level functions.
)
```

Arguments

- `x`: an R object of class `bergm`.
- `sample.size`: count; number of networks to be simulated and compared to the observed network.
- `aux.iters`: count; number of iterations used for network simulation.
- `n.deg`: count; used to plot only the first `n.deg-1` degree distributions. By default no restrictions on the number of degree distributions is applied.
- `n.dist`: count; used to plot only the first `n.dist-1` geodesic distances distributions. By default no restrictions on the number of geodesic distances distributions is applied.
- `n.esp`: count; used to plot only the first `n.esp-1` edge-wise shared partner distributions. By default no restrictions on the number of edge-wise shared partner distributions is applied.
- `n.ideg`: count; used to plot only the first `n.ideg-1` in-degree distributions. By default no restrictions on the number of in-degree distributions is applied.
- `n.odeg`: count; used to plot only the first `n.odeg-1` out-degree distributions. By default no restrictions on the number of out-degree distributions is applied.
- `...`: additional arguments, to be passed to lower-level functions.
References

Examples

```r
## Not run:
# Load the florentine marriage network
data(florentine)

# Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
               burn.in = 50,
               aux.iters = 500,
               main.iters = 1000,
               gamma = 1.2)

# Bayesian goodness-of-fit test:
bgof(p.flo,
    aux.iters = 500,
    sample.size = 30,
    n.deg = 10,
    n.dist = 9,
    n.esp = 6)
## End(Not run)
```

ergmAPL

Adjustment of ERGM pseudolikelihood

Description

Function to estimate the transformation parameters for adjusting the pseudolikelihood function.

Usage

```r
ergmAPL(
  formula,
  aux.iters = NULL,
  n.aux.draws = NULL,
  aux.thin = NULL,
  ladder = NULL,
  estimate = c("MLE", "CD"),
  seed = 1,
  ...
)
```
Arguments

formula formula; an `ergm` formula object, of the form `<network> ~ <model terms>` where `<network>` is a `network` object and `<model terms>` are `ergm`-terms.

aux.iters count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood. See `control.simulate.formula`.

n.aux.draws count; Number of auxiliary networks drawn from the ERGM likelihood. See `control.simulate.formula`.

aux.thin count; Number of auxiliary iterations between network draws after the first network is drawn. See `control.simulate.formula`.

ladder count; Length of temperature ladder (>=3).

estimate If "MLE" (the default), then an approximate maximum likelihood estimator is returned. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See `ergm`.

seed integer; seed for the random number generator. See `set.seed`.

... Additional arguments, to be passed to the `ergm` function. See `ergm`.

References

evidenceWrapper function for evidence estimation

Description

Function to estimate the evidence (marginal likelihood) with Chib and Jeliazkov’s method or Power posteriors, based on the adjusted pseudolikelihood function.

Usage

evidence(evidence.method = c("CJ", "PP"), ...)
evidenceCJ

References

Examples

```r
## Not run:
# Load the florentine marriage network:
data(florentine)

# MCMC sampling and evidence estimation:
CJE <- evidenceCJ(evidence.method = "CJ",
                   formula = flomarriage ~ edges + kstar(2),
                   main.iters = 30000,
                   burn.in = 2000,
                   aux.iters = 1000,
                   num.samples = 25000,
                   V.proposal = 2.5,
                   ladder = 100,
                   seed = 1)

# Posterior summaries:
summary(CJE)

# MCMC diagnostics plots:
plot(CJE)

# Log-evidence (marginal likelihood) estimate:
CJE$log.evidence

## End(Not run)
```

evidenceCJ

Evidence estimation via Chib and Jeliazkov's method

Description

Function to estimate the evidence (marginal likelihood) with Chib and Jeliazkov’s method, based on the adjusted pseudolikelihood function.

Usage

evidenceCJ(
 formula,
 prior.mean = NULL,
 prior.sigma = NULL,
 aux.iters = 1000,
)
n.aux.draws = 5,
aux.thin = 50,
ladder = 30,
main.iters = 30000,
burn.in = 5000,
thin = 1,
V.proposal = 1.5,
num.samples = 25000,
seed = 1,
estimate = c("MLE", "CD"),
...
)

Arguments

formula formula; an ergm formula object, of the form <network> ~ <model terms> where
<network> is a network object and <model terms> are ergm-terms.
prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector
of 0's.
prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By
default set to a diagonal matrix with every diagonal entry equal to 100.
aux.iters count; number of auxiliary iterations used for drawing the first network from the
ERGM likelihood. See control.simulate.formula and ergmAPL.
n.aux.draws count; number of auxiliary networks drawn from the ERGM likelihood. See
control.simulate.formula and ergmAPL.
aux.thin count; number of auxiliary iterations between network draws after the first net-
work is drawn. See control.simulate.formula and ergmAPL.
ladder count; length of temperature ladder (>=3). See ergmAPL.
main.iters count; number of MCMC iterations after burn-in for the adjusted pseudo-posterior
estimation.
burn.in count; number of burn-in iterations at the beginning of an MCMC run for the
adjusted pseudo-posterior estimation.
thin count; thinning interval used in the simulation for the adjusted pseudo-posterior
estimation. The number of MCMC iterations must be divisible by this value.
V.proposal count; diagonal entry for the multivariate Normal proposal. By default set to
1.5.
num.samples integer; number of samples used in the marginal likelihood estimate. Must be
lower than main.iters-burnin.
seed integer; seed for the random number generator. See set.seed and MCMCmetrop1R.
estimate If "MLE" (the default), then an approximate maximum likelihood estimator is
returned. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See
ergm.
...
additional arguments, to be passed to the ergm function. See ergm and ergmAPL.
References

Examples

```r
## Not run:
# Load the florentine marriage network:
data(florentine)

# MCMC sampling and evidence estimation:
CJE <- evidenceCJ(floremarriage ~ edges + kstar(2),
                 main.iters = 2000,
                 burn.in = 200,
                 aux.iters = 500,
                 num.samples = 25000,
                 V.proposal = 2.5)

# Posterior summaries:
summary(CJE)

# MCMC diagnostics plots:
plot(CJE)

# Log-evidence (marginal likelihood) estimate:
CJE$log.evidence

## End(Not run)
```

evidencePP

Evidence estimation via power posteriors

Description

Function to estimate the evidence (marginal likelihood) with Power posteriors, based on the adjusted pseudolikelihood function.

Usage

```r
evidencePP(
  formula,
  prior.mean = NULL,
  prior.sigma = NULL,
  aux.iters = 1000,
```
n.aux.draws = 50,
aux.thin = 50,
ladder = 30,
main.iters = 20000,
burn.in = 5000,
thin = 1,
V.proposal = 1.5,
seed = 1,
temps = NULL,
estimate = c("MLE", "CD"),
...)

Arguments

formula formula; an ergm formula object, of the form <network> ~ <model terms> where <network> is a network object and <model terms> are ergm-terms.
prior.mean vector; mean vector of the multivariate Normal prior. By default set to a vector of 0’s.
prior.sigma square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.
aux.iters count; number of auxiliary iterations used for drawing the first network from the ERGM likelihood. See control.simulate.formula and ergmAPL.
n.aux.draws count; number of auxiliary networks drawn from the ERGM likelihood. See control.simulate.formula and ergmAPL.
aux.thin count; number of auxiliary iterations between network draws after the first network is drawn. See control.simulate.formula and ergmAPL.
ladder count; length of temperature ladder (>=3). See ergmAPL.
main.iters count; number of MCMC iterations after burn-in for the adjusted pseudo-posterior estimation.
burn.in count; number of burn-in iterations at the beginning of an MCMC run for the adjusted pseudo-posterior estimation.
thin count; thinning interval used in the simulation for the adjusted pseudo-posterior estimation. The number of MCMC iterations must be divisible by this value.
V.proposal count; diagonal entry for the multivariate Normal proposal. By default set to 1.5.
seed integer; seed for the random number generator. See set.seed and MCMCmetrop1R.
temps numeric vector; inverse temperature ladder, t ∈ [0, 1].
estimate If "MLE" (the default), then an approximate maximum likelihood estimator is returned. If "CD", the Monte-Carlo contrastive divergence estimate is returned. See ergm.
... additional arguments, to be passed to the ergm function. See ergm and ergmAPL.
lazega

References

Examples

```r
## Not run:
# Load the florentine marriage network:
data(florentine)

PPE <- evidencePP(flomarriage ~ edges + kstar(2),
  aux.iters = 500,
  noisy.nsim = 50,
  aux.thin = 50,
  main.iters = 2000,
  burn.in = 100,
  V.proposal = 2.5)

# Posterior summaries:
summary(PPE)

# MCMC diagnostics plots:
plot(PPE)

# Log-evidence (marginal likelihood) estimate:
PPE$log.evidence

## End(Not run)
```

lazega

Lazega lawyers network data

Description

Lazega lawyers network data

Usage

lazega

Format

An object of class network.
Source

This network dataset comes from a network study of corporate law partnership that was carried out in a Northeastern US corporate law firm in New England from 1988 to 1991. It represents collaborative relations among the 36 attorneys (partners and associates) of this firm. Nodal attributes include: Age, Gender, Office, Practice, School, and Years.

References

Examples

```r
## Not run:
par(mfrow = c(1, 2), oma = rep(0, 4))
CC <- hcl.colors(3, "Teal")
set.seed(22)
plot(lazega,
   vertex.col = CC[lazega %v% "Office"],
   vertex.cex = 2)
legend("topright",
   pch = 21,
   pt.bg = CC,
   legend = c("Boston", "Hartford", "Providence"),
   title = "OFFICE")
## End(Not run)
```

Description

This function creates MCMC diagnostic plots for `bergm` objects.

Usage

```r
## S3 method for class 'bergm'
plot(x, ...)
```

Arguments

- `x` : an R object of class `bergm`.
- `...` : additional arguments, to be passed to lower-level functions.
Examples

```r
# Not run:
# Load the florentine marriage network
data(florentine)

# Posterior parameter estimation:
p.flo <- bergm(fomarriage ~ edges + kstar(2),
               burn.in = 50,
               aux.iters = 500,
               main.iters = 1000,
               gamma = 1.2)

# MCMC diagnostics plots:
plot(p.flo)

## End(Not run)
```

summary.bergm

Summary of BERGM posterior output

Description

This function summarises MCMC output for `bergm` objects.

Usage

```r
## S3 method for class 'bergm'
summary(object, ...)
```

Arguments

- `object`: an R object of class `bergm`.
- `...`: additional arguments, to be passed to lower-level functions.
Index

* datasets
 lazega, 15

Bergm (Bergm-package), 2
bergm, 2
Bergm-package, 2
bergmC, 4
bergmM, 6
bgof, 8

ccontrol.simulate.formula, 4, 5, 10, 12, 14

ergm, 3–6, 10, 12, 14
ergmaPL, 9, 12, 14
evidence, 10
evidenceCJ, 11
evidencePP, 13

lazega, 15

MCMCmetrop1R, 12, 14

network, 3, 4, 6, 10, 12, 14

plot.bergm, 16

summary.bergm, 17