Package ‘BigVAR’

July 22, 2018

Type Package
Title Dimension Reduction Methods for Multivariate Time Series
Version 1.0.3
Author c(
 person("Will", "Nicholson", email = "wbn8@cornell.edu", role = c("cre","aut")),
 person("David", "Matteson", email = "matteson@cornell.edu", role = "aut"),
 person("Jacob", "Bien", email = "bien@cornell.edu", role = "aut"))
Maintainer Will Nicholson <wbn8@cornell.edu>
Date 2018-07-22
Description Estimates VAR and VARX models with structured Lasso Penalties.
Depends R (>= 3.1.0), methods
Imports MASS, zoo, lattice, Rcpp, stats, utils, grDevices, graphics
License GPL (>= 2)
LazyLoad yes
SystemRequirements C++11
LinkingTo Rcpp, RcppArmadillo, RcppEigen
URL http://www.github.com/wbnicholson/BigVAR
RoxygenNote 6.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-07-22 20:40:13 UTC

R topics documented:

A ... 2
BigVAR ... 3
BigVAR-class .. 4
BigVAR.est ... 5
BigVAR.results ... 6
constructModel .. 7
A Generator for Simulated Multivariate Time Series

Description

Coefficient matrix for a stationary simulated multivariate time series

Details

Example generator matrix adapted from Table 3.2 of Gredenhoff and Karlsson (1997)

Author(s)

Will Nicholson

References

Description

BigV AR implements the HVAR and VARX-L frameworks which allow for the estimation of vector autoregressions and vector autoregressions with exogenous variables using structured convex penalties. This package originated as a 2014 Google "Summer of Code" Project. The development version of this package is hosted on github: http://www.github.com/wbnicholson/BigVAR.

Details

To use the facilities of this package, starting with an $T \times k + m$ multivariate time series (in which T denotes the length of the series, k the number of endogenous or "model") and run constructModel to create an object of class BigVAR.cv.BigVAR creates an object of class BigVAR.results, which chooses an optimal penalty parameter based on minimizing h-step ahead forecasts on a specified cross-validation period over a grid of values as well as comparisons against AIC, BIC, unconditional mean, and a random walk. There are plot functions for both BigVAR (plot.BigVAR) and BigVAR.results (plot) as well as a predict function for BigVAR.results (predict).

Author(s)

Will Nicholson <wbn8@cornell.edu>.

References

See Also

constructModel, cv.BigVAR, BigVAR.results, plot, predict

Examples

Fit a Basic VAR-L(3,4) on simulated data
data(Y)
T1=floor(nrow(Y)/3)
T2=floor(2*nrow(Y)/3)
m1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE,T1=T1,T2=T2,IC=FALSE)
plot(m1)
results=cv.BigVAR(m1)
plot(results)
predict(results,n.ahead=1)
BigVAR-class

Description

An object class to be used with cv.BigVAR

Details

To construct an object of class BigVAR, use the function `constructModel`

Slots

Data a $T \times k$ multivariate time Series
lagmax Maximal lag order for modeled series
intercept Indicator as to whether an intercept should be included
structure Penalty Structure
relaxed Indicator for relaxed VAR
Granularity Granularity of Penalty Grid
horizon Desired Forecast Horizon
crossval Cross-Validation Procedure
Minnesota Minnesota Prior Indicator
verbose Indicator for Verbose output
dates dates extracted from an xts object
ic Indicator for including AIC and BIC benchmarks
VARX VARX Model Specifications
T1 Index of time series in which to start cross validation
T2 Index of times series in which to start forecast evaluation
ONESE Indicator for "One Standard Error Heuristic"
ownlambdas Indicator for user-supplied lambdas
tf Indicator for transfer function
alpha Grid of candidate alpha values (applies only to Sparse VARX-L models)
recursive Indicator as to whether recursive multi-step forecasts are used (applies only to multiple horizon VAR models)
constvec vector indicating variables to shrink toward a random walk instead of toward zero (valid only if Minnesota is TRUE)
tol optimization tolerance
lagselect lag selection indicator
window.size size of rolling window. If set to NULL an expanding window will be used.

See Also

`constructModel`
Description

Fit a BigVAR object with a structured penalty (VARX-L or HVAR).

Usage

```r
BigVAR.est(object)
```

Arguments

- `object` BigVAR object created from `ConstructModel`

Details

Fits HVAR or VARX-L model on a BigVAR object. Does not perform cross-validation. This method allows the user to construct their own penalty parameter selection procedure.

Value

An array of $k \times kp \times n$ or $k \times kp + ms \times n$ coefficient matrices; one for each of the n values of lambda.

See Also

`constructModel`, `BigVAR.results`, `cv.BigVAR`

Examples

```r
data(Y)
Y=Y[1:100,]
# construct a Basic VAR-L
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10))
BigVAR.est(Model1)
```
BigVAR.results

This class contains the results from cv.BigVAR.

Description

It inherits the class BigVAR, but contains substantially more information.

Fields

- **InSampMSFE**: In-sample MSFE from optimal value of lambda
- **LambdaGrid**: Grid of candidate lambda values
- **index**: Rank of optimal lambda value
- **OptimalLambda**: Value of lambda that minimizes MSFE
- **OOSMSFE**: Average Out of sample MSFE of BigVAR model with optimal lambda
- **seOOSMSFE**: Standard error of out of sample MSFE of BigVAR model with optimal lambda
- **MeanMSFE**: Average out of sample MSFE of unconditional mean forecast
- **MeanSD**: Standard error of out of sample MSFE of unconditional mean forecast
- **MeanPreds**: Predictions from conditional mean model
- **RWMSE**: Average out of sample MSFE of random walk forecast
- **RWPreds**: Predictions from random walk model
- **RWSD**: Standard error of out of sample MSFE of random walk forecast
- **AICMSFE**: Average out of sample MSFE of AIC forecast
- **AICSD**: Standard error of out of sample MSFE of AIC forecast
- **AICPreds**: Predictions from AIC VAR/VARX model
- **AICpvec**: Lag orders selected from AIC VAR model
- **AICpvec**: Lag orders selected from AIC VARX model
- **BICMSFE**: Average out of sample MSFE of BIC forecast
- **BICSD**: Standard error of out of sample MSFE of BIC forecast
- **BICPreds**: Predictions from BIC VAR/VARX model
- **BICpvec**: Lag orders selected from BIC VAR model
- **BICpvec**: Lag orders selected from BIC VARX model
- **betaPred**: The final estimated $k \times kp + ms + 1$ coefficient matrix, to be used for prediction
- **Zvals**: The final lagged values of Y, to be used for prediction
- **fitted**: Fitted values obtained from betaPred
- **resids**: Residuals obtained from betaPred
- **Data**: A $T \times k$ or $T \times k + m$ multivariate time Series
- **lagmax**: Maximal lag order
- **Structure**: Penalty structure
constructModel

Relaxed Indicator for relaxed VAR
Granularity Granularity of penalty grid
horizon Desired forecast horizon
crossval Cross-Validation procedure
alpha additional penalty parameter for Sparse Lag Group or Sparse Own/Other methods. Will contain either the heuristic choice of $1/(k + 1)$ or the value selected by cross validation if the argument dual is set to TRUE
VARXI VARX Indicator
Minnesota Minnesota Prior Indicator
verbose verbose indicator
dual indicator as to whether dual cross validation was conducted
contemp indicator if contemporaneous exogenous predictors are used
lagmatrix matrix of lagged values used to compute residuals (of which Zvals is the final column)
betaArray array of VAR/VARX coefficients from out of sample forecasts

Note

One can also access any object of class BigVAR from BigVAR.results

Author(s)

Will Nicholson

constructModel
Construct an object of class BigVAR

Description

Construct an object of class BigVAR

Usage

```r
constructModel(Y, p, struct, gran, RVAR = FALSE, h = 1, cv = "Rolling", MN = FALSE, verbose = TRUE, IC = TRUE, VARX = list(), T1 = floor(nrow(Y)/3), T2 = floor(2 * nrow(Y)/3), ONESE = FALSE, ownlambdas = FALSE, alpha = as.double(NULL), recursive = FALSE, C = as.double(NULL), dates = as.character(NULL), intercept = TRUE, tol = 1e-04, lagselect = FALSE, window.size = 0)
```
Arguments

Y $T \times k$ multivariate time series or $Y \times (k + m)$ endogenous and exogenous series, respectively

p Predetermined maximal lag order (for modeled series)

struct The choice of penalty structure (see details).

gan vector of penalty parameter specifications.

RVAR True or False: option to refit based upon the support selected using the Relaxed-VAR procedure

h Desired forecast horizon

cv Cross-validation approach, either "Rolling" for rolling cross-validation or "LOO" for leave-one-out cross-validation.

MN Minnesota Prior Indicator

verbose Verbose output while estimating

IC True or False: whether to include AIC and BIC benchmarks

VARX List containing VARX model specifications.

T1 Index of time series in which to start cross validation

T2 Index of times series in which to start forecast evaluation

ONESE True or False: whether to use the "One Standard Error Heuristic"

ownlambdas True or False: Indicator for user-supplied penalty parameters

alpha grid of candidate parameters for the alpha in the Sparse Lag and Sparse Own/Other VARX-L

recursive True or False: Indicator as to whether iterative multi-step predictions are desired in the VAR context if the forecast horizon is greater than 1

C vector of coefficients to shrink toward a random walk (if MN is TRUE)

dates optional vector of dates corresponding to Y

intercept True or False: option to fit an intercept

tol optimization tolerance (default 1e-4)

lagselect lag selection indicator

window.size size of rolling window. If set to 0 an expanding window will be used.

@details The choices for "struct" are as follows

- "Basic" (Basic VARX-L)
- "Lag" (Lag Group VARX-L)
- "SparseLag" (Lag Sparse Group VARX-L)
- "OwnOther" (Own/Other Group VARX-L)
- "SparseOO" (Own/Other Sparse Group VARX-L)
- "EFX" (Endogenous First VARX-L)
- "HVARC" (Componentwise HVAR)
- "HVAROOG" (Own/Other HVAR)
- "HVARELEM" (Elementwise HVAR)
constructModel

- "Tapered" (Lag weighted Lasso VAR)
- "BGR" (Bayesian Ridge Regression (cf. Banbura et al))

The first number in the vector "gran" specifies how deep to construct the penalty grid and the second specifies how many penalty parameters to use. If ownlambdas is set to TRUE, gran should contain the user-supplied penalty parameters.

VARX specifications consist of a list with entry k denoting the series that are to be modeled and entry s to denote the maximal lag order for exogenous series.

The argument alpha is ignored unless the structure choice is "SparseLag" or "Lag." By default "alpha" is set to NULL and will be initialized as 1/(k+1) in cv.BigVAR and BigVAR.est. Any user supplied values must be between 0 and 1.

Note

The specifications "Basic", "Lag," "SparseLag," "SparseOO," and "OwnOther" can accommodate both VAR and VARX models. EFX only applies to VARX models. "HVARC," "HVAROO," "HVARELEM," and "Tapered" can only be used with VAR models.

References

See Also

cv.BigVAR,BigVAR.est

Examples

VARX Example
Create a Basic VARX-L with k=2, m=1, s=2, p=4
VARX=list()
VARX$k=2 # indicates that the first two series are modeled
VARX$s=2 # sets s as the maximal lag order for exogenous series
data(Y)
T1=floor(nrow(Y)/3)
T2=floor(2*nrow(Y)/3)
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE,VARX=VARX,T1=T1,T2=T2)
Description

Cross Validation for BigVAR

Usage

cv.BigVAR(object)

Arguments

object BigVAR object created from ConstructModel

Details

The main function of the BigVAR package. Performs cross validation to select penalty parameters over a training sample (as the minimizer of in-sample MSFE), then evaluates them over a test set. Compares against sample mean, random walk, AIC, and BIC benchmarks. Creates an object of class BigVAR_results

Value

An object of class BigVAR_results.

See Also

constructModel, BigVAR_results, BigVAR.est

Examples

data(Y)
Fit a Basic VAR-L with rolling cross validation
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10))
results=cv.BigVAR(Model1)
Description

Simulate a VAR

Usage

```
MultVarSim(k, A1, p, Sigma, T)
```

Arguments

- **k**: Number of Series
- **A1**: Either a $k \times k$ coefficient matrix or a $kp \times kp$ matrix created using `VarptoVar1MC`.
- **p**: Maximum Lag Order
- **Sigma**: Residual Covariance Matrix of dimension $k \times k$
- **T**: Number of simulations

Value

Returns a $T \times k$ of realizations from a VAR.

References

Lutkepohl, "A New Introduction to Multiple Time Series Analysis"

See Also

`VarptoVar1MC`

Examples

```r
k=3; p=6
B=matrix(0,nrow=k,ncol=p*k)
A1<- matrix(c(.4,-.02,.01,-.02,.01,.04,.03),ncol=3,nrow=3)
A2 <- matrix(c(.2,0,0,.0,.0,.0,.0,.13),ncol=3,nrow=3)
B[1:k]=A1
B[(4*k+1):(5*k)]<-A2
A <- VarptoVar1MC(B,p,k)
Y <- MultVarSim(k,A,p,1*diag(k),100)
```
plot

Plot an object of class `BigVAR.results`

Description

Plot an object of class `BigVAR.results`

Usage

```r
## S4 method for signature 'BigVAR.results'
plot(x, y = NULL, ...)
```

Arguments

- `x` BigVAR.results object created from `cv.BigVAR`
- `y` NULL
- `...` additional arguments

Details

Plots the in sample MSFE of all values of lambda with the optimal value highlighted.

plot.BigVAR

Plot a BigVAR object

Description

Plot a BigVAR object

Usage

```r
## S4 method for signature 'BigVAR'
plot(x, y = NULL, ...)
```

Arguments

- `x` BigVAR object created from `ConstructModel`
- `y` NULL
- `...` additional plot arguments

Details

Uses `plot.zoo` to plot each individual series of Y on a single plot.
Value

NA, side effect is graph

See Also

constructModel

predict

Forecast using a BigVAR.results object

Description

Forecast using a BigVAR.results object

Usage

predict(object, ...)

Arguments

object
BigVAR.results object from cv.BigVAR

...
additional arguments affecting the predictions produced (e.g. n.ahead)

Details

Provides n.ahead step forecasts using the model produced by cv.BigVAR.

See Also

cv.BigVAR

Examples

data(Y)
Y=Y[1:100,]
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE)
results=cv.BigVAR(Model1)
predict(results,n.ahead=1)
PredictVARX

One-step ahead predictions for VARX models

Description
One-step ahead predictions for VARX models

Usage
PredictVARX(varxres)

Arguments

varxres
the results from VARXFit

Value
Returns a vector consisting of the out-of-sample forecasts for the provided VARXFit model.

See Also
VARXFit

Examples

data(Y)
fit a VAR_3(3)
mod <- VARXFit(Y,3,NULL,NULL)
pred <- PredictVARX(mod)

show
Default show method for an object of class BigVAR.results

Description
Default show method for an object of class BigVAR.results

Usage

S4 method for signature 'BigVAR.results'
show(object)

Arguments

object
BigVAR.results object created from cv.BigVAR
show.BigVAR

Details

prints forecast results and additional diagnostic information as well as comparisons with mean, random walk, and AIC, and BIC benchmarks

See Also

cv.BigVAR,BigVAR.results

Default show method for an object of class BigVAR

Description

Default show method for an object of class BigVAR

Usage

```r
## S4 method for signature 'BigVAR'
show(object)
```

Arguments

- `object` BigVAR object created from ConstructModel

Value

Displays the following information about the BigVAR object:

- Prints the first 5 rows of Y
- Penalty Structure
- Relaxed Least Squares Indicator
- Maximum lag order
- VARX Specifications (if applicable)
- Start, end of cross validation period

See Also

constructModel
SparsityPlot.BigVAR.results

Sparsity Plot of a BigVAR.results object

Description

Sparsity Plot of a BigVAR.results object

Usage

SparsityPlot.BigVAR.results(object)

Arguments

object BigVAR.results object

Details

Uses levelplot from the lattice package to plot the magnitude of each coefficient in the last coefficient estimated by cv.BigVAR.

Value

NA, side effect is graph

See Also

cv.BigVAR, BigVAR.results

Examples

data(Y)
Y <- Y[1:100,]
Model1 <- constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE)
SparsityPlot.BigVAR.results(cv.BigVAR(Model1))

VarptoVar1MC

Converts a VAR coefficient matrix of order p to multiple companion form

Description

Converts a VAR coefficient matrix of order p to multiple companion form

Usage

VarptoVar1MC(B, p, k)
VARXFit

Arguments

- **B**: a $k \times kp$ coefficient matrix
- **p**: Lag order
- **k**: Number of Series

Value

Returns a $kp \times kp$ coefficient matrix representing all coefficient matrices contained in Ai as a VAR(1).

References

See page 15 of Lutkepohl, "A New Introduction to Multiple Time Series Analysis"

See Also

MultVarSim

Examples

```r
k=3; p=6
B=matrix(0, nrow=k, ncol=p*k)
A1<- matrix(c(.4,.02,.01,.02,.02,.01,.04,.3), ncol=3, nrow=3)
A2 <- matrix(c(.2,.0,.0,.3,.0,.0,.13), ncol=3, nrow=3)
B[,1:k]=A1
B[, (4*k+1):((5*k)] = A2
A <- VarptoVar1MC(B, p, k)
```

VARXFit

Fit a VAR or VARX model by least squares

Description

Fit a VAR or VARX model by least squares

Usage

```r
VARXFit(Y, p, IC, VARX = NULL)
```

Arguments

- **Y**: a $t \times k$ multivariate time series
- **p**: maximum lag order
- **IC**: Information criterion indicator, if set to NULL, it will fit a least squares VAR(X) of orders p and s. Otherwise, if set to "AIC" or "BIC" it return the model with lag orders that minimize the given IC.
- **VARX**: a list of VARX specifications (as in `constructModel` (or NULL)
Details

This function uses a modified form of the least squares technique proposed by Neumaier and Schneider (2001). It fits a least squares VAR or VARX via a QR decomposition that does not require explicit matrix inversion. This results in improved computational performance as well as numerical stability over the conventional least squares approach.

Value

Returns a list with four entries:

- "Bhat" Estimated $k \times kp + ms$ coefficient matrix
- "SigmaU" Estimated $k \times k$ residual covariance matrix
- "phat" Selected lag order for VAR component
- "shat" Selected lag order for VARX component
- "Y" multivariate time series retained for prediction purposes
- "Y" number of endogenous (modeled) time series

References

See Also

constructModel, cv.BigVAR

Examples

data(Y)
 # fit a VAR.3(3)
 mod <- VARXfit(Y, 3, NULL, NULL)
 # fit a VAR.3 with p=6 and lag selected according to AIC
 modAIC <- VARXfit(Y, 6, "AIC", NULL)
 # fit a VARX_(2,1) with p=6, s=4 and lags selected by BIC
 modXBIC <- VARXfit(Y, 6, "BIC", list(k=1, s=4))

VARXForecastEval

Evaluate forecasts from a VAR or VARX with lag orders selected by AIC/BIC

Description

Evaluate forecasts from a VAR or VARX with lag orders selected by AIC/BIC
Usage

VARXForecastEval(Y, X, p, s, T1, T2, IC, h, iterated = FALSE)

Arguments

Y
a $T \times k$ multivariate time series
X
a $T \times m$ multivariate time series of unmodeled exogenous variables
p
maximum lag order for endogenous series
s
maximum lag order for exogenous series
T1
start of forecast evaluation period.
T2
end of forecast evaluation period
IC
specifies whether to select lag order according to "AIC" or "BIC"
h
desired forecast horizon
iterated
indicator as to whether to use iterated or direct multistep forecasts (if applicable, VAR context only)

Details

This function evaluates the one-step ahead forecasts of a VAR or VARX fit by least squares over an evaluation period. At every point in time, lag orders for the endogenous and exogenous series are selected according to AIC or BIC. This function is run automatically when cv.BigVAR is called unless ic is set to FALSE in constructModel.

Value

Returns the one-step ahead MSFE as well as the forecasts over the evaluation period and lag order selected.

References

See Also

VARXFit, constructModel, cv.BigVAR

Examples

data(Y)

Evaluate the performance of a VAR with lags selected by BIC.
p <- 4
T1 <- floor(nrow(Y))/3
T2 <- floor(2*nrow(Y))/3
Matrix of zeros for X
X <- matrix(0, nrow=nrow(Y), ncol=ncol(Y))
BICMSFE <- VARXForecastEval(Y,X,p,0,T1,T2,"BIC",1)
Simulated Multivariate Time Series

Description
Realization of a simulated multivariate time series

Details
100 × 3 multivariate time series distributed according to the generator matrix A.

Author(s)
Will Nicholson
Index

A, 2, 20

BigVAR, 3, 3
BigVAR-class, 4
BigVAR-package (BigVAR), 3
BigVAR.est, 5, 9, 10
BigVAR.est, BigVAR-method (BigVAR.est), 5
BigVAR.results, 3, 5, 6, 10, 15, 16
BigVAR.results-class (BigVAR.results), 6

constructModel, 3–5, 7, 10, 13, 15–19
cv.BigVAR, 3, 5, 9, 10, 13, 15, 16, 18, 19
cv.BigVAR, BigVAR-method (cv.BigVAR), 10

MultVarSim, 11, 17

plot, 3, 12
plot, BigVAR-method (plot.BigVAR), 12
plot, BigVAR.results-method (plot), 12
plot.BigVAR, 3, 12
predict, 3, 13
predict, BigVAR.results-method (predict), 13
PredictVARX, 14

show, 14
show, BigVAR-method (show.BigVAR), 15
show, BigVAR.results-method (show), 14
show.BigVAR, 15
SparsityPlot, BigVAR.results, 16
SparsityPlot, BigVAR.results, BigVAR.results-method (SparsityPlot, BigVAR.results), 16

VartoVar1MC, 11, 16
VARXFit, 14, 17, 19
VARXForecastEval, 18

Y, 20