Package ‘BigVAR’

December 2, 2019

Type Package
Title Dimension Reduction Methods for Multivariate Time Series
Version 1.0.6
Maintainer Will Nicholson <wbn8@cornell.edu>
Date 2019-12-1
Description Estimates VAR and VARX models with structured Lasso Penalties.
Depends R (>= 3.1.0), methods
Imports MASS, zoo, lattice, Rcpp, stats, utils, grDevices, graphics
License GPL (>= 2)
LazyLoad yes
SystemRequirements C++11
LinkingTo Rcpp, RcppArmadillo, RcppEigen
URL http://www.github.com/wbnicholson/BigVAR
RoxygenNote 7.0.1
NeedsCompilation yes
Author Will Nicholson [cre, aut],
David Matteson [aut],
Jacob Bien [aut]
Repository CRAN
Date/Publication 2019-12-02 06:50:12 UTC

R topics documented:

A ... 2
BigVAR .. 3
BigVAR-class ... 4
BigVAR.est .. 5
BigVAR.fit .. 6
BigVAR.results .. 8
constructModel .. 9
A Generator for Simulated Multivariate Time Series

Description

Coefficient matrix for a stationary simulated multivariate time series

Details

Example generator matrix adapted from Table 3.2 of Gredenhoff and Karlsson (1997)

Author(s)

Will Nicholson

References

Description

BigVAR implements the HV AR and VARX-L frameworks which allow for the estimation of vector autoregressions and vector autoregressions with exogenous variables using structured convex penalties. This package originated as a 2014 Google "Summer of Code" Project. The development version of this package is hosted on github: http://www.github.com/wbnicholson/BigVAR.

Details

To use the facilities of this package, starting with an \(T \times k + m \) multivariate time series (in which \(T \) denotes the length of the series, \(k \) the number of endogenous or "model") and run `constructModel` to create an object of class `BigVAR`. `cv.BigVAR` creates an object of class `BigVAR.results`, which chooses an optimal penalty parameter based on minimizing h-step ahead forecasts on a specified cross-validation period over a grid of values as well as comparisons against AIC, BIC, unconditional mean, and a random walk. There are plot functions for both BigVAR (`plot.BigVAR`) and BigVAR.results (`plot`) as well as a predict function for BigVAR.results (`predict`).

Author(s)

Will Nicholson <wbn8@cornell.edu>,

References

See Also

`constructModel`, `cv.BigVAR`, `BigVAR.results`, `plot`, `predict`

Examples

Fit a Basic VAR-L(3,4) on simulated data
data(Y)
T1=floor(nrow(Y)/3)
T2=floor(2*nrow(Y)/3)
m1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE,T1=T1,T2=T2,IC=FALSE)
plot(m1)
results=cv.BigVAR(m1)
plot(results)
predict(results,n.ahead=1)
Description

An object class to be used with cv.BigVAR

Details

To construct an object of class BigVAR, use the function `constructModel`

Slots

- **Data**: a $T \times k$ multivariate time Series
- **lagmax**: Maximal lag order for modeled series
- **intercept**: Indicator as to whether an intercept should be included
- **Structure**: Penalty Structure
- **Relaxed**: Indicator for relaxed VAR
- **Granularity**: Granularity of Penalty Grid
- **horizon**: Desired Forecast Horizon
- **crossval**: Cross-Validation Procedure
- **Minnesota**: Minnesota Prior Indicator
- **verbose**: Indicator for Verbose output
- **dates**: dates extracted from an xts object
- **ic**: Indicator for including AIC and BIC benchmarks
- **VARX**: VARX Model Specifications
- **T1**: Index of time series in which to start cross validation
- **T2**: Index of times series in which to start forecast evaluation
- **ONESE**: Indicator for "One Standard Error Heuristic"
- **ownlambdas**: Indicator for user-supplied lambdas
- **tf**: Indicator for transfer function
- **alpha**: Grid of candidate alpha values (applies only to Sparse VARX-L and Elastic Net models)
- **recursive**: Indicator as to whether recursive multi-step forecasts are used (applies only to multiple horizon VAR models)
- **constvec**: vector indicating variables to shrink toward a random walk instead of toward zero (valid only if Minnesota is TRUE)
- **tol**: optimization tolerance
- **window.size**: size of rolling window. If set to NULL an expanding window will be used.
- **separate_lambdas**: indicator to use separate penalty parameter for each time series (default FALSE)

See Also

`constructModel`
BigVAR.est

Description

Fit a BigVAR object with a structured penalty (VARX-L or HVAR).

Usage

BigVAR.est(object)

Arguments

object
BigVAR object created from ConstructModel

Details

Fits HVAR or VARX-L model on a BigVAR object. Does not perform cross-validation. This method allows the user to construct their own penalty parameter selection procedure.

Value

An array of $k \times kp \times n$ or $k \times kp + ms \times n$ coefficient matrices; one for each of the n values of lambda.

See Also

constructModel, BigVAR.results, cv.BigVAR

Examples

data(Y)
Y=Y[1:100,]
construct a Basic VAR-L
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10))
BigVAR.est(Model1)
BigVAR.fit

Simple function to fit BigVAR model with fixed penalty parameter

Description

Simple function to fit BigVAR model with fixed penalty parameter

Usage

BigVAR.fit(Y, p, struct, lambda, alpha = NULL, VARX = list(), separate_lambdas = F, MN = F, C = as.double(NULL), intercept = TRUE, tf = F, tol = 1e-04, RVAR = F, beta = NULL)

Arguments

Y

$T \times k$ multivariate time series or $Y T \times (k + m)$ endogenous and exogenous series, respectively

p

Predetermined maximal lag order (for modeled series)

struct

The choice of penalty structure (see details).

lambda

vector or matrix of penalty parameters.

alpha

grid of candidate parameters for the alpha in the Sparse Lag and Sparse Own/Other VARX-L

VARX

List containing VARX model specifications.

separate_lambdas

indicator for separate penalty parameters for each time series (default FALSE)

MN

Minnesota Prior Indicator

C

vector of coefficients to shrink toward a random walk (if MN is TRUE)

intercept

True or False: option to fit an intercept

tf

transfer function indicator (i.e. VARX in which p=0 & s>0) (default false)

tol

optimization tolerance (default 1e-4)

RVAR

True or False: option to refit based upon the support selected using the Relaxed-VAR procedure

beta

optional $k \times (k \times p + m \times s + 1)$ coefficient matrix to use as a "warm start" (default FALSE)

@details The choices for "struct" are as follows

- "Basic" (Basic VARX-L)
- "Lag" (Lag Group VARX-L)
- "SparseLag" (Lag Sparse Group VARX-L)
- "OwnOther" (Own/Other Group VARX-L)
- "SparseOO" (Own/Other Sparse Group VARX-L)
- "EFX" (Endogenous First VARX-L)
- "HVARC" (Componentwise HVAR)
BigVAR.fit

- "HVAROO" (Own/Other HVAR)
- "HVARELEM" (Elementwise HVAR)
- "Tapered" (Lag weighted Lasso VAR)
- "BGR" (Bayesian Ridge Regression (cf. Banbura et al))

VARX specifications consist of a list with entry k denoting the series that are to be modeled and entry s to denote the maximal lag order for exogenous series.

The argument alpha is ignored unless the structure choice is "SparseLag" or "Lag." By default "alpha" is set to NULL and will be initialized as 1/(k+1) in cv.BigVAR and BigVAR.est. Any user supplied values must be between 0 and 1.

Note

The specifications "Basic", "Lag," "SparseLag," "SparseOO," and "OwnOther" can accommodate both VAR and VARX models. EFX only applies to VARX models. "HVARC," "HVAROO," "HVARELEM," and "Tapered" can only be used with VAR models.

References

See Also

cv.BigVAR,BigVAR.est,constructModel

Examples

VARX Example
Fit a Basic VARX-L with k=2, m=1, s=2, p=4, lambda=1e-2
VARX=list()
VARX$k=2 # indicates that the first two series are modeled
VARX$s=2 # sets 2 as the maximal lag order for exogenous series
data(Y)
BigVAR.fit(Y,p=4,"Basic",lambda=1e-2,VARX=VARX)
BigVAR.results

This class contains the results from cv.BigVAR.

Description

It inherits the class BigVAR, but contains substantially more information.

Fields

- **InSampMSFE**: In-sample MSFE from optimal value of lambda
- **LambdaGrid**: Grid of candidate lambda values
- **index**: Rank of optimal lambda value
- **OptimalLambda**: Value of lambda that minimizes MSFE
- **OOSMSFE**: Average Out of sample MSFE of BigVAR model with optimal lambda
- **seOOSmsfe**: Standard error of out of sample MSFE of BigVAR model with optimal lambda
- **MeanMSFE**: Average out of sample MSFE of unconditional mean forecast
- **MeanSD**: Standard error of out of sample MSFE of unconditional mean forecast
- **MeanPreds**: Predictions from conditional mean model
- **RWMSFE**: Average out of sample MSFE of random walk forecast
- **RWPreds**: Predictions from random walk model
- **RWSD**: Standard error of out of sample MSFE of random walk forecast
- **AICMSFE**: Average out of sample MSFE of AIC forecast
- **AICSD**: Standard error of out of sample MSFE of AIC forecast
- **AICPreds**: Predictions from AIC VAR/VARX model
- **AICpvec**: Lag orders selected from AIC VAR model
- **AICpvec**: Lag orders selected from AIC VARX model
- **BICMSFE**: Average out of sample MSFE of BIC forecast
- **BICSD**: Standard error of out of sample MSFE of BIC forecast
- **BICPreds**: Predictions from BIC VAR/VARX model
- **BICpvec**: Lag orders selected from BIC VAR model
- **BICpvec**: Lag orders selected from BIC VARX model
- **betaPred**: The final estimated $k \times kp + ms + 1$ coefficient matrix, to be used for prediction
- **Zvals**: The final lagged values of Y, to be used for prediction
- **fitted**: fitted values obtained from betaPred
- **resids**: residuals obtained from betaPred
- **Data**: a $T \times k$ or $T \times k + m$ multivariate time Series
- **lagmax**: Maximal lag order
- **Structure**: Penalty structure
constructModel

Relaxed Indicator for relaxed VAR
Granularity Granularity of penalty grid
horizon Desired forecast horizon
crossval Cross-Validation procedure
alpha additional penalty parameter for Sparse Lag Group or Sparse Own/Other methods. Will contain either the heuristic choice of $1/(k + 1)$ or the value selected by cross validation if the argument dual is set to TRUE
VARX VARX Indicator
Minnesota Minnesota Prior Indicator
verbose verbose indicator
dual indicator as to whether dual cross validation was conducted
contemp indicator if contemporaneous exogenous predictors are used
lagmatrix matrix of lagged values used to compute residuals (of which Zvals is the final column)
betaArray array of VAR/VARX coefficients from out of sample forecasts
sparse_count average fraction of active coefficients in validation period

Note
One can also access any object of class BigVAR from BigVAR.results

Author(s)
Will Nicholson

Description
Construct an object of class BigVAR

Usage
constructModel(Y, p, struct, gran, RVAR = FALSE, h = 1, cv = "Rolling", MN = FALSE, verbose = TRUE, IC = TRUE, VARX = list(), T1 = floor(nrow(Y)/3), T2 = floor(2 * nrow(Y)/3), ONESE = FALSE, ownlambdas = FALSE, alpha = as.double(NULL), recursive = FALSE, C = as.double(NULL), dates = as.character(NULL), intercept = TRUE, tol = 1e-04, window.size = 0, separate_lambdas = FALSE)
Arguments

Y \(T \times k \) multivariate time series or \(Y T \times (k + m) \) endogenous and exogenous series, respectively

p Predetermined maximal lag order (for modeled series)

struct The choice of penalty structure (see details).

gran vector of penalty parameter specifications.

RVAR True or False: option to refit based upon the support selected using the Relaxed-VAR procedure

h Desired forecast horizon

cv Cross-validation approach, either "Rolling" for rolling cross-validation or "LOO" for leave-one-out cross-validation.

MN Minnesota Prior Indicator

verbose Verbose output while estimating

IC True or False: whether to include AIC and BIC benchmarks

VARX List containing VARX model specifications.

T1 Index of time series in which to start cross validation

T2 Index of times series in which to start forecast evaluation

ONESE True or False: whether to use the "One Standard Error Heuristic"

ownlambdas True or False: Indicator for user-supplied penalty parameters

alpha grid of candidate parameters for the alpha in the Sparse Lag and Sparse Own/Other VARX-L

recursive True or False: Indicator as to whether iterative multi-step predictions are desired in the VAR context if the forecast horizon is greater than 1

C vector of coefficients to shrink toward a random walk (if MN is TRUE)

dates optional vector of dates corresponding to \(Y \)

intercept True or False: option to fit an intercept

tol optimization tolerance (default 1e-4)

window.size size of rolling window. If set to 0 an expanding window will be used.

@details The choices for "struct" are as follows

- "Basic" (Basic VARX-L)
- "Lag" (Lag Group VARX-L)
- "SparseLag" (Lag Sparse Group VARX-L)
- "OwnOther" (Own/Other Group VARX-L)
- "SparseOO" (Own/Other Sparse Group VARX-L)
- "EFX" (Endogenous First VARX-L)
- "HVARC" (Componentwise HVAR)
- "HVAROO" (Own/Other HVAR)
- "HVARELEM" (Elementwise HVAR)
- "Tapered" (Lag weighted Lasso VAR)
• "BGR" (Bayesian Ridge Regression (cf. Banbura et al))

The first number in the vector "gran" specifies how deep to construct the penalty grid and the second specifies how many penalty parameters to use If ownlambdas is set to TRUE, gran should contain the user-supplied penalty parameters.

VARX specifications consist of a list with entry k denoting the series that are to be modeled and entry s to denote the maximal lag order for exogenous series. The argument alpha is ignored unless the structure choice is "SparseLag" or "Lag." By default "alpha" is set to NULL and will be initialized as 1/(k+1) in cv.BigVAR and BigVAR.est. Any user supplied values must be between 0 and 1.

separate_lambdas
indicator for separate penalty parameters for each time series (default FALSE)

Note
The specifications "Basic", "Lag," "SparseLag," "SparseOO," and "OwnOther" can accommodate both VAR and VARX models. EFX only applies to VARX models. "HVARC," "HVAROO," "HVARELEM," and "Tapered" can only be used with VAR models.

References

See Also
cv.BigVAR,BigVAR.est

Examples
VARX Example
Create a Basic VARX-L with k=2, m=1, s=2, p=4
VARX=list()
VARX$k=2 # indicates that the first two series are modeled
VARX$s=2 # sets 2 as the maximal lag order for exogenous series
data(Y)
T1=floor(nrow(Y)/3)
T2=floor(2*nrow(Y)/3)
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE,VARX=VARX,T1=T1,T2=T2)
cv.BigVAR

Cross Validation for BigVAR

Description

Cross Validation for BigVAR

Usage

cv.BigVAR(object)

Arguments

object BigVAR object created from ConstructModel

Details

The main function of the BigVAR package. Performs cross validation to select penalty parameters over a training sample (as the minimizer of in-sample MSFE), then evaluates them over a test set. Compares against sample mean, random walk, AIC, and BIC benchmarks. Creates an object of class BigVAR.results

Value

An object of class BigVAR.results.

See Also

constructModel, BigVAR.results, BigVAR.est

Examples

data(Y)
Fit a Basic VARX-L with rolling cross validation
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10))
results=cv.BigVAR(Model1)
MultVarSim

Simulate a VAR

Description

Simulate a VAR

Usage

MultVarSim(k, A1, p, Sigma, T)

Arguments

- **k** Number of Series
- **A1** Either a $k \times k$ coefficient matrix or a $kp \times kp$ matrix created using `VarptoVar1MC`.
- **p** Maximum Lag Order
- **Sigma** Residual Covariance Matrix of dimension $k \times k$
- **T** Number of simulations

Value

Returns a $T \times k$ of realizations from a VAR.

References

Lutkepohl, "A New Introduction to Multiple Time Series Analysis"

See Also

`VarptoVar1MC`

Examples

```r
k=3;p=6
B=matrix(0,nrow=k,ncol=p*k)
A1<- matrix(c(.4,-.02,.01,-.02,.3,.02,.01,.04,.3),ncol=3,nrow=3)
A2 <- matrix(c(.2,0,0,.3,.0,.01,.04,.0,.13),ncol=3,nrow=3)
B[,1:k]=A1
B[,4*(k+1):(5*k)]=A2
A <- VarptoVar1MC(B,p,k)
Y <-MultVarSim(k,A,p,.1*diag(k),100)
```
plot

Plot an object of class BigVAR.results

Description

Plot an object of class BigVAR.results

Usage

S4 method for signature 'BigVAR.results'
plot(x, y = NULL, ...)

Arguments

x BigVAR.results object created from cv.BigVAR
y NULL
... additional arguments

Details

Plots the in sample MSFE of all values of lambda with the optimal value highlighted.

plot.BigVAR

Plot a BigVAR object

Description

Plot a BigVAR object

Usage

S4 method for signature 'BigVAR'
plot(x, y = NULL, ...)

Arguments

x BigVAR object created from ConstructModel
y NULL
... additional plot arguments

Details

Uses plot.zoo to plot each individual series of Y on a single plot
predict

Value
NA, side effect is graph

See Also

constructModel

predict
Forecast using a BigVAR.results object

Description
Forecast using a BigVAR.results object

Usage

```r  
predict(object,...)  
```  

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>BigVAR.results object from <code>cv.BigVAR</code></td>
</tr>
<tr>
<td><code>...</code></td>
<td>additional arguments affecting the predictions produced (e.g. <code>n.ahead</code>)</td>
</tr>
</tbody>
</table>

Details
Provides `n.ahead` step forecasts using the model produced by `cv.BigVAR`.

See Also

cv.BigVAR

Examples

```r  
data(Y)  
Y=Y[1:100,]  
Model1=constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE)  
results=cv.BigVAR(Model1)  
predict(results,n.ahead=1)  
```
PredictVARX

One-step ahead predictions for VARX models

Description

One-step ahead predictions for VARX models

Usage

```r
PredictVARX(VARXRes)
```

Arguments

- `VARXRes` the results from `VARXFit`

Value

Returns a vector consisting of the out-of-sample forecasts for the provided `VARXFit` model.

See Also

- `VARXFit`

Examples

```r
data(Y)
# fit a VAR_3(3)
mod <- VARXFit(Y,3,NULL,NULL)
pred <- PredictVARX(mod)
```

show

Default show method for an object of class BigVAR.results

Description

Default show method for an object of class BigVAR.results

Usage

```r
## S4 method for signature 'BigVAR.results'
show(object)
```

Arguments

- `object` BigVAR.results object created from cv.BigVAR
show.BigVAR

Details

prints forecast results and additional diagnostic information as well as comparisons with mean, random walk, and AIC, and BIC benchmarks

See Also

cv.BigVAR,BigVAR.results

show.BigVAR

Default show method for an object of class BigVAR

Description

Default show method for an object of class BigVAR

Usage

```r
## S4 method for signature 'BigVAR'
show(object)
```

Arguments

- `object` : BigVAR object created from ConstructModel

Value

Displays the following information about the BigVAR object:

- Prints the first 5 rows of Y
- Penalty Structure
- Relaxed Least Squares Indicator
- Maximum lag order
- VARX Specifications (if applicable)
- Start, end of cross validation period

See Also

constructModel
SparsityPlot.BigVAR.results

Sparsity Plot of a BigVAR.results object

Description

Sparsity Plot of a BigVAR.results object

Usage

`SparsityPlot.BigVAR.results(object)`

Arguments

- **object**: BigVAR.results object

Details

Uses `levelplot` from the `lattice` package to plot the magnitude of each coefficient in the last coefficient estimated by `cv.BigVAR`.

Value

NA, side effect is graph

See Also

`cv.BigVAR`, `BigVAR.results`

Examples

```r
data(Y)
Y <- Y[1:100,]
Model1 <- constructModel(Y,p=4,struct="Basic",gran=c(50,10),verbose=FALSE)
SparsityPlot.BigVAR.results(cv.BigVAR(Model1))
```

VarptoVar1MC

Converting a VAR coefficient matrix of order p to multiple companion form

Description

Converting a VAR coefficient matrix of order p to multiple companion form

Usage

`VarptoVar1MC(B, p, k)`
VARXFit

Arguments

B a $k \times kp$ coefficient matrix
p Lag order
k Number of Series

Value

Returns a $kp \times kp$ coefficient matrix representing all coefficient matrices contained in A_i as a VAR(1).

References

See page 15 of Lutkepohl, "A New Introduction to Multiple Time Series Analysis"

See Also

MultVarSim

Examples

k=3;p=6
B=matrix(0,nrow=k,ncol=p*k)
A1<- matrix(c(.4,.02,.01,-.02,.3,.02,.01,.04,.3),ncol=3,nrow=3)
A2 <- matrix(c(.2,0,0,.3,0,0,.13),ncol=3,nrow=3)
B[,1:k]=A1
B[,4:k+1):(5*k]=A2
A <- VarptoVar1MC(B,p,k)

VARXFit

Fit a VAR or VARX model by least squares

Description

Fit a VAR or VARX model by least squares

Usage

VARXFit(Y, p, IC, VARX = NULL)

Arguments

Y a $t \times k$ multivariate time series
p maximum lag order
IC Information criterion indicator, if set to NULL, it will fit a least squares VAR(X) of orders p and s. Otherwise, if set to "AIC" or "BIC" it return the model with lag orders that minimize the given IC.
VARX a list of VARX specifications (as in constructModel (or NULL)
VARXForecastEval

Details

This function uses a modified form of the least squares technique proposed by Neumaier and Schneider (2001). It fits a least squares VAR or VARX via a QR decomposition that does not require explicit matrix inversion. This results in improved computational performance as well as numerical stability over the conventional least squares approach.

Value

Returns a list with four entries:

• "Bhat" Estimated $k \times kp + ms$ coefficient matrix
• "SigmaUEstimated" Estimated $k \times k$ residual covariance matrix
• "phat" Selected lag order for VAR component
• "shat" Selected lag order for VARX component
• "Y" Multivariate time series retained for prediction purposes
• "Y" Number of endogenous (modeled) time series

References

See Also

constructModel, cv.BigVAR, BigVAR.fit

Examples

data(Y)
fit a VAR_3(3)
mod <- VARXFit(Y,3,NULL,NULL)
fit a VAR_3 with p=6 and lag selected according to AIC
modAIC <- VARXFit(Y,6,"AIC",NULL)
Fit a VARX_{2,1} with p=6, s=4 and lags selected by BIC
modxBIC <- VARXFit(Y,6,"BIC",list(k=1,s=4))

VARXForecastEval

Evaluate forecasts from a VAR or VARX with lag orders selected by AIC/BIC

Description

Evaluate forecasts from a VAR or VARX with lag orders selected by AIC/BIC

Usage

VARXForecastEval(Y, X, p, s, T1, T2, IC, h, iterated = FALSE)
VARXForecastEval

Arguments

Y

a $T \times k$ multivariate time series

X

a $T \times m$ multivariate time series of unmodeled exogenous variables

p

maximum lag order for endogenous series

s

maximum lag order for exogenous series

T1

start of forecast evaluation period.

T2

dead of forecast evaluation period

IC

specifies whether to select lag order according to "AIC" or "BIC"

h

desired forecast horizon

iterated

indicator as to whether to use iterated or direct multistep forecasts (if applicable, VAR context only)

Details

This function evaluates the one-step ahead forecasts of a VAR or VARX fit by least squares over an evaluation period. At every point in time, lag orders for the endogenous and exogenous series are selected according to AIC or BIC. This function is run automatically when cv.BigVAR is called unless ic is set to FALSE in constructModel.

Value

Returns the one-step ahead MSFE as well as the forecasts over the evaluation period and lag order selected.

References

See Also

VARXFit, constructModel, cv.BigVAR

Examples

data(Y)

Evaluate the performance of a VAR with lags selected by BIC.
p <- 4
T1 <- floor(nrow(Y))/3
T2 <- floor(2*nrow(Y))/3
Matrix of zeros for X
X <- matrix(0,nrow=nrow(Y),ncol=ncol(Y))
BICMSFE <- VARXForecastEval(Y,X,p,0,T1,T2,"BIC",1)
VARXLagCons

Construct a VAR or VARX lag matrix

Description

Construct a VAR or VARX lag matrix

Usage

VARXLagCons(Y, X = NULL, p, s = 0, oos = FALSE, contemp = FALSE)

Arguments

Y a $T \times k$ matrix of endogenous (modeled) series
X a $T \times m$ matrix of exogenous (unmodeled) series (default NULL)
p Endogenous Lag order
s exogenous lag order (default zero)
oos indicator as to whether the data should be constructed for out of sample prediction (i.e. last available entries of Y as final lags default FALSE)
contemp indicator as to whether to use contemporaneous exogenous predictors (for example, if exogenous series become available before exogenous default FALSE).

Details

This function is not required unless you which to design your own cross validation routine.

Value

list with two entries:
- "Z"$kp + ms + 1 \times T - max(p, s)$ VARX lag matrix
- "Y"adjusted $k \times T - max(p, s)$ endogenous series

References

See page 15 of Lutkepohl, "A New Introduction to Multiple Time Series Analysis

See Also

MultVarSim

Examples

data(Y)
construct VAR lag matrix with p=4
ZZ<-VARXLagCons(Y,X==NULL,p=4,s=0)
Simulated Multivariate Time Series

Description
Realization of a simulated multivariate time series

Details
100 × 3 multivariate time series distributed according to the generator matrix A.

Author(s)
Will Nicholson
Index

A, 2, 23

BigVAR, 3, 3
BigVAR-class, 4
BigVAR-package (BigVAR), 3
BigVAR.est, 5, 7, 11, 12
BigVAR.est,BigVAR-method (BigVAR.est), 5
BigVAR.fit, 6, 20
BigVAR.results, 3, 5, 8, 12, 17, 18
BigVAR.results-class (BigVAR.results), 8

constructModel, 3–5, 7, 9, 12, 15, 17, 19–21
cv.BigVAR, 3, 5, 7, 11, 12, 15, 17, 18, 20, 21
cv.BigVAR,BigVAR-method (cv.BigVAR), 12

MultVarSim, 13, 19, 22

plot, 3, 14
plot,BigVAR-method (plot.BigVAR), 14
plot,BigVAR.results-method (plot), 14
plot.BigVAR, 3, 14
predict, 3, 15
predict,BigVAR.results-method
 (predict), 15
PredictVARX, 16

show, 16
show,BigVAR-method (show.BigVAR), 17
show,BigVAR.results-method (show), 16
show.BigVAR, 17
SparsityPlot.BigVAR.results, 18
SparsityPlot.BigVAR.results,BigVAR.results-method
 (SparsityPlot.BigVAR.results), 18

VarptoVar1MC, 13, 18
VARXFit, 16, 19, 21
VARXForecastEval, 20
VARXLagCons, 22

Y, 23

24