Package ‘BinNor’

May 27, 2016

Type Package
Title Simultaneous Generation of Multivariate Binary and Normal Variates
Version 2.1
Date 2016-05-27
Author Anup Amatya, Hakan Demirtas
Maintainer Anup Amatya <aaamatya@nmsu.edu>
Depends mvtnorm, corpcor, psych, Matrix
Description Generating multiple binary and normal variables simultaneously given marginal characteristics and association structure based on the methodology proposed by Demirtas and Doganay (2012).
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-05-27 19:20:25

R topics documented:

BinNor-package .. 2
compute.sigma.star ... 3
jointly.generate.binary.normal 4
lower.tri.to.corr.mat 5
simulation .. 6
validation.bin ... 7
validation.corr ... 7
validation.nor ... 8
validation.range ... 8

Index 10
Description

Provides R functions for generating multiple binary and normal variables simultaneously given marginal characteristics and association structure via combining well established results from the random number generation literature, based on the methodology proposed by Demirtas and Doganay (2012).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>BinNor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>2.1</td>
</tr>
<tr>
<td>Date:</td>
<td>2016-05-27</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

There are eight functions in this package. The functions `lower.tri.to.corr.mat`, `validation.bin`, `validation.nor`, `validation.range` and `validation.nor` are designed to prevent obvious specification errors and to validate the specified quantities. The most important functions are `compute.sigma.star`, `jointly.generate.binary.normal` and `simulation`. The function `compute.sigma.star` computes the matrix of tetrachoric correlations that will be used in the generation of multivariate normal data whose some components are dichotomized to obtain binary variables. The function `jointly.generate.binary.normal` generates mixed data, and the function `simulation` is capable of repeating this process many times and produces averages of some key statistical quantities across replications.

Author(s)

Anup Amatya, Hakan Demirtas

Maintainer: Anup Amatya<aamatya@nmsu.edu>

References

compute.sigma.star

Computes intermediate (tetrachoric) correlation matrix

Description

This function computes the intermediate correlation matrix by combining tetrachoric correlation for binary-binary combinations, biserial correlations for binary-normal combinations and Pearson correlation for normal-normal combinations. If the resulting correlation matrix is not positive definite, a nearest positive matrix will be used.

Usage

```r
compute.sigma.star(no.bin, no.nor, prop.vec.bin = NULL, corr.vec = NULL, corr.mat = NULL)
```

Arguments

- **no.bin**: Number of binary variables
- **no.nor**: Number of normal variables
- **prop.vec.bin**: Probability vector for binary variables
- **corr.vec**: Vector of elements below the diagonal of correlation matrix ordered columnwise
- **corr.mat**: Specified correlation matrix

Value

- **sigma_star**: A resulting intermediate correlation matrix Σ^*
- **nonPD**: If a resulting intermediate correlation matrix is non-positive definite, it is stored in this value. Otherwise it is NULL.
- **PD**: TRUE if Σ^* is positive definite, FALSE otherwise. A FALSE indicates that the nearest positive definite matrix is returned.
- **eigenv**: Eigenvalues of the Σ^* before the conversion

See Also

- `validation.corr`, `nearPD`, `phi2poly`, `is.positive.definite`, `jointly.generate.binary.normal`, `simulation`

Examples

```r
cmat = lower.tri.to.corr.mat(corr.vec = c(0.16, 0.04, 0.38, 0.47, 0.68), 4)
compute.sigma.star(no.bin=2, no.nor=2, prop.vec.bin=c(0.4,0.7),
                    corr.vec=NULL,corr.mat=cmat)
```
jointly.generate.binary.normal

Generates mixed data

Description

Generates multiple binary and normal variables simultaneously given marginal characteristics and association structures.

Usage

jointly.generate.binary.normal(no.rows, no.bin, no.nor, prop.vec.bin = NULL, mean.vec.nor = NULL, var.nor = NULL, sigma_star = NULL, corr.vec = NULL, corr.mat = NULL, continue.with.warning = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no.rows</td>
<td>Number of rows.</td>
</tr>
<tr>
<td>no.bin</td>
<td>Number of binary variables</td>
</tr>
<tr>
<td>no.nor</td>
<td>Number of normal variables</td>
</tr>
<tr>
<td>prop.vec.bin</td>
<td>Probability vector for binary variables</td>
</tr>
<tr>
<td>mean.vec.nor</td>
<td>Vector of means for normal variables</td>
</tr>
<tr>
<td>var.nor</td>
<td>Vector of variances for normal variables</td>
</tr>
<tr>
<td>sigma_star</td>
<td>Intermediate correlation matrix</td>
</tr>
<tr>
<td>corr.vec</td>
<td>Vector of elements below the diagonal of correlation matrix ordered columnwise</td>
</tr>
<tr>
<td>corr.mat</td>
<td>Specified correlation matrix</td>
</tr>
<tr>
<td>continue.with.warning</td>
<td>TRUE to proceed with the nearest positive definite Σ̄. FALSE to terminate program execution if Σ̄ is not positive definite</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A matrix of generated data.</td>
</tr>
</tbody>
</table>

See Also

compute.sigma.star, validation.corr, validation.bin, validation.nor, nearPD, simulation, rmvnorm
lower.tri.to.corr.mat

Examples

```r
noNrows=100
noNbin=2; no.nor=2
meanNvecNnor=c(3,1); varNnor=c(4,2)
propNvecNbin=c(0.4,0.7)
corr.vec=c(0.16,0.04,0.38,0.14,0.47,0.68);

cmat = lowerNtriNtoNcorrNmat(corrNvecLT)
sigmaNstar=computeNsigmaNstar(noNbin=RL noNnor=RL propNvecNbin=c(PNTLPN7)L
corrNmat=cmat)
mydata=jointlyNgenerateNbinaryNnormal(noNrowsLnoNbinLnoNnorLpropNvecNbinL
meanNvecNnorLvarNnorL sigmaNstar=sigmaNstarDsigmaNstarL
continueNwithNwarning=true)
```

lower.tri.to.corr.mat *Converts a lower vector to a full correlation matrix*

Description

This function creates full correlation matrix from the vector containing elements below the diagonal.

Usage

```r
lower.tri.to.corr.mat(corr.vec = NULL, d)
```

Arguments

- `corr.vec`: A vector of elements below diagonal of correlation matrix. The elements must be ordered starting from first element below diagonal of the first column, then second element below diagonal of the first column and so on.
- `d`: Number of column in final correlation matrix.

Value

- `corr.mat`: Full correlation matrix

See Also

- `lower.tri`

Examples

```r
corr.vec=c(0.16,0.04,0.38,0.14,0.47,0.68)
lower.tri.to.corr.mat(corr.vec,4)
```
simulation

Repeats the data generation process in a simulation scheme

Description

Simulates many versions of mixed data, and reports averaged proportion, mean, variance and correlation estimates across replications.

Usage

```r
simulation(seed = NULL, nsim, no.rows, no.bin, no.nor,
mean.vec.nor = NULL, var.nor = NULL, prop.vec.bin = NULL,
corr.vec = NULL, corr.mat = NULL, continue.with.warning = TRUE)
```

Arguments

- **seed**: A seed value for the random number generator. Seed value will be randomly generated unless specified.
- **nsim**: Number of simulation runs.
- **no.rows**: Number of rows.
- **no.bin**: Number of binary variables
- **no.nor**: Number of normal variables
- **prop.vec.bin**: Probability vector for binary variables
- **mean.vec.nor**: Vector of means for normal variables
- **var.nor**: Vector of variances for normal variables
- **corr.vec**: Vector of elements below the diagonal of correlation matrix ordered columnwise
- **corr.mat**: Specified correlation matrix
- **continue.with.warning**: TRUE to proceed with the nearest positive definite Σ^*. FALSE to terminate program execution if Σ^* is not positive definite

See Also

- `compute.sigma.star`
- `jointly.generate.binary.normal`

Examples

```r
simulation(nsim=10, no.rows=100, no.bin=2, no.nor=2,
mean.vec.nor=c(3,1), var.nor=c(4,2), prop.vec.bin=c(0.4,0.7),
corr.vec=c(0.16,0.04,0.38,0.14,0.47,0.68), corr.mat=NULL)
```
validation.bin

Validates the marginal specification of the binary part

Description

Checks whether the marginal specification of the binary part is valid and consistent.

Usage

validation.bin(no.bin, prop.vec.bin = NULL)

Arguments

- **no.bin**: Number of binary variates.
- **prop.vec.bin**: Probability vector for binary variables

Examples

```r
## Not run: validation.bin (3, rep(0.6,4))
validation.bin (4, rep(0.6,4))
```

validation.corr

Validates the specified correlation matrix

Description

This function validates the correlation vector and/or matrix for appropriate dimension, symmetry, range, and positive definiteness. If both correlation matrix and correlation vector were supplied, it checks whether the matrix and vector are conformable.

Usage

validation.corr(no.bin, no.nor, prop.vec.bin = NULL,
 corr.vec = NULL, corr.mat = NULL)

Arguments

- **no.bin**: Number of binary variables
- **no.nor**: Number of normal variables
- **prop.vec.bin**: Probability vector for binary variables
- **corr.vec**: Vector of elements below the diagonal of correlation matrix ordered columnwise
- **corr.mat**: Specified correlation matrix
See Also

validation.bin, validation.range

Examples

d=4
corr.vec=c(0.21, 0.61, 0.78, 0.10, 0.12, 0.65)
corr.mat=lower.tri.to.corr.mat(corr.vec,d)

validation.corr (no.bin=2, no.nor=2, prop.vec.bin=c(0.4, 0.7),
corr.vec, corr.mat=corr.mat)

validation.nor Validates the marginal specification of the normal part

Description

This function checks whether mean and variance parameters for the normal part are valid and consistent.

Usage

validation.nor(no.nor, mean.vec.nor = NULL, var.nor = NULL)

Arguments

no.nor Number of normal variables
mean.vec.nor Vector of means for normal variables
var.nor Vector of variances for normal variables

validation.range Checks if the correlation terms are within the feasible range

Description

This function checks if there are correlation range violations among binary-binary, binary-normal and normal-normal combinations.

Usage

validation.range(no.bin, no.nor, prop.vec.bin = NULL, corr.mat)
validation.range

Arguments

no.bin Number of binary variables
no.nor Number of normal variables
prop.vec.bin Probability vector for binary variables
corr.mat Specified correlation matrix

Examples

cmat=lower.tri.to.corr.mat(corr.vec=c(0.16,0.04,0.38,0.4,0.47,0.68),4)
validation.range(no.bin=2, no.nor=2, prop.vec.bin=c(0.4,0.7), corr.mat=cmat)
Index

BinNor (BinNor-package), 2
BinNor-package, 2
compute.sigma.star, 2, 3, 4, 6
is.positive.definite, 3
jointly.generate.binary.normal, 2, 3, 4, 6
lower.tri, 5
lower.tri.to.corr.mat, 2, 5
nearPD, 3, 4
phi2poly, 3
rmvnorm, 4
simulation, 2–4, 6
validation.bin, 2, 4, 7, 8
validation.corr, 3, 4, 7
validation.nor, 2, 4, 8
validation.range, 2, 8, 8