Package ‘CAST’

March 17, 2022

Type Package

Title 'caret' Applications for Spatial-Temporal Models

Version 0.6.0

Author Hanna Meyer [cre, aut],
Marvin Ludwig [aut],
Chris Reudenbach [ctb],
Thomas Nauss [ctb],
Edzer Pebesma [ctb]

Maintainer Hanna Meyer <hanna.meyer@uni-muenster.de>

Description Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial or spatial-temporal modelling tasks using 'caret'. To decrease spatial overfitting and to improve model performances, the package implements a forward feature selection that selects suitable predictor variables in view to their contribution to spatial or spatial-temporal model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models. Methods are described in Meyer et al. (2018) <doi:10.1016/j.envsoft.2017.12.001>; Meyer et al. (2019) <doi:10.1016/j.ecolmodel.2019.108815>; Meyer and Pebesma (2021) <doi:10.1111/2041-210X.13650>.

License GPL (>= 2)

URL https://github.com/HannaMeyer/CAST,
https://hannameyer.github.io/CAST/

Encoding UTF-8

Depends R (>= 4.1.0)

Imports caret, stats, utils, ggplot2, graphics, reshape, FNN, plyr, zoo, methods, grDevices, data.table, lattice

Suggests doParallel, randomForest, lubridate, raster, sp, knitr, mapview, rmarkdown, sf, scales, parallel, latticeExtra, virtualspecies, gridExtra, viridis, rgeos, stars, scam, terra, naturallearth

RoxygenNote 7.1.2

VignetteBuilder knitr
Description

This function estimates the Dissimilarity Index (DI) and the derived Area of Applicability (AOA) of spatial prediction models by considering the distance of new data (i.e. a Raster Stack of spatial predictors used in the models) in the predictor variable space to the data used for model training. Predictors can be weighted based on the internal variable importance of the machine learning algorithm used for model training. The AOA is derived by applying a threshold on the DI which is the (outlier-removed) maximum DI of the cross-validated training data.

Usage

```r
aoa(
    newdata,  
    model = NA,  
    trainDI = NA,  
    cl = NULL,  
    train = NULL,  
    weight = NA,  
    variables = "all",  
    folds = NULL
)
```
Arguments

- **newdata**: A RasterStack, RasterBrick, stars object, SpatRaster or data.frame containing the data the model was meant to make predictions for.
- **model**: A train object created with caret used to extract weights from (based on variable importance) as well as cross-validation folds. See examples for the case that no model is available or for models trained via e.g. mlr3.
- **trainDI**: A trainDI object. Optional if trainDI was calculated beforehand.
- **cl**: A cluster object e.g. created with doParallel. Optional. Should only be used if newdata is large.
- **train**: A data.frame containing the data used for model training. Optional. Only required when no model is given.
- **weight**: A data.frame containing weights for each variable. Optional. Only required if no model is given.
- **variables**: character vector of predictor variables. if "all" then all variables of the model are used or if no model is given then of the train dataset.
- **folds**: Numeric or character. Optional. Folds for cross validation. E.g. Spatial cluster affiliation for each data point. Should be used if replicates are present. Only required if no model is given.

Details

The Dissimilarity Index (DI) and the corresponding Area of Applicability (AOA) are calculated. If variables are factors, dummy variables are created prior to weighting and distance calculation.

Interpretation of results: If a location is very similar to the properties of the training data it will have a low distance in the predictor variable space (DI towards 0) while locations that are very different in their properties will have a high DI. See Meyer and Pebesma (2021) for the full documentation of the methodology.

Value

An object of class aoa containing:

- **parameters**: object of class trainDI. see trainDI
- **DI**: raster or data frame. Dissimilarity index of newdata
- **AOA**: raster or data frame. Area of Applicability of newdata. AOA has values 0 (outside AOA) and 1 (inside AOA)

Note

If classification models are used, currently the variable importance can only be automatically retrieved if models were trained via train(predictors,response) and not via the formula-interface. Will be fixed.

Author(s)

Hanna Meyer
References

See Also

calibrate_aoa, trainDI

Examples

Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)

prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST")[[1:8]])
trainDat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

visualize data spatially:
spplot(scale(studyArea))
plot(studyArea$DEM)
plot(pts[,1],add=TRUE,col="black")

train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,
trControl=trainControl(method="cv",number=5,savePredictions=T))
print(model) #note that this is a quite poor prediction model
prediction <- predict(studyArea,model)
plot(varImp(model,scale=FALSE))

#...then calculate the AOA of the trained model for the study area:
AOA <- aoa(studyArea,model)
plot(AOA)
spplot(AOA$DI, col.regions=viridis(100),main="Dissimilarity Index")
#plot predictions for the AOA only:
spplot(prediction, col.regions=viridis(100),main="prediction for the AOA")+
spplot(AOA$AOA,col.regions=c("grey","transparent"))
Calculating the AOA might be time consuming. Consider running it in parallel:

```r
library(doParallel)
library(parallel)
c1 <- makeCluster(4)
registerDoParallel(c1)
AOA <- aoa(studyArea, model, cl=c1)
```

The AOA can also be calculated without a trained model. All variables are weighted equally in this case:

```r
AOA <- aoa(studyArea, train=trainDat, variables=variables)
spplot(AOA$DI, col.regions=viridis(100), main="Dissimilarity Index")
spplot(AOA$AOA, main="Area of Applicability")
```

The AOA can also be used for models trained via mlr3 (parameters have to be assigned manually):

```r
library(mlr3)
library(mlr3learners)
library(mlr3spatial)
library(mlr3spatiotempcv)
library(mlr3extralearners)

# initiate and train model:
train_df <- trainDat[, c("DEM","NDRE.Sd","TWI", "VW")]
backend <- as_data_backend(train_df)
task <- as_task_regr(backend, target = "VW")
lnr <- lrn("regr.randomForest", importance = "mse")
lnr$train(task)

# cross-validation folds
rsmp_cv <- rsmp("cv", folds = 5L)$instantiate(task)

## predict:
prediction <- predict(studyArea, lnr$model)

## Estimate AOA
AOA <- aoa(studyArea,
    train = as.data.frame(task$data()),
    variables = task$feature_names,
    weight = data.frame(t(lnr$importance())),
    folds = rsmp_cv$instance[order(row_id)]$fold)
```

End(Not run)
Best subset feature selection

Description

Evaluate all combinations of predictors during model training

Usage

```r
bss(
  predictors,
  response,
  method = "rf",
  metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
  maximize = ifelse(metric == "RMSE", FALSE, TRUE),
  globalval = FALSE,
  trControl = caret::trainControl(),
  tuneLength = 3,
  tuneGrid = NULL,
  seed = 100,
  verbose = TRUE,
  ...
)
```

Arguments

- `predictors`: see `train`
- `response`: see `train`
- `method`: see `train`
- `metric`: see `train`
- `maximize`: see `train`
- `globalval`: Logical. Should models be evaluated based on 'global' performance? See `global_validation`
- `trControl`: see `train`
- `tuneLength`: see `train`
- `tuneGrid`: see `train`
- `seed`: A random number
- `verbose`: Logical. Should information about the progress be printed?
- `...`: arguments passed to the classification or regression routine (such as randomForest).
Details

bss is an alternative to **ffs** and ideal if the training set is small. Models are iteratively fitted using all different combinations of predictor variables. Hence, 2^X models are calculated. Don’t try running bss on very large datasets because the computation time is much higher compared to **ffs**.

The internal cross validation can be run in parallel. See information on parallel processing of carets train functions for details.

Value

A list of class train. Beside of the usual train content the object contains the vector "selectedvars" and "selectedvars_perf" that give the best variables selected as well as their corresponding performance. It also contains "perf_all" that gives the performance of all model runs.

Note

This variable selection is particularly suitable for spatial cross validations where variable selection MUST be based on the performance of the model for predicting new spatial units. Note that bss is very slow since all combinations of variables are tested. A more time efficient alternative is the forward feature selection (**ffs**) (**ffs**).

Author(s)

Hanna Meyer

See Also

train, ffs, trainControl, CreateSpacetimeFolds

Examples

```r
## Not run:
data(iris)
bssmodel <- bss(iris[,1:4], iris$Species)
bssmodel$perf_all
## End(Not run)
```

calibrate_aoa

Calibrate the AOA based on the relationship between the DI and the prediction error

Description

Performance metrics are calculated for moving windows of DI values of cross-validated training data.
Usage

calibrate_aoa(
 AOA,
 model,
 window.size = 5,
 calib = "scam",
 multiCV = FALSE,
 length.out = 10,
 maskAOA = TRUE,
 showPlot = TRUE,
 k = 6,
 m = 2
)

Arguments

AOA the result of `aoa`
model the model used to get the AOA
window.size Numeric. Size of the moving window. See `rollapply`.
calib Character. Function to model the DI-performance relationship. Currently `lm` and `scam` are supported
multiCV Logical. Re-run model fitting and validation with different CV strategies. See details.
length.out Numeric. Only used if `multiCV=TRUE`. Number of cross-validation folds. See details.
maskAOA Logical. Should areas outside the AOA set to NA?
showPlot Logical.
k Numeric. See `mgcv::s`
m Numeric. See `mgcv::s`

Details

If `multiCV=TRUE` the model is re-fitted and validated by `length.out` new cross-validations where the cross-validation folds are defined by clusters in the predictor space, ranging from three clusters to LOOCV. If the AOA threshold based on the calibration data from multiple CV is larger than the original AOA threshold, the AOA is updated accordingly. See Meyer and Pebesma (2020) for the full documentation of the methodology.

Value

A list of length 2 with the elements "AOA": rasterStack which contains the original DI and the AOA (which might be updated if new test data indicate this option), as well as the expected performance based on the relationship. Data used for calibration are stored in the attributes. The second element is a plot showing the relationship.
Author(s)

Hanna Meyer

References

See Also

aoa

Examples

```r
## Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)

# prepare sample data:
library(sf)
library(raster)
library(caret)
# prepare sample data:
library(sf)
library(raster)
library(caret)

# prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST")[[1:8]])
dat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(dat,pts,by.x="ID",by.y="ID")

# train a model:
variables <- c("DEM","NDRE.Sd","TWI")
set.seed(100)
model <- train(trainDat[,which(names(trainDat)%in%variables)],
               trainDat$VW,method="rf",importance=TRUE,tuneLength=1,
               trControl=trainControl(method="cv",number=5,savePredictions=TRUE))

#...then calculate the AOA of the trained model for the study area:
AOA <- aoa(studyArea,model)
AOA_new <- calibrate_aoa(AOA,model)
plot(AOA_new$AOA[[3]])

## End(Not run)
```
CAST

'caret' Applications for Spatial-Temporal Models

Description

Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial-temporal modelling tasks using 'caret'. It supports Leave-Location-Out and Leave-Time-Out cross-validation of spatial and spatial-temporal models and allows for spatial variable selection to select suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models by analysing the similarity between new data and training data.

Details

'caret' Applications for Spatio-Temporal models

Author(s)

Hanna Meyer, Marvin Ludwig

References

CreateSpacetimeFolds

Create Space-time Folds

Description

Create spatial, temporal or spatio-temporal Folds for cross validation
Usage

CreateSpacetimeFolds(
 x,
 spacevar = NA,
 timevar = NA,
 k = 10,
 class = NA,
 seed = sample(1:1000, 1)
)

Arguments

x data.frame containing spatio-temporal data
spacevar Character indicating which column of x identifies the spatial units (e.g. ID of weather stations)
timevar Character indicating which column of x identifies the temporal units (e.g. the day of the year)
k numeric. Number of folds. If spacevar or timevar is NA and a leave one location out or leave one time step out cv should be performed, set k to the number of unique spatial or temporal units.
class Character indicating which column of x identifies a class unit (e.g. land cover)
seed numeric. See ?seed

details

Using "class" is helpful in the case that data are clustered in space and are categorical. E.g. This is the case for land cover classifications when training data come as training polygons. In this case the data should be split in a way that entire polygons are held back (spacevar="polygonID") but at the same time the distribution of classes should be similar in each fold (class="LUC").

value

A list that contains a list for model training and a list for model validation that can directly be used as "index" and "indexOut" in caret’s trainControl function

note

Standard k-fold cross-validation can lead to considerable misinterpretation in spatial-temporal modelling tasks. This function can be used to prepare a Leave-Location-Out, Leave-Time-Out or Leave-Location-and-Time-Out cross-validation as target-oriented validation strategies for spatial-temporal prediction tasks. See Meyer et al. (2018) for further information.

author(s)

Hanna Meyer
References

See Also

trainControl, ffs

Examples

dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
Prepare for 10-fold Leave-Location-and-Time-Out cross validation
indices <- CreateSpacetimeFolds(dat,"SOURCEID","Date")
str(indices)
Prepare for 10-fold Leave-Location-Out cross validation
indices <- CreateSpacetimeFolds(dat,spacevar="SOURCEID")
str(indices)
Prepare for leave-One-Location-Out cross validation
indices <- CreateSpacetimeFolds(dat,spacevar="SOURCEID", k=length(unique(dat$SOURCEID)))
str(indices)

ffs

Forward feature selection

Description

A simple forward feature selection algorithm

Usage

ffs(
 predictors,
 response,
 method = "rf",
 metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
 maximize = ifelse(metric == "RMSE", FALSE, TRUE),
 globalval = FALSE,
 withinSE = FALSE,
 minVar = 2,
 trControl = caret::trainControl(),
 tuneLength = 3,
 tuneGrid = NULL,
 seed = sample(1:1000, 1),
 verbose = TRUE,
 ...
)

ffs

Arguments

- **predictors**: see `train`
- **response**: see `train`
- **method**: see `train`
- **metric**: see `train`
- **maximize**: see `train`
- **globalval**: Logical. Should models be evaluated based on 'global' performance? See `global_validation`
- **withinSE**: Logical. Models are only selected if they are better than the currently best models
- **minVar**: Numeric. Number of variables to combine for the first selection. See Details.
- **trControl**: see `train`
- **tuneLength**: see `train`
- **tuneGrid**: see `train`
- **seed**: A random number used for model training
- **verbose**: Logical. Should information about the progress be printed?
- **...**: arguments passed to the classification or regression routine (such as randomForest).

Details

Models with two predictors are first trained using all possible pairs of predictor variables. The best model of these initial models is kept. On the basis of this best model the predictor variables are iteratively increased and each of the remaining variables is tested for its improvement of the currently best model. The process stops if none of the remaining variables increases the model performance when added to the current best model.

The internal cross validation can be run in parallel. See information on parallel processing of carets train functions for details.

Using withinSE will favour models with less variables and probably shorten the calculation time

Per Default, the ffs starts with all possible 2-pair combinations. minVar allows to start the selection with more than 2 variables, e.g. minVar=3 starts the ffs testing all combinations of 3 (instead of 2) variables first and then increasing the number. This is important for e.g. neural networks that often cannot make sense of only two variables. It is also relevant if it is assumed that the optimal variables can only be found if more than 2 are considered at the same time.

Value

A list of class `train`. Beside of the usual train content the object contains the vector "selectedvars" and "selectedvars_perf" that give the order of the best variables selected as well as their corresponding performance (starting from the first two variables). It also contains "perf_all" that gives the performance of all model runs.
Note

This variable selection is particularly suitable for spatial cross validations where variable selection MUST be based on the performance of the model for predicting new spatial units. See Meyer et al. (2018) and Meyer et al. (2019) for further details.

Author(s)

Hanna Meyer

References

See Also

train.bss, trainControl, CreateSpacetimeFolds

Examples

```r
## Not run:
data(iris)
ffsmodel <- ffs(iris[,1:4], iris$Species)
ffsmodel$selectedvars
ffsmodel$selectedvars_perf

## End(Not run)

# or perform model with target-oriented validation (LLO CV)
#the example is described in Gasch et al. (2015). The ffs approach for this dataset is described in
#Meyer et al. (2018). Due to high computation time needed, only a small and thus not robust example
#is shown here.

## Not run:
#run the model on three cores:
library(doParallel)
c1 <- makeCluster(3)
registerDoParallel(c1)

#load and prepare dataset:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
trainDat <- dat[dat$altitude==-0.3 & year(dat$Date)==2012 & week(dat$Date)%in%c(13:14),]
```
global_validation

Evaluate 'global' cross-validation

description
Calculate validation metric using all held back predictions at once

Usage

global_validation(model)

Arguments

model an object of class train

details
Relevant when folds are not representative for the entire area of interest. In this case, metrics like R2 are not meaningful since it doesn’t reflect the general ability of the model to explain the entire gradient of the response. Comparable to LOOCV, predictions from all held back folds are used here together to calculate validation statistics.
Value

regression (postResample) or classification (confusionMatrix) statistics

Author(s)

Hanna Meyer

See Also

CreateSpacetimeFolds

Examples

dat <- get(load(system.file("extdata", "Cookfarm.RData", package="CAST")))
dat <- dat[sample(1:nrow(dat), 500),]
indices <- CreateSpacetimeFolds(dat, "SOURCEID", "Date")
ctrl <- caret::trainControl(method="cv", index = indices$index, savePredictions="final")
model <- caret::train(dat[, c("DEM", "TWI", "BLD")], dat$VW, method="rf", trControl=ctrl, ntree=10)
global_validation(model)

plot

Plot CAST classes

Description

Generic plot function for trainDI and aoa

Usage

S3 method for class 'trainDI'
plot(x, ...)

S3 method for class 'aoa'
plot(x, samplesize = 1000, ...)

Arguments

x aoa object

... other params

samplesize numeric. How many prediction samples should be plotted?

Author(s)

Marvin Ludwig, Hanna Meyer

Marvin Ludwig, Hanna Meyer
Description

A plotting function for a forward feature selection result. Each point is the mean performance of a model run. Error bars represent the standard errors from cross validation. Marked points show the best model from each number of variables until a further variable could not improve the results. If type="selected", the contribution of the selected variables to the model performance is shown.

Usage

```r
plot_ffs(
  ffs_model,
  plotType = "all",
  palette = rainbow,
  reverse = FALSE,
  marker = "black",
  size = 1.5,
  lwd = 0.5,
  pch = 21,
  ...
)
```

Arguments

- `ffs_model`: Result of a forward feature selection see `ffs`
- `plotType`: character. Either "all" or "selected"
- `palette`: A color palette
- `reverse`: Character. Should the palette be reversed?
- `marker`: Character. Color to mark the best models
- `size`: Numeric. Size of the points
- `lwd`: Numeric. Width of the error bars
- `pch`: Numeric. Type of point marking the best models
- `...`: Further arguments for base plot if type="selected"

Author(s)

Marvin Ludwig and Hanna Meyer

See Also

`ffs`, `bss`
Examples

Not run:
data(iris)
ffsmodel <- ffs(iris[,1:4], iris$Species)
plot_ffs(ffsmodel)
#plot performance of selected variables only:
plot_ffs(ffsmodel, plotType="selected")

End(Not run)

plot_geodist

Plot euclidean nearest neighbor distances in geographic space or feature space

Description

Density plot of nearest neighbor distances in geographic space or feature space between training data as well as between training data and prediction locations. Optional, the nearest neighbor distances between training data and test data or between training data and CV iterations is shown. The plot can be used to check the suitability of a chosen CV method to be representative to estimate map accuracy. Alternatively distances can also be calculated in the multivariate feature space.

Usage

plot_geodist(
 x, modeldomain, type = "geo", cvfolds = NULL, testdata = NULL,
 samplesize = 2000, sampling = "regular", variables = NULL,
 showPlot = TRUE
)

Arguments

- **x**: object of class sf, training data locations
- **modeldomain**: raster or sf object defining the prediction area (see Details)
- **type**: "geo" or "feature". Should the distance be computed in geographic space or in the normalized multivariate predictor space (see Details)
- **cvfolds**: optional. List of row indices of x that are held back in each CV iteration. See e.g. `createFolds` or `createSpaceTimeFolds`
- **testdata**: optional. object of class sf: Data used for independent validation
samplesize numeric. How many prediction samples should be used? Only required if modeldomain is a raster (see Details)
sampling character. How to draw prediction samples? See spsample. Use sampling = "Fibonacci" for global applications.
variables character vector defining the predictor variables used if type="feature. If not provided all variables included in modeldomain are used.
showPlot logical

Details
The modeldomain is a sf polygon or a raster that defines the prediction area. The function takes a regular point sample (amount defined by samplesize) from the spatial extent. If type = "feature", the argument modeldomain (and if provided then also the testdata) has to include predictors. Predictor values for x are optional if modeldomain is a raster. If not provided they are extracted from the modeldomain rasterStack.

Value
A list including the plot and the corresponding data.frame containing the distances

Note
See Meyer and Pebesma (2022) for an application of this plotting function

Author(s)
Hanna Meyer, Edzer Pebesma, Marvin Ludwig

Examples
Not run:
library(sf)
library(raster)
library(caret)

############## prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("DEM","TWI", "NDRE.M", "Easting", "Northing")],
by=list(as.character(dat$SOURCEID)),mean)
pts <- dat[,,-1]
pts <- st_as_sf(pts,coords=c("Easting","Northing"))
st_crs(pts) <- 26911
pts_train <- pts[1:29,]
pts_test <- pts[30:42,]
studyArea <- raster::stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST"))
studyArea = studyArea[[c("DEM","TWI", "NDRE.M", "NDRE.Sd", "Bt")]]

############## Distance between training data and new data:
dist <- plot_geodist(pts_train,studyArea)
Distance between training data, new data and test data:
```
#mapview(pts_train,col.regions="blue")+mapview(pts_test,col.regions="red")
dist <- plot_geodist(pts_train,studyArea,testdata=pts_test)
```

Distance between training data, new data and CV folds:
```
folds <- createFolds(1:nrow(pts_train),k=3,returnTrain=FALSE)
dist <- plot_geodist(x=pts_train, modeldomain=studyArea, cvfolds=folds)
```

Distances in the feature space:
```
plot_geodist(x=pts_train, modeldomain=studyArea,
type = "feature",variables=c("DEM","TWI", "NDRE.M"))
```
```
dist <- plot_geodist(x=pts_train, modeldomain=studyArea, cvfolds = folds, testdata = pts_test,
type = "feature",variables=c("DEM","TWI", "NDRE.M"))
```

Example for a random global dataset
```
library(sf)
library(rnaturalearth)
library(ggplot2)

### Define prediction area (here: global):
ee <- st_crs("+proj=eqearth")
co <- ne_countries(returnclass = "sf")
co.ee <- st_transform(co, ee)

### Simulate a spatial random sample
### (alternatively replace pts_random by a real sampling dataset (see Meyer and Pebesma 2022):
sf_use_s2(FALSE)
pts_random <- st_sample(co, 2000)

### See points on the map:
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
  geom_sf(data = pts_random, color = "#F8766D",size=0.5, shape=3) +
  guides(fill = FALSE, col = FALSE) +
  labs(x = NULL, y = NULL)

### plot distances:
dist <- plot_geodist(pts_random,co,showPlot=FALSE)
dist$plot+scale_x_log10(labels=round)
```

```
## End(Not run)
```

Print CAST classes

Description

Generic print function for trainDI and aoa
trainDI

Usage

```r
## S3 method for class 'trainDI'
print(x, ...)

show.trainDI(x, ...)

## S3 method for class 'aoa'
print(x, ...)

show.aoa(x, ...)
```

Arguments

- **x**: aoa object
- **...**: other params

trainDI

Calculate Dissimilarity Index of training data

Description

This function estimates the Dissimilarity Index (DI) of within the training data set used for a prediction model. Predictors can be weighted based on the internal variable importance of the machine learning algorithm used for model training.

Usage

```r
trainDI(model = NA, train = NULL, variables = "all", weight = NA, folds = NULL)
```

Arguments

- **model**: A train object created with caret used to extract weights from (based on variable importance) as well as cross-validation folds
- **train**: A data.frame containing the data used for model training. Only required when no model is given
- **variables**: character vector of predictor variables. If "all" then all variables of the model are used or if no model is given then of the train dataset.
- **weight**: A data.frame containing weights for each variable. Only required if no model is given.
- **folds**: Numeric or character. Folds for cross validation. E.g. Spatial cluster affiliation for each data point. Only required if no model is given.
Value

A list of class `trainDI` containing:

- **train**: A data frame containing the training data
- **weight**: A data frame with weights based on the variable importance.
- **variables**: Names of the used variables
- **catvars**: Which variables are categorial
- **scaleparam**: Scaling parameters. Output from `scale`
- **trainDist_avrg**: A data frame with the average euclidean distance of each training point to every other point
- **trainDist_avrgmean**: The mean of `trainDist_avrg`. Used for normalizing the DI
- **trainDI**: Dissimilarity Index of the training data
- **threshold**: The DI threshold used for inside/outside AOA
- **lower_threshold**: The lower DI threshold. Currently unused.

Note

This function is called within `aoa` to estimate the DI and AOA of new data. However, it may also be used on its own if only the DI of training data is of interest, or to facilitate a parallelization of `aoa` by avoiding a repeated calculation of the DI within the training data.

Author(s)

Hanna Meyer, Marvin Ludwig

References

See Also

`aoa`

Examples

```r
## Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)
library(ggplot2)

# prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
```
trainDI

```r
dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST"))[[1:8]]
trainDat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

# visualize data spatially:
spplot(scale(studyArea))
plot(studyArea$DEM)
plot(pts[,1],add=TRUE,col="black")

# train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1, 
trControl=trainControl(method="cv",number=5,savePredictions=T))
print(model) #note that this is a quite poor prediction model
prediction <- predict(studyArea,model)
plot(varImp(model,scale=FALSE))

#...then calculate the DI of the trained model:
DI = trainDI(model=model)
plot(DI)

# the DI can now be used to compute the AOA:
AOA = aoa(studyArea, model = model, trainDI = DI)
print(AOA)
plot(AOA)
```

End(Not run)
Index

* package
 CAST, 10

aoa, 2, 8, 9, 22

bss, 6, 14, 17

calibrate_aoa, 4, 7
CAST, 10
confusionMatrix, 16
CreateSpacetimeFolds, 7, 10, 14, 16

ffs, 7, 12, 12, 17

global_validation, 6, 13, 15

plot, 16
plot_bss(plot_ffs), 17
plot_ffs, 17
plot_geodist, 18
postResample, 16
print, 20

rollapply, 8

show_aoa(print), 20
show.trainDI(print), 20
spsample, 19

train, 6, 7, 13–15
trainControl, 7, 12, 14
trainDI, 3, 4, 21