Package ‘BioM2’

October 25, 2023

Title Biologically Explainable Machine Learning Framework
Version 1.0.2
Author Shunjie Zhang and Junfang Chen
Maintainer Shunjie Zhang <zhang.shunjie@qq.com>
Description Biologically Explainable Machine Learning Framework for Phenotype Prediction using omics data described in Chen and Schwarz (2017) <arXiv:1712.0036v1>. Identifying reproducible and interpretable biological patterns from high-dimensional omics data is a critical factor in understanding the risk mechanism of complex disease. As such, explainable machine learning can offer biological insight in addition to personalized risk scoring. In this process, a feature space of biological pathways will be generated, and the feature space can also be subsequently analyzed using WGCNA (Described in Horvath and Zhang (2005) <doi:10.2202/1544-6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559>) methods.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Imports WGCNA, mlr3, CMplot, RColorBrewer, ROCR, caret, ggplot2, ggpubr, viridis, ggthemes, ggstatsplot, htmlwidgets, jiebaR, mlr3verse, parallel, uwot, webshot, wordcloud2, intergraph, ggnetwork
Depends R (>= 4.1.0)
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2023-10-25 08:30:08 UTC

R topics documented:

 AddUnmapped ... 2
 baseModel ... 3
 BioM2 ... 4
 FindParaModule ... 7
AddUnmapped

Add unmapped probe

Description
Add unmapped probe

Usage

AddUnmapped(
 train = NULL,
 test = NULL,
 Unmapped_num = NULL,
 Add_FeartureSelection_Method = "wilcox.test",
 anno = NULL,
 len = NULL,
 verbose = TRUE,
 cores = 1
)

Arguments

train
The input training dataset. The first column is the label or the output. For binary
classes, 0 and 1 are used to indicate the class member.

test
The input test dataset. The first column is the label or the output. For binary
classes, 0 and 1 are used to indicate the class member.

Unmapped_num
The number of unmapped probes.
Description

Prediction by Machine Learning with different learners (From 'mlr3')

Usage

```r
baseModel(
  trainData, testData, 
  predMode = "probability", classifier, 
  paramlist = NULL, 
  inner_folds = 10
)
```

Arguments

- **trainData**: The input training dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member.
- **testData**: The input test dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member.
- **predMode**: The prediction mode. Available options are c('probability', 'classification').
- **classifier**: Learners in mlr3
- **paramlist**: Learner parameters
- **inner_folds**: k-fold cross validation (Only supported when testData = NULL)

Value

The predicted output for the test data.
Author(s)
Shunjie Zhang

Examples
```r
library(mlr3verse)
library(caret)
library(BioM2)
data=MethylData_Test
set.seed(1)
part=unlist(createDataPartition(data$label,p=0.8))#Split data
predict=baseModel(trainData=data[part,1:10],
                   testData=data[-part,1:10],
                   classifier = 'svm')#Use 10 features to make predictions,Learner uses svm
```

BioM2

Biologically Explainable Machine Learning Framework

Description

Biologically Explainable Machine Learning Framework

Usage

```r
BioM2(
  TrainData = NULL,
  TestData = NULL,
  pathlistDB = NULL,
  FeatureAnno = NULL,
  resampling = NULL,
  nfolds = 5,
  classifier = "liblinear",
  predMode = "probability",
  PathwaySizeUp = 200,
  PathwaySizeDown = 20,
  MinfeatureNum_pathways = 10,
  Add_UnMapped = TRUE,
  Unmapped_num = 300,
  Add_FeatureSelection_Method = "wilcox.test",
  Inner_CV = TRUE,
  inner_folds = 10,
  Stage1_FeatureSelection_Method = "cor",
  cutoff = 0.3,
  Stage2_FeatureSelection_Method = "RemoveHighcor",
  cutoff2 = 0.85,
  classifier2 = NULL,
)
target = "predict",
p.adjust.method = "fdr",
save_pathways_matrix = FALSE,
cores = 1,
verbose = TRUE
)

Arguments

TrainData          The input training dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member.
TestData           The input test dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member.
pathlistDB         A list of pathways with pathway IDs and their corresponding genes ('entrezID' is used). For details, please refer to (data("GO2ALLEGS_BP"))
FeatureAnno        The annotation data stored in a data.frame for probe mapping. It must have at least two columns named 'ID' and 'entrezID'. (For details, please refer to data("MethylAnno"))
resampling         Resampling in mlr3verse.
nfolds             k-fold cross validation (Only supported when TestData = NULL)
classifier          Learners in mlr3
predMode            The prediction mode. Available options are c('probability', 'classification').
PathwaySizeUp       The upper-bound of the number of genes in each biological pathways.
PathwaySizeDown     The lower-bound of the number of genes in each biological pathways.
MinfeatureNum_pathways The minimal defined pathway size after mapping your own data to pathlistDB(KEGG database/GO database).
Add_UnMapped       Whether to add unmapped probes for prediction
Unmapped_num       The number of unmapped probes
Add_FeatureSelection_Method Feature selection methods.
Inner_CV           Whether to perform a k-fold verification on the training set.
inner_folds        k-fold verification on the training set.
Stage1_FeatureSelection_Method Feature selection methods.
cutoff             The cutoff used for feature selection threshold. It can be any value between 0 and 1.
Stage2_FeatureSelection_Method Feature selection methods.
cutoff2            The cutoff used for feature selection threshold. It can be any value between 0 and 1.
classifier2        Learner for stage 2 prediction(if classifier2==NULL, then it is the same as the learner in stage 1.)
target

Is it used to predict or explore potential biological mechanisms? Available options are c('predict', 'pathways').

p.adjust.method

p-value adjustment method. (holm", "hochberg", "hommel", "bonferroni", "BH", "BY").

save_pathways_matrix

Whether to output the path matrix file

cores

The number of cores used for computation.

verbose

Whether to print running process information to the console

Value

A list containing prediction results and prediction result evaluation

Examples

```r
library(mlr3verse)
library(caret)
library(parallel)
library(BioM2)
data=MethylData_Test
set.seed(1)
part=unlist(createDataPartition(data$label,p=0.8))
Train=data[part,]
Test=data[-part,]
pathlistDB=GO2ALLEGS_BP
FeatureAnno=MethylAnno

pred=BioM2(TrainData = Train,TestData = Test,
 pathlistDB=pathlistDB,FeatureAnno=FeatureAnno,
 classifier='svm',nfolds=5,
 PathwaySizeUp=25,PathwaySizeDown=20,MinfeatureNum_pathways=10,
 Add_UnMapped='Yes',Unmapped_num=300,
 Inner_CV='None',inner_folds=5,
 Stage1_FeatureSelection_Method='cor',cutoff=0.3,
 Stage2_FeatureSelection_Method='None',
 target='predict',cores=1)
#(To explore biological mechanisms, set target='pathways')
```
FindParaModule

**Description**

Find suitable parameters for partitioning pathways modules

**Usage**

```r
FindParaModule(
 pathways_matrix = NULL,
 control_label = NULL,
 minModuleSize = seq(10, 20, 5),
 mergeCutHeight = seq(0, 0.3, 0.1),
 minModuleNum = 20,
 power = NULL,
 exact = TRUE
)
```

**Arguments**

- **pathways_matrix**: A pathway matrix generated by the BioM2( target='pathways') function.
- **control_label**: The label of the control group (A single number, factor, or character)
- **minModuleSize**: minimum module size for module detection. Detail for WGCNA::blockwiseModules()
- **mergeCutHeight**: dendrogram cut height for module merging. Detail for WGCNA::blockwiseModules()
- **minModuleNum**: Minimum total number of modules detected
- **power**: soft-thresholding power for network construction. Detail for WGCNA::blockwiseModules()
- **exact**: Whether to divide GO pathways more accurately

**Value**

A list containing recommended parameters

---

**GO2ALLEGS_BP**

An example about pathlistDB

---

**Description**

An example about pathlistDB

**Format**

A list :

...
Details
A list of pathways with pathway IDs and their corresponding genes ('entrezID' is used).

<table>
<thead>
<tr>
<th>GO_Ancestor</th>
<th>Pathways in the GO database and their Ancestor</th>
</tr>
</thead>
</table>

Description
Inclusion relationships between pathways

Format
A data frame :
... 

Details
In the GO database, each pathway will have its own ancestor pathway. Map pathways in GO database to about 20 common ancestor pathways.

Source
From GO.db

<table>
<thead>
<tr>
<th>GO_Ancestor_exact</th>
<th>Pathways in the GO database and their Ancestor</th>
</tr>
</thead>
</table>

Description
Inclusion relationships between pathways

Format
A data frame :
...

Details
In the GO database, each pathway will have its own ancestor pathway. Map pathways in GO database to about 400 common ancestor pathways.

Source
From GO.db
**MethylAnno**

An example about FeatureAnno for methylation data

**Format**

A data frame:

... 

**Details**

The annotation data stored in a data.frame for probe mapping. It must have at least two columns named 'ID' and 'entrezID'.

---

**MethylData_Test**

An example about TrainData/TestData for methylation data

**Description**

An example about TrainData/TestData for methylation data MethylData_Test.

**Format**

A data frame:

... 

**Details**

The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member.
PathwaysModule

Delineate differential pathway modules with high biological interpretability

Description
Delineate differential pathway modules with high biological interpretability

Usage
PathwaysModule(
  pathways_matrix = NULL,
  control_label = NULL,
  power = NULL,
  minModuleSize = NULL,
  mergeCutHeight = NULL,
  cutoff = 70,
  MinNumPathways = 5,
  p.adjust.method = "fdr",
  exact = TRUE
)

Arguments

  pathways_matrix
    A pathway matrix generated by the BioM2( target='pathways') function.

  control_label
    The label of the control group ( A single number, factor, or character )

  power
    soft-thresholding power for network construction. Detail for WGCNA::blockwiseModules()

  minModuleSize
    minimum module size for module detection. Detail for WGCNA::blockwiseModules()

  mergeCutHeight
    dendrogram cut height for module merging. Detail for WGCNA::blockwiseModules()

  cutoff
    Thresholds for Biological Interpretability Difference Modules

  MinNumPathways
    Minimum number of pathways included in the biologically interpretable difference module

  p.adjust.method
    p-value adjustment method.(holm", "hochberg", "hommel", "bonferroni", "BH",
    "BY",

  exact
    Whether to divide GO pathways more accurately

Value
A list containing differential module results that are highly biologically interpretable
**PlotCorModule**  
*Correlalogram for Biological Differences Modules*

**Description**

Correlalogram for Biological Differences Modules

**Usage**

```r
PlotCorModule(
 PathwaysModule_obj = NULL,
 alpha = 0.7,
 begin = 0.2,
 end = 0.9,
 option = "C",
 family = "serif"
)
```

**Arguments**

- `PathwaysModule_obj`: Results produced by `PathwaysModule()`
- `alpha`: The alpha transparency, a number in (0,1). Detail for `scale_fill_viridis()`
- `begin`: The (corrected) hue in (0,1) at which the color map begins. Detail for `scale_fill_viridis()`.  
- `end`: The (corrected) hue in (0,1) at which the color map ends. Detail for `scale_fill_viridis()`
- `option`: A character string indicating the color map option to use. Detail for `scale_fill_viridis()`
- `family`: calligraphic style

**Value**

a ggplot object

---

**PlotPathFeature**  
*Visualisation of significant pathway-level features*

**Description**

Visualisation of significant pathway-level features
Usage

```r
PlotPathFeature(
 BioM2_pathways_obj = NULL,
 pathlistDB = NULL,
 top = 10,
 p.adjust.method = "none",
 begin = 0.1,
 end = 0.9,
 alpha = 0.9,
 option = "C",
 seq = 1
)
```

Arguments

- `BioM2_pathways_obj`: Results produced by `BioM2(target='pathways')`
- `pathlistDB`: A list of pathways with pathway IDs and their corresponding genes (‘entrezID’ is used). For details, please refer to (data("GO2ALLEGS_BP") )
- `top`: Number of significant pathway-level features visualised
- `p.adjust.method`: p-value adjustment method. (holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr","none")
- `begin`: The (corrected) hue in (0,1) at which the color map begins. Detail for scale_fill_viridis().
- `end`: The (corrected) hue in (0,1) at which the color map ends. Detail for scale_fill_viridis()
- `alpha`: The alpha transparency, a number in (0,1). Detail for scale_fill_viridis()
- `option`: A character string indicating the color map option to use. Detail for scale_fill_viridis()
- `seq`: Interval of x-coordinate

Value

a ggplot2 object

---

**PlotPathInner**

*Visualisation Original features that make up the pathway*

Description

Visualisation Original features that make up the pathway
Usage

PlotPathInner(
  data = NULL,
  pathlistDB = NULL,
  FeatureAnno = NULL,
  PathNames = NULL,
  p.adjust.method = "none",
  save_pdf = FALSE
)

Arguments

data The input omics data
pathlistDB A list of pathways with pathway IDs and their corresponding genes ('entrezID' is used). For details, please refer to (data("GO2ALLEGS_BP"))
FeatureAnno The annotation data stored in a data.frame for probe mapping. It must have at least two columns named 'ID' and 'entrezID'. (For details, please refer to data("MethylAnno"))
PathNames A vector.A vector containing the names of pathways
p.adjust.method p-value adjustment method. (holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")
save_pdf Whether to save images in PDF format

Value

a plot object

PlotPathNet Network diagram of pathways-level features

Description

Network diagram of pathways-level features

Usage

PlotPathNet(
  data = NULL,
  FeatureAnno = NULL,
  pathlistDB = NULL,
  PathNames = NULL,
  cutoff = 0.2,
  num = 20,
  com_top = 10
)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>The input omics data</td>
</tr>
<tr>
<td>FeatureAnno</td>
<td>The annotation data stored in a data.frame for probe mapping.</td>
</tr>
<tr>
<td>pathlistDB</td>
<td>A list of pathways with pathway IDs and their corresponding genes ('entrezID' is used).</td>
</tr>
<tr>
<td>PathNames</td>
<td>A vector containing the names of pathways</td>
</tr>
<tr>
<td>cutoff</td>
<td>Threshold for correlation between features within a pathway</td>
</tr>
<tr>
<td>num</td>
<td>The first few internal features of each pathway that are most relevant to the phenotype</td>
</tr>
<tr>
<td>com_top</td>
<td>Top correlations of common characteristics of pathways</td>
</tr>
</tbody>
</table>

Value

- a ggplot object

---

### ShowModule

*Display biological information within each pathway module*

#### Description

Display biological information within each pathway module

#### Usage

```r
ShowModule(obj = NULL, ID_Module = NULL, exact = TRUE)
```

#### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>Results produced by PathwaysModule()</td>
</tr>
<tr>
<td>ID_Module</td>
<td>ID of the diff module</td>
</tr>
<tr>
<td>exact</td>
<td>Whether to divide GO pathways more accurately</td>
</tr>
</tbody>
</table>

#### Value

List containing biologically specific information within the module
Stage1_FeatureSelection

Stage 1 Feature Selection

Description

Stage 1 Feature Selection

Usage

Stage1_FeatureSelection(
    Stage1_FeatureSelection_Method = "cor",
    data = NULL,
    cutoff = NULL,
    featureAnno = NULL,
    pathlistDB_sub = NULL,
    cores = 1,
    verbose = TRUE
)

Arguments

Stage1_FeatureSelection_Method
    Feature selection methods. Available options are c(NULL, 'cor', 'wilcox.test', 'cor_rank', 'wilcox.test_rank').

data
    The input training dataset. The first column is the label.

cutoff
    The cutoff used for feature selection threshold. It can be any value between 0 and 1. Commonly used cutoffs are c(0.5, 0.1, 0.05, 0.01, etc.).

featureAnno
    The annotation data stored in a data.frame for probe mapping. It must have at least two columns named 'ID' and 'entrezID'. (For details, please refer to data( data("MethylAnno") )

pathlistDB_sub
    A list of pathways with pathway IDs and their corresponding genes ('entrezID' is used). For details, please refer to ( data("GO2ALLEGS_BP") )

cores
    The number of cores used for computation.

verbose
    Whether to print running process information to the console

Value

A list of matrices with pathway IDs as the associated list member names.

Author(s)

Shunjie Zhang
Examples

```r
library(parallel)
data=MethylData_Test
feature_pathways=Stage1_FeatureSelection(Stage1_FeatureSelection_Method='cor',
data=data,cutoff=0,
featureAnno=MethylAnno,pathlistDB_sub=GO2ALLEGS_BP,cores=1)
```

---

Stage2_FeatureSelection

### Stage 2 Feature Selection

**Description**

Stage 2 Feature Selection

**Usage**

```r
Stage2_FeatureSelection(
 Stage2_FeatureSelection_Method = "RemoveHighcor",
data = NULL,
label = NULL,
cutoff = NULL,
preMode = NULL,
classifier = NULL,
verbose = TRUE,
cores = 1
)
```

**Arguments**

- **Stage2_FeatureSelection_Method**: Feature selection methods. Available options are c(NULL, 'cor', 'wilcox.test', 'RemoveHighcor', 'RemoveLinear').
- **data**: The input training dataset. The first column is the label.
- **label**: The label of dataset.
- **cutoff**: The cutoff used for feature selection threshold. It can be any value between 0 and 1.
- **preMode**: The prediction mode. Available options are c('probability', 'classification').
- **classifier**: Learners in mlr3.
- **verbose**: Whether to print running process information to the console.
- **cores**: The number of cores used for computation.
**TransAnno**

**Value**
Column index of feature

**Author(s)**
Shunjie Zhang

---

**TransAnno**  
An example about FeatureAnno for gene expression

**Description**
An example about FeatureAnno for gene expression

**Format**
A data frame:
```
...
```

**Details**
The annotation data stored in a data.frame for probe mapping. It must have at least two columns named 'ID' and 'entrezID'.

---

**TransData_Test**  
An example about TrainData/TestData for gene expression

**Description**
An example about TrainData/TestData for gene expression MethylData_Test.

**Format**
A data frame:
```
...
```

**Details**
The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member.
VisMultiModule

Visualisation of the results of the analysis of the pathway modules

Description

Visualisation of the results of the analysis of the pathway modules

Usage

VisMultiModule(
  BioM2_pathways_obj = NULL,
  FindParaModule_obj = NULL,
  ShowModule_obj = NULL,
  PathwaysModule_obj = NULL,
  exact = TRUE,
  type_text_table = FALSE,
  text_table_theme = ttheme("mOrange"),
  volin = FALSE,
  control_label = 0,
  module = NULL,
  n_neighbors = 8,
  spread = 1,
  min_dist = 2,
  target_weight = 0.5,
  size = 1.5,
  alpha = 1,
  ellipse = TRUE,
  ellipse.alpha = 0.2,
  theme = ggthemes::theme_base(base_family = "serif"),
  save_pdf = FALSE,
  width = 7,
  height = 7
)

Arguments

BioM2_pathways_obj
  Results produced by BioM2(target='pathways')
FindParaModule_obj
  Results produced by FindParaModule()
ShowModule_obj
  Results produced by ShowModule()
PathwaysModule_obj
  Results produced by PathwaysModule()
exact
  Whether to divide GO pathways more accurately
type_text_table
  Whether to display it in a table
text_table_theme
The topic of this table. Detail for ggtexttable()

volin
Can only be used when PathwaysModule_obj exists. (Violin diagram)

control_label
Can only be used when PathwaysModule_obj exists. (Control group label)

module
Can only be used when PathwaysModule_obj exists. (PathwaysModule ID)

n_neighbors
The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation. Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. In general values should be in the range 2 to 100.

spread
The effective scale of embedded points. In combination with min_dist, this determines how clustered/clumped the embedded points are.

min_dist
The effective minimum distance between embedded points. Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even dispersal of points. The value should be set relative to the spread value, which determines the scale at which embedded points will be spread out.

target_weight
Weighting factor between data topology and target topology. A value of 0.0 weights entirely on data, a value of 1.0 weights entirely on target. The default of 0.5 balances the weighting equally between data and target. Only applies if y is non-NULL.

size
Scatter plot point size

alpha
Alpha for ellipse specifying the transparency level of fill color. Use alpha = 0 for no fill color.

e llipse
logical value. If TRUE, draws ellipses around points.

e llipse.alpha
Alpha for ellipse specifying the transparency level of fill color. Use alpha = 0 for no fill color.

theme
Default: theme_base(base_family = "serif")

save_pdf
Whether to save images in PDF format

width
image width

height
image height

Value

a ggplot2 object
Index

AddUnmapped, 2
baseModel, 3
BioM2, 4

FindParaModule, 7
GO2ALLEGS_BP, 7
GO_Ancestor, 8
GO_Ancestor_exact, 8

MethylAnno, 9
MethylData_Test, 9

PathwaysModule, 10
PlotCorModule, 11
PlotPathFearture, 11
PlotPathInner, 12
PlotPathNet, 13

ShowModule, 14
Stage1_FeatureSelection, 15
Stage2_FeatureSelection, 16

TransAnno, 17
TransData_Test, 17

VisMultiModule, 18