Package ‘CARBayes’

June 8, 2016

Type Package

Title Spatial Generalised Linear Mixed Models for Areal Unit Data

Version 4.6

Date 2016-06-08

Author Duncan Lee

Maintainer Duncan Lee <duncan.Lee@glasgow.ac.uk>

Description Implements a class of univariate and multivariate spatial generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian or Poisson. Spatial autocorrelation is modelled by a set of random effects, which are assigned a conditional autoregressive (CAR) prior distribution. A number of different CAR priors are available for the random effects, including a multivariate CAR (MCAR) model for multivariate spatial data. Full details are given in the vignette accompanying this package. The initial creation of this package was supported by the Economic and Social Research Council (ESRC) grant RES-000-22-4256, and on-going development was supported by the Engineering and Physical Science Research Council (EPSRC) grant EP/J017442/1.

License GPL (>= 2)

Depends MASS, R (>= 3.0.0), Rcpp (>= 0.11.5)

Imports CARBayesdata, coda, matrixcalc, MCMCpack, sp, spam, splde, stats, truncdist, utils

Suggests boot, deldir, foreign, grid, maptools, Matrix, nlme, shapefiles, splines

LinkingTo Rcpp

LazyLoad yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-06-08 15:40:24
Description

Implements a class of univariate and multivariate spatial generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian or Poisson. Spatial autocorrelation is modelled by a set of random effects, which are assigned a conditional autoregressive (CAR) prior distribution. A number of different CAR priors are available for the random effects, including a multivariate CAR (MCAR) model for multivariate spatial data. Full details are given in the vignette accompanying this package. The initial creation of this package was supported by the Economic and Social Research Council (ESRC) grant RES-000-22-4256, and ongoing development was supported by the Engineering and Physical Science Research Council (EPSRC) grant EP/J017442/1. Version 4.6 has one minor change from version 4.5, namely the removal of errors in the R code in the vignette.

Details

Package: CARBayes
Type: Package
Version: 4.6
Date: 2016-06-08
License: GPL (>= 2)

Author(s)

Maintainer: Duncan Lee <Duncan.Lee@glasgow.ac.uk>
References

Examples

See the examples in the function specific help files and in the vignette accompanying this package.

combine.data.shapefile

Combines a data frame with a shapefile to create a SpatialPolygonsDataFrame object.

Description

This function combines a data frame with a shapefile to create a SpatialPolygonsDataFrame object from the ’sp’ package. The creation of this object allows the variables in the data frame to be mapped using the ’spplot()’ function, and the neighbourhood matrix W to be created using the ’poly2nb’ and ’nb2mat’ functions. An example is given in the vignette accompanying this package. The mapping of the data to the shapefile is done by matching the rownames of the data frame to the first column in the dbf file.

Usage

```
combine.data.shapefile(data, shp, dbf)
```

Arguments

- **data** A data frame containing the variables relating to the K areas you wish to map or model. The row names of this data frame must appear in the first column of the dbf file.
highlight.borders

shp
The .shp part of a shapefile containing the polygons for each of the K areas that the data relate to.

dbf
The .dbf part of the shapefile containing a lookup table whose first column should include the K row names of the data frame.

Value
A SpatialPolygonsDataFrame object from the ‘sp’ package containing the combined data and shapefile object.

Author(s)
Duncan Lee

Examples
See the vignette accompanying this package for an example of its use.

highlight.borders
Creates a SpatialPoints object identifying a subset of borders between neighbouring areas.

Description
Creates a SpatialPoints object identifying a subset of borders between neighbouring areas, which allows them to be overlayed on a map. An example is given in the vignette accompanying this package.

Usage
highlight.borders(border.locations, spdata)

Arguments
border.locations
A K by K matrix, where K is the number of areas, containing 3 distinct values: NA for non-neighbouring areas; 0 for borders between neighbouring areas to be highlighted on a map; and 1 for borders between neighbouring areas not to be highlighted on a map.

spdata
The 'SpatialPolygonsDataFrame' object used for plotting the data and creating the original neighbourhood matrix W.

Value
A ‘SpatialPoints’ object from the ‘sp’ package, which contains the vertices of all the borders to be highlighted on the map. The mapping can be done using the ‘spplot()’ function, see the vignette accompanying this package for an example.
Description

Fit a multivariate spatial generalised linear mixed model to areal unit data, where the response variable can be binomial or Poisson. The linear predictor is modelled by known covariates and a vector of random effects. The latter account for both spatial and between variable correlation, via a Kronecker product formulation. Spatial correlation is captured by the conditional autoregressive (CAR) prior proposed by Leroux et al. (1999), and between variable correlation is captured by a between variable covariance matrix with no fixed structure. This is a type of multivariate conditional autoregressive (MCAR). Further details are given in the vignette accompanying this package. Independent (over space) random effects can be obtained by setting (fix.rho=TRUE, rho=0), in which case the neighbourhood matrix W is not part of the model. In this case enter a fake W matrix that is a K by K matrix of zeros, where K is the number of spatial units. Similarly, the intrinsic MCAR model can be obtained by setting (fix.rho=TRUE, rho=1). Inference is conducted in a Bayesian setting using Markov chain Monte Carlo (McMC) simulation. Missing (NA) values are allowed in the response, and posterior predictive distributions are created for the missing values for predictive purposes. These are saved in the ‘samples’ argument in the output of the function and are denoted by ‘Y’.

Usage

```r
MVS.CARleroux(formula, family, data=NULL, trials=NULL, W, burnin, n.sample, thin=1, prior.mean.beta=NULL, prior.var.beta=NULL, prior.Sigma.df=NULL, prior.Sigma.scale=NULL, fix.rho=FALSE, rho=NULL, verbose=TRUE)
```

Arguments

- **formula**: A formula for the covariate part of the model using the syntax of the `lm()` function. Offsets can be included here using the `offset()` function. The response and each covariate should be vectors of length (KJ)*1, where K is the number of spatial units and J is the number of different variables. Each vector should be ordered so that the first J data points are the set of all J variables for spatial location 1, the next J are the set of variables for spatial location 2 and so on. Missing (NA) values are allowed in the response.

- **family**: One of either ‘binomial’ or ‘poisson’, which respectively specify a binomial likelihood model with a logistic link function, or a Poisson likelihood model with a log link function.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>An optional data.frame containing the variables in the formula.</td>
</tr>
<tr>
<td>trials</td>
<td>A vector the same length as the response containing the total number of trials for each area. Only used if family='binomial'.</td>
</tr>
<tr>
<td>W</td>
<td>A K by K neighbourhood matrix (where K is the number of spatial units). Typically a binary specification is used, where the jkth element equals one if areas (j, k) are spatially close (e.g. share a common border) and is zero otherwise. The matrix can be non-binary, but each row must contain at least one non-zero entry.</td>
</tr>
<tr>
<td>burnin</td>
<td>The number of McMC samples to discard as the burn-in period.</td>
</tr>
<tr>
<td>n.sample</td>
<td>The number of McMC samples to generate.</td>
</tr>
<tr>
<td>thin</td>
<td>The level of thinning to apply to the McMC samples to reduce their temporal autocorrelation. Defaults to 1 (no thinning).</td>
</tr>
<tr>
<td>prior.mean.beta</td>
<td>A vector of prior means for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector of zeros.</td>
</tr>
<tr>
<td>prior.var.beta</td>
<td>A vector of prior variances for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector with values 1000.</td>
</tr>
<tr>
<td>prior.Sigma.df</td>
<td>The prior degrees of freedom for the Inverse-Wishart prior for Sigma. Defaults to J+1.</td>
</tr>
<tr>
<td>prior.Sigma.scale</td>
<td>The prior J times J scale matrix for the Inverse-Wishart prior for Sigma. Defaults to the identity matrix.</td>
</tr>
<tr>
<td>fix.rho</td>
<td>Logical, should the spatial dependence parameter rho be fixed rather than being estimated in the model.</td>
</tr>
<tr>
<td>rho</td>
<td>The value that the spatial dependence parameter is set to if fix.rho=TRUE. Must be in the interval [0, 1], where 0 corresponds to independence while 1 corresponds to fitting the intrinsic CAR prior. Note, if rho=0 then the W matrix is not included in the model so enter a K by K matrix of zeros instead.</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical, should the function update the user on its progress.</td>
</tr>
</tbody>
</table>

Value

- `summary.results`: A summary table of the parameters.
- `samples`: A list containing the McMC samples from the model.
- `fitted.values`: A vector of fitted values for each area and response variable in the same order as the data vectors.
- `residuals`: A vector of fitted values for each area and response variable in the same order as the data vectors.
- `modelfit`: Model fit criteria including the Deviance Information Criterion (DIC) and its corresponding estimated effective number of parameters (p.d), the Log Marginal Predictive Likelihood (LMPL), and the Watanabe-Akaike Information Criterion (WAIC) and its corresponding estimated number of effective parameters (p.w).
- `accept`: The acceptance probabilities for the parameters.
localised.structure
NULL, for compatibility with the other models.

formula
The formula for the covariate and offset part of the model.

model
A text string describing the model fit.

X
The design matrix of covariates.

Author(s)
Duncan Lee

References
Gelfand, A and Vounatsou, P (2003). Proper multivariate conditional autoregressive models for
spatial data analysis, Biostatistics, 4, 11-25.

in the Decentralisation of Urban Poverty, Annals of the American Association of Geographers, to
appear.

model for spatial dependence, Chapter Statistical Models in Epidemiology, the Environment and

Examples

Set up a square lattice region
x.easting <- 1:10
x.northing <- 1:10
Grid <- expand.grid(x.easting, x.northing)
K <- nrow(Grid)
W <- array(0, c(K,K))

for(i in 1:K)
{
 for(j in 1:K)
 {
 temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
 distance[i,j] <- sqrt(temp)
 if(temp==1) W[i,j] <- 1
 }
}
K <- nrow(W)

Generate the correlation structures
Q.W <- 0.99 * (diag(apply(W, 2, sum)) - W) + 0.01 * diag(rep(1,K))
Q.W.inv <- solve(Q.W)
 Sigma <- matrix(c(1,0.5,0, 0.5,1,0.3, 0, 0.3, 1), nrow=3)
 Sigma.inv <- solve(Sigma)
 J <- nrow(Sigma)

 precision.phi <- kronecker(Q.W, Sigma.inv)
 var.phi <- solve(precision.phi)

 ### Generate data
 N.all <- K * J
 x1 <- rnorm(N.all)
 x2 <- rnorm(N.all)
 phi <- mvrnorm(n=1, mu=rep(0,N.all), Sigma=var.phi)

 lp <- 0.1 * x1 - 0.1 * x2 + phi
 prob <- exp(lp) / (1 + exp(lp))
 trials <- rep(100,N.all)
 Y <- rbinom(n=N.all, size=trials, prob=prob)

 ### Run the Leroux model
 formula <- Y ~ x1 + x2
 ## Not run: model <- MVS.CARleroux(formula=formula, family="binomial",
 trials=trials, W=W, burnin=20000, n.sample=100000)
 ## End(Not run)

print.carbayes

Print a summary of a fitted carbayes model to the screen.

Description

This function takes a carbayes object and returns a summary of the fitted model. The summary includes posterior medians and 95 percent credible intervals, the number of samples, the acceptance rate, the effective number of independent samples and the Geweke convergence diagnostic in the form of a Z-score.

Usage

```r
## S3 method for class 'carbayes'
print(x, ...)
```

Arguments

- `x` A `carbayes` fitted model object
- `...` Ignored

Author(s)

Duncan Lee
S.CARbym

Fit a spatial generalised linear mixed model to data, where the random effects have a BYM conditional autoregressive prior.

Description

Fit a spatial generalised linear mixed model to areal unit data, where the response variable can be binomial, or Poisson. Note, a Gaussian likelihood is not allowed because of a lack of identifiability among the parameters. The linear predictor is modelled by known covariates and a vector of random effects. The latter are modelled by the BYM conditional autoregressive prior proposed by Besag et al. (1991), and further details are given in the vignette accompanying this package. Inference is conducted in a Bayesian setting using Markov chain Monte Carlo (McMC) simulation. Missing (NA) values are allowed in the response, and posterior predictive distributions are created for the missing values for predictive purposes. These are saved in the ‘samples’ argument in the output of the function and are denoted by ‘Y’.

Usage

```r
S.CARbym(formula, family, data=NULL, trials=NULL, W, burnin, n.sample, thin=1, prior.mean.beta=NULL, prior.var.beta=NULL, prior.tau2=NULL, prior.sigma2=NULL, verbose=TRUE)
```

Arguments

- `formula`: A formula for the covariate part of the model using the syntax of the `lm()` function. Offsets can be included here using the `offset()` function. The response can contain missing (NA) values.
- `family`: One of either ‘binomial’ or ‘poisson’, which respectively specify a binomial likelihood model with a logistic link function, or a Poisson likelihood model with a log link function.
- `data`: An optional data.frame containing the variables in the formula.
- `trials`: A vector the same length as the response containing the total number of trials for each area. Only used if family=’binomial’.
- `W`: A K by K neighbourhood matrix (where K is the number of spatial units). Typically a binary specification is used, where the jkth element equals one if areas (j, k) are spatially close (e.g. share a common border) and is zero otherwise. The matrix can be non-binary, but each row must contain at least one non-zero entry.
- `burnin`: The number of McMC samples to discard as the burn-in period.
- `n.sample`: The number of McMC samples to generate.
- `thin`: The level of thinning to apply to the McMC samples to reduce their temporal autocorrelation. Defaults to 1 (no thinning).
- `prior.mean.beta`: A vector of prior means for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector of zeros.
prior.var.beta A vector of prior variances for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector with values 1000.
prior.tau2 The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for tau2. Defaults to c(1, 0.01).
prior.sigma2 The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for sigma2. Defaults to c(1, 0.01).
verbose Logical, should the function update the user on its progress.

Value
summary.results A summary table of the parameters.
samples A list containing the McMC samples from the model.
fitted.values A vector of fitted values for each area.
residuals A vector of residuals for each area.
modelfit Model fit criteria including the Deviance Information Criterion (DIC) and its corresponding estimated effective number of parameters (p.d), the Log Marginal Predictive Likelihood (LMPL), and the Watanabe-Akaike Information Criterion (WAIC) and its corresponding estimated number of effective parameters (p.w).
accept The acceptance probabilities for the parameters.
localised.structure NULL, for compatibility with the other models.
formula The formula for the covariate and offset part of the model.
model A text string describing the model fit.
X The design matrix of covariates.

Author(s)
Duncan Lee

References

Examples

Run the model on simulated data on a lattice
Set up a square lattice region
x.easting <- 1:10
x.northing <- 1:10
Grid <- expand.grid(x.easting, x.northing)
K <- nrow(Grid)
set up distance and neighbourhood (W, based on sharing a common border) matrices

distance <- array(0, c(K,K))
W <- array(0, c(K,K))
for(i in 1:K)
{
 for(j in 1:K)
 {
 temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
 distance[i,j] <- sqrt(temp)
 if(temp==1) W[i,j] <- 1
 }
}

Generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
theta <- rnorm(K, sd=0.05)
phi <- mvrnorm(n=1, mu=rep(0,K), Sigma=0.4 * exp(-0.1 * distance))
logit <- x1 + x2 + theta + phi
prob <- exp(logit) / (1 + exp(logit))
trials <- rep(50, K)
Y <- rbinom(n=K, size=trials, prob=prob)

Run the BYM model
formula <- Y ~ x1 + x2
Not run: model <- sCARbym(formula=formula, family="binomial", trials=trials,
W=W, burnin=20000, n.sample=100000)
End(Not run)

S.CARdissimilarity
Fit a spatial generalised linear mixed model to data, where the random effects have a localised conditional autoregressive prior.

Description

Fit a spatial generalised linear mixed model to areal unit data, where the response variable can be binomial, Gaussian or Poisson. The linear predictor is modelled by known covariates and a vector of random effects. The latter are modelled by the localised conditional autoregressive prior proposed by Lee and Mitchell (2012), and further details are given in the vignette accompanying this package. Inference is conducted in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. Missing (NA) values are allowed in the response, and posterior predictive distributions are created for the missing values for predictive purposes. These are saved in the ‘samples’ argument in the output of the function and are denoted by ‘Y’.

Usage

S.CARdissimilarity(formula, family, data=NULL, trials=NULL, W,
Z, burnin, n.sample, thin=1, prior.mean.beta=NULL,
prior.var.beta=NULL, prior.nu2=NULL, prior.tau2=NULL, verbose=TRUE)

Arguments

- **formula**: A formula for the covariate part of the model using the syntax of the `lm()` function. Offsets can be included here using the `offset()` function. The response can contain missing (NA) values.
- **family**: One of either ‘binomial’, ‘gaussian’ or ‘poisson’, which respectively specify a binomial likelihood model with a logistic link function, a Gaussian likelihood model with an identity link function, or a Poisson likelihood model with a log link function.
- **data**: An optional data.frame containing the variables in the formula.
- **trials**: A vector the same length as the response containing the total number of trials for each area. Only used if family='binomial'.
- **W**: A K by K neighbourhood matrix (where K is the number of spatial units). Typically a binary specification is used, where the jkth element equals one if areas (j, k) are spatially close (e.g. share a common border) and is zero otherwise. For this model only the matrix must be binary.
- **Z**: A list, where each element is a K by K matrix of non-negative dissimilarity metrics.
- **burnin**: The number of McMC samples to discard as the burn-in period.
- **n.sample**: The number of McMC samples to generate.
- **thin**: The level of thinning to apply to the McMC samples to reduce their temporal autocorrelation. Defaults to 1 (no thinning).
- **prior.mean.beta**: A vector of prior means for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector of zeros.
- **prior.var.beta**: A vector of prior variances for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector with values 1000.
- **prior.nu2**: The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for nu2. Defaults to c(1, 0.01) and only used if family='Gaussian'.
- **prior.tau2**: The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for tau2. Defaults to c(1, 0.01).
- **verbose**: Logical, should the function update the user on its progress.

Value

- **summary.results**: A summary table of the parameters.
- **samples**: A list containing the McMC samples from the model.
- **fitted.values**: A vector of fitted values for each area.
- **residuals**: A vector of residuals for each area.
modelfit Model fit criteria including the Deviance Information Criterion (DIC) and its corresponding estimated effective number of parameters (p.d), the Log Marginal Predictive Likelihood (LMPL), and the Watanabe-Akaike Information Criterion (WAIC) and its corresponding estimated number of effective parameters (p.w).

accept The acceptance probabilities for the parameters.

localised.structure A list containing two matrices: W.posterior contains posterior medians for each element \(w_{kj} \) of the \(K \) by \(K \) neighbourhood matrix \(W \); W.border.prob contains posterior probabilities that each \(w_{kj} \) element of the \(K \) by \(K \) neighbourhood matrix \(W \) equals zero. This corresponds to the posterior probability of a boundary in the random effects surface. In both cases elements which correspond to two non-neighbouring areas have NA values.

formula The formula for the covariate and offset part of the model.

model A text string describing the model fit.

X The design matrix of covariates.

Author(s)
Duncan Lee

References

Examples

```r
### Run the model on simulated data - localised CAR model

### Set up a square lattice region
x.easting <- 1:10
x.northing <- 1:10
Grid <- expand.grid(x.easting, x.northing)
K <- nrow(Grid)

groups <- rep(1, K)
groups[Grid$Var1>5] <- 2

distance <- array(0, c(K, K))
W <- array(0, c(K, K))
for(i in 1:K)
{
    for(j in 1:K)
    {
        temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
        distance[i,j] <- sqrt(temp)
```
S.CARleroux

Generate the response data
phi <- mvrnorm(n=1, mu=groups, Sigma=0.2 * exp(-0.1 * distance))
logit <- phi
prob <- exp(logit) / (1 + exp(logit))
trials <- rep(50, K)
Y <- rbinom(n=K, size=trials, prob=prob)

Generate a dissimilarity metric
dissimilarity <- cbind(groups) + rnorm(K, sd=0.2)
dissimilarity.matrix <- as.matrix(dist(cbind(dissimilarity, dissimilarity), method="manhattan", diag=TRUE, upper=TRUE)) * W/2
Z <- list(dissimilarity.matrix=dissimilarity.matrix)

Run the localised smoothing model
formula <- Y ~ 1
Not run: model <- S.CARdissimilarity(formula=formula, family="binomial", trials=trials, W=W, Z=Z, burnin=20000, n.sample=100000)
End(Not run)

S.CARleroux

Fit a spatial generalised linear mixed model to data, where the random effects have a Leroux conditional autoregressive prior.

Description

Fit a spatial generalised linear mixed model to areal unit data, where the response variable can be binomial, Gaussian or Poisson. The linear predictor is modelled by known covariates and a vector of random effects. The latter are modelled by the conditional autoregressive prior proposed by Leroux et al. (1999), and further details are given in the vignette accompanying this package. Independent random effects can be obtained by setting (fix.rho=TRUE, rho=0) similar to the old function `S.independent()`, in which case the neighbourhood matrix W is not part of the model. In this case enter a fake W matrix that is a K by K matrix of zeros, where K is the number of data points. Similarly, the intrinsic CAR model can be obtained by setting (fix.rho=TRUE, rho=1) similar to the old function S.CARtr(). Inference is conducted in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. Missing (NA) values are allowed in the response, and posterior predictive distributions are created for the missing values for predictive purposes. These are saved in the `samples` argument in the output of the function and are denoted by ‘Y’.

Usage

```r
S.CARleroux(formula, family, data=NULL, trials=NULL, W, burnin, n.sample, thin=1, prior.mean.beta=NULL, prior.var.beta=NULL, prior.nu2=NULL, prior.tau2=NULL, fix.rho=FALSE, rho=NULL, verbose=TRUE)
```
Arguments

formula
A formula for the covariate part of the model using the syntax of the `lm()` function. Offsets can be included here using the `offset()` function. The response can contain missing (NA) values.

family
One of either ‘binomial’, ‘gaussian’ or ‘poisson’, which respectively specify a binomial likelihood model with a logistic link function, a Gaussian likelihood model with an identity link function, or a Poisson likelihood model with a log link function.

data
An optional data.frame containing the variables in the formula.

trials
A vector the same length as the response containing the total number of trials for each area. Only used if family='binomial'.

W
A K by K neighbourhood matrix (where K is the number of spatial units). Typically a binary specification is used, where the jkth element equals one if areas (j, k) are spatially close (e.g. share a common border) and is zero otherwise. The matrix can be non-binary, but each row must contain at least one non-zero entry.

burnin
The number of MCMC samples to discard as the burn-in period.

n.sample
The number of MCMC samples to generate.

thin
The level of thinning to apply to the MCMC samples to reduce their temporal autocorrelation. Defaults to 1 (no thinning).

prior.mean.beta
A vector of prior means for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector of zeros.

prior.var.beta
A vector of prior variances for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector with values 1000.

prior.nu2
The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for nu2. Defaults to c(1, 0.01) and only used if family='Gaussian'.

prior.tau2
The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for tau2. Defaults to c(1, 0.01).

fix.rho
Logical, should the spatial dependence parameter rho be fixed rather than being estimated in the model.

rho
The value that the spatial dependence parameter is set to if fix.rho=TRUE. Must be in the interval [0, 1], where 0 corresponds to independence while 1 corresponds to fitting the intrinsic CAR prior. Note, if rho=0 then the W matrix is not included in the model so enter a K by K matrix of zeros instead.

verbose
Logical, should the function update the user on its progress.

Value

summary.results
A summary table of the parameters.

samples
A list containing the MCMC samples from the model.

fitted.values
A vector of fitted values for each area.

residuals
A vector of residuals for each area.
Model fit criteria including the Deviance Information Criterion (DIC) and its corresponding estimated effective number of parameters (p.d), the Log Marginal Predictive Likelihood (LMPL), and the Watanabe-Akaike Information Criterion (WAIC) and its corresponding estimated number of effective parameters (p.w).

accept

The acceptance probabilities for the parameters.

localised.structure

NULL, for compatibility with the other models.

formula

The formula for the covariate and offset part of the model.

model

A text string describing the model fit.

X

The design matrix of covariates.

Author(s)

Duncan Lee

References

Examples

```r
# Run the model on simulated data on a lattice
#
# Set up a square lattice region
x.easting <- 1:10
x.northing <- 1:10
Grid <- expand.grid(x.easting, x.northing)
K <- nrow(Grid)

# set up distance and neighbourhood (W, based on sharing a common border) matrices
distance <- array(0, c(K, K))
W <- array(0, c(K, K))
for(i in 1:K)
{
  for(j in 1:K)
  {
    temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
    distance[i,j] <- sqrt(temp)
    if(temp==1) W[i,j] <- 1
  }
}

# Generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
```
S.CARlocalised

```r
t theta <- rnorm(K, sd=0.05)  
phi <- mvnorm(n=1, mu=rep(0,K), Sigma=0.4 * exp(-0.1 * distance))  
logit <- x1 + x2 + theta + phi  
prob <- exp(logit) / (1 + exp(logit))  
trials <- rep(50,K)  
Y <- rbinom(n=K, size=trials, prob=prob)
```

```r
### Run the Leroux model  
formula <- Y ~ x1 + x2  
# Not run: model <- S.CARleroux(formula=formula, family="binomial",  
trials=trials, W=W, burnin=20000, n.sample=100000)  
# End(Not run)
```

S.CARlocalised
Fit a spatial generalised linear mixed model to data, where a set of spatially smooth random effects are augmented with a piecewise constant intercept process.

Description

Fit a spatial generalised linear mixed model to areal unit data, where the response variable can be binomial or Poisson. Note, a Gaussian likelihood is not allowed because of a lack of identifiability among the parameters. The linear predictor is modelled by known covariates, a vector of random effects and a piecewise constant intercept process. The random effects are modelled by an intrinsic CAR prior, while the piecewise constant intercept process was proposed by Lee and Sarran (2015), and allow neighbouring areas to have very different values. Further details are given in the vignette accompanying this package. Inference is conducted in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. Missing (NA) values are not allowed in this model.

Usage

```r
S.CARlocalised(formula, family, data=NULL, G, trials=NULL, W,  
burnin, n.sample, thin=1, prior.mean.beta=NULL, prior.var.beta=NULL,  
prior.mean.alpha=NULL, prior.var.alpha=NULL, prior.tau2=NULL,prior.delta=NULL,  
verbose=TRUE)
```

Arguments

- **formula**: A formula for the covariate part of the model using the syntax of the `lm()` function. Offsets can be included here using the `offset()` function. The response cannot contain missing (NA) values.
- **family**: One of either ‘binomial’ or ‘poisson’, which respectively specify a binomial likelihood model with a logistic link function, or a Poisson likelihood model with a log link function.
- **data**: An optional data.frame containing the variables in the formula.
- **G**: The maximum number of distinct intercept terms (clusters) to allow in the model.
trials A vector the same length as the response containing the total number of trials for each area. Only used if family='binomial'.

W A K by K neighbourhood matrix (where K is the number of spatial units). Typically a binary specification is used, where the jkth element equals one if areas (j, k) are spatially close (e.g. share a common border) and is zero otherwise. The matrix can be non-binary, but each row must contain at least one non-zero entry.

burnin The number of McMC samples to discard as the burn-in period.

n.sample The number of McMC samples to generate.

thin The level of thinning to apply to the McMC samples to reduce their temporal autocorrelation. Defaults to 1 (no thinning).

prior.mean.beta A vector of prior means for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector of zeros.

prior.var.beta A vector of prior variances for the regression parameters beta (Gaussian priors are assumed). Defaults to a vector with values 1000.

prior.mean.alpha The prior mean for the regression parameter alpha (Gaussian priors are assumed) multiplying the covariate with within area variation in its values. Defaults to zero.

prior.var.alpha The prior variance for the regression parameter alpha (Gaussian priors are assumed) multiplying the covariate with within area variation in its values. Defaults to 1000.

prior.tau2 The prior shape and scale in the form of c(shape, scale) for an Inverse-Gamma(shape, scale) prior for tau2. Defaults to c(1, 0.01).

prior.delta The prior maximum for the cluster smoothing parameter delta. Defaults to 10.

verbose Logical, should the function update the user on its progress.

Value

summary.results A summary table of the parameters.

samples A list containing the McMC samples from the model.

fitted.values A vector of fitted values for each area.

residuals A vector of residuals for each area.

modelfit Model fit criteria including the Deviance Information Criterion (DIC) and its corresponding estimated effective number of parameters (p.d), the Log Marginal Predictive Likelihood (LMPL), and the Watanabe-Akaike Information Criterion (WAIC) and its corresponding estimated number of effective parameters (p.w).

accept The acceptance probabilities for the parameters.

localised.structure A vector giving the posterior median of which cluster (group) each area is in.

formula The formula for the covariate and offset part of the model.

model A text string describing the model fit.

X The design matrix of covariates.
S.CARlocalised

Author(s)
Duncan Lee

References

Examples

```r
### Run the model on simulated data - localised CAR model
### Set up a square lattice region
x.easting <- 1:10
x.northing <- 1:10
Grid <- expand.grid(x.easting, x.northing)
K <- nrow(Grid)

### Split the area into two groups between which there will be a boundary
groups <- rep(1, K)
groups[Grid$Var1>5] <- 2

### set up distance and neighbourhood (W, based on sharing a common border) matrices
distance <- array(0, c(K,K))
W <- array(0, c(K,K))
for(i in 1:K)
{
  for(j in 1:K)
  {
    temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2
distance[i,j] <- sqrt(temp)
    if(temp==1) W[i,j] <- 1
  }
}

### Generate the response data
phi <- mvrnorm(n=1, mu=groups, Sigma=0.2 * exp(-0.1 * distance))
logit <- phi
prob <- exp(logit) / (1 + exp(logit))
trials <- rep(50, K)
Y <- rbinom(n=K, size=trials, prob=prob)

### Run the localised smoothing model
formula <- Y ~ 1
## Not run: model <- S.CARlocalised(formula=formula, family="binomial", trials=trials,
G=2, W=W,burnin=20000, n.sample=100000)
## End(Not run)
```
summarise.lincomb

Compute the posterior distribution for a linear combination of the covariates from the linear predictor.

Description

This function takes in a ‘carbayes’ model object and computes the posterior distribution and posterior quantiles of a linear combination of the covariates from the linear predictor. For example, if a quadratic effect of a covariate on the response was specified, then this function allows you to compute the posterior distribution of the quadratic relationship.

Usage

summarise.lincomb(model, columns=NULL, quantiles=0.5, distribution=FALSE)

Arguments

- **model**: A ‘carbayes’ model object from fitting one of the models in this package.
- **columns**: A vector of column numbers stating which columns in the design matrix of covariates the posterior distribution should be computed for.
- **quantiles**: The vector of posterior quantiles required.
- **distribution**: A logical value stating whether the entire posterior distribution should be returned or just the specified quantiles.

Value

- **quantiles**: A 2 dimensional array containing the required posterior quantiles. Each row relates to a data value, and each column to a different requested quantile.
- **posterior**: A 2 dimensional array containing the required posterior distribution. Each column relates to a different data value.

Author(s)

Duncan Lee

Examples

```r
## See the vignette accompanying this package for an example of its use.
```
summarise.samples

Summarise a matrix of Markov chain Monte Carlo samples.

Description

This function takes in a matrix of Markov chain Monte Carlo (McMC) samples from a ‘carbayes’ model object, such as a set of parameters or fitted values, and calculates posterior quantiles and exceedence probabilities. The latter are probabilities of the form \(P(\text{quantity} > c | \text{data}) \), where \(c \) is a threshold chosen by the user.

Usage

```
summarise.samples(samples, columns=NULL, quantiles=0.5, exceedences=NULL)
```

Arguments

- `samples`: A matrix of McMC samples obtained from a ‘carbayes’ model object.
- `columns`: A vector of column numbers stating which columns in the matrix of McMC samples summaries are required for. Defaults to all columns.
- `quantiles`: The vector of posterior quantiles required.
- `exceedences`: The vector of threshold levels, \(c \), that exceedence probabilities are required for.

Value

- `quantiles`: A 2 dimensional array containing the required posterior quantiles. Each row relates to a parameter and each column to a different requested quantile.
- `exceedences`: A 2 dimensional array containing the required exceedence probabilities. Each row relates to a parameter, and each column to a different requested exceedence probability.

Author(s)

Duncan Lee

Examples

```r
# See the vignette accompanying this package for an example of its use.
```
Index

CARBayes (CARBayes-package), 2
CARBayes-package, 2
combine.data.shapefile, 3
highlight.borders, 4
MVS.CARleroux, 5
print.carbayes, 8
S.CARBym, 9
S.CARDissimilarity, 11
S.CARleroux, 14
S.CARlocalised, 17
summarise.lincomb, 20
summarise.samples, 21