Package ‘CAST’

April 6, 2020

Type Package

Title 'caret' Applications for Spatial-Temporal Models

Version 0.4.0

Author Hanna Meyer [cre, aut],
Chris Reudenbach [ctb],
Marvin Ludwig [ctb],
Thomas Nauss [ctb]

Maintainer Hanna Meyer <hanna.meyer@uni-muenster.de>

Description Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. This package includes functions to improve spatial-temporal modelling tasks using 'caret'. It prepares data for Leave-Location-Out and Leave-Time-Out cross-validation which are target-oriented validation strategies for spatial-temporal models. To decrease overfitting and improve model performances, the package implements a forward feature selection that selects suitable predictor variables in view to their contribution to the target-oriented performance.

License GPL (>= 3) | file LICENSE

URL https://github.com/HannaMeyer/CAST

Encoding UTF-8

LazyData true

Depends R (>= 3.1.0)

Imports caret, stats, utils, ggplot2, graphics

Suggests doParallel, GSIF, randomForest, lubridate, raster, sp, knitr, mapview, rmarkdown, sf, scales, parallel, latticeExtra

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-06 16:22:06 UTC
R topics documented:

aoa ... 2
bss ... 4
CAST ... 5
CreateSpacetimeFolds ... 6
ffs ... 7
plot_ffs .. 10

Index 12

aoa

Area of Applicability

Description

This function estimates the Area of Applicability Index (AOAI) and the derived Area of Applicability (AOA) of spatial prediction models by considering the distance of new data (i.e., a Raster Stack of spatial predictors used in the models) in the predictor variable space to the data used for model training. Predictors can be weighted in the ideal case based on the internal variable importance of the machine learning algorithm used for model training.

Usage

```r
aoa(train, predictors, weight = NA, model = NA, variables = "all",
     clstr = NULL, cl = NULL)
```

Arguments

- `train` a data.frame containing the data used for model training
- `predictors` A RasterStack, RasterBrick or data.frame containing the data the model was meant to make predictions for.
- `weight` A data.frame containing weights for each variable. Only required if no model is given.
- `model` A train object created with caret used to extract weights from (based on variable importance)
- `variables` character vector of predictor variables. if "all" then all variables of the train dataset are used. Check varImp(model).
- `clstr` Numeric or character. Spatial cluster affiliation for each data point. Should be used if replicates are present.
- `cl` Cluster object created with parallel::makeCluster. To run things in parallel.
Details

The Area of Applicability Index (AOAI) and the corresponding Area of Applicability (AOA) are calculated. Interpretation of results: If a location is very similar to the properties of the training data it will have a low distance in the predictor variable space (AOAI towards 0) while locations that are very different in their properties will have a low Applicability Index. The AOAI is returned as inverse distance scaled by the average mean distance between training data points. The further the distance in this predictor space, the lower the AOAI gets. To get the AOA, a threshold to the AOAI is applied based on the mean+sd minimum distances between training data. See Meyer et al. (submitted) for the full documentation of the methodology.

Value

A RasterStack or data.frame with the AOAI and AOA

Author(s)

Hanna Meyer

References

Examples

```r
## Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)

# prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST")[[1:8]])
trainDat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

# visualize data spatially:
spplot(scale(studyArea))
plot(studyArea$DEM)
plot(pts[,1],add=TRUE,col="black")

# first calculate the AOAI based on a set of variables with equal weights:
variables <- c("DEM","Easting","Northing")
AOA <- aoa(trainDat,studyArea,variables=variables)
spplot(AOA$AOAI, col.regions=viridis(100),main="Applicability Index")
spplot(AOA$AOA,col.regions=c("grey","transparent"),main="Area of Applicability")
```
or weight variables based on variable importance from a trained model:
set.seed(100)
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW,method="rf",importance=TRUE,tuneLength=1)
print(model) #note that this is a quite poor prediction model
prediction <- predict(studyArea,model)
plot(varImp(model,scale=FALSE))
AOA <- aoa(trainDat,studyArea,model=model,variables=variables)
spplot(AOA$AOAI, col.regions=viridis(100),main="Applicability Index")
#plot predictions for the AOA only:
spplot(prediction, col.regions=viridis(100),main="prediction for the AOA")+
spplot(AOA$AOA,col.regions=c("grey","transparent"))
End(Not run)

bss

Best subset feature selection

Description

Evaluate all combinations of predictors during model training

Usage

```r
bss(predictors, response, method = "rf",
metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
maximize = ifelse(metric == "RMSE", FALSE, TRUE),
trControl = caret::trainControl(), tuneLength = 3, tuneGrid = NULL,
seed = 100, verbose = TRUE, ...)
```

Arguments

- `predictors` see `train`
- `response` see `train`
- `method` see `train`
- `metric` see `train`
- `maximize` see `train`
- `trControl` see `train`
- `tuneLength` see `train`
- `tuneGrid` see `train`
- `seed` A random number
- `verbose` Logical. Should information about the progress be printed?
- `...` arguments passed to the classification or regression routine (such as randomForest).
CAST Applications for Spatial-Temporal Models

Details
bss is an alternative to ffs and ideal if the training set is small. Models are iteratively fitted using all different combinations of predictor variables. Hence, 2^X models are calculated. Don't try running bss on very large datasets because the computation time is much higher compared to ffs.
The internal cross validation can be run in parallel. See information on parallel processing of carets train functions for details.

Value
A list of class train. Beside of the usual train content the object contains the vector "selectedvars" and "selectedvars_perf" that give the best variables selected as well as their corresponding performance. It also contains "perf_all" that gives the performance of all model runs.

Note
This validation is particularly suitable for spatial leave-location-out cross validations where variable selection MUST be based on the performance of the model on the hold out station. Note that bss is very slow since all combinations of variables are tested. A more time efficient alternative is the forward feature selection (ffs) (ffs).

Author(s)
Hanna Meyer

See Also
train, ffs, trainControl, CreateSpacetimeFolds

Examples
```
## Not run:
data(iris)
bssmodel <- bss(iris[,1:4], iris$Species)
bssmodel$perf_all
## End(Not run)
```

Description
Supporting functionality to run `caret` with spatial or spatial-temporal data. `caret` is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial-temporal modelling tasks using `caret`. It supports Leave-Location-Out and Leave-Time-Out cross-validation of spatial and spatial-temporal models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models by analysing the similarity between new data and training data.
Details

'caret' Applications for Spatio-Temporal models

Author(s)

Hanna Meyer, Christoph Reudenbach, Marvin Ludwig, Thomas Nauss

Maintainer: Hanna Meyer <hanna.meyer@uni-muenster.de>

CreateSpacetimeFolds Create Space-time Folds

Description

Create spatial, temporal or spatio-temporal Folds for cross validation

Usage

CreateSpacetimeFolds(x, spacevar = NA, timevar = NA, k = 10,
seed = sample(1:1000, 1))

Arguments

x data.frame containing spatio-temporal data
spacevar Character indicating which column of x identifies the spatial units (e.g. ID of weather stations)
timevar Character indicating which column of x identifies the temporal units (e.g. the day of the year)
k numeric. Number of folds. If spacevar or timevar is NA and a leave one location out or leave one time step out cv should be performed, set k to the number of unique spatial or temporal units.
seed numeric. See ?seed

Value

A list that contains a list for model training and a list for model validation that can directly be used as "index" and "indexOut" in caret's trainControl function

Note

Standard k-fold cross-validation can lead to considerable misinterpretation in spatial-temporal modelling tasks. This function can be used to prepare a Leave-Location-Out, Leave-Time-Out or Leave-Location-and-Time-Out cross-validation as target-oriented validation strategies for spatial-temporal prediction tasks. See Meyer et al. (2018) for further information.

Author(s)

Hanna Meyer
References

See Also

trainControl, ffs

Examples

library(GSIF)
data(cookfarm)
Prepare for 10-fold Leave-Location-and-Time-Out cross validation
indices <- CreateSpacetimeFolds(cookfarm$readings, "SOURCEID", "Date")
str(indices)
Prepare for 10-fold Leave-Location-Out cross validation
indices <- CreateSpacetimeFolds(cookfarm$readings, spacevar = "SOURCEID")
str(indices)
Prepare for leave-One-Location-Out cross validation
indices <- CreateSpacetimeFolds(cookfarm$readings, spacevar = "SOURCEID",
 k = length(unique(cookfarm$readings$SOURCEID)))
str(indices)

ffs

Forward feature selection

Description

A simple forward feature selection algorithm

Usage

ffs(predictors, response, method = "rf",
 metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
 maximize = ifelse(metric == "RMSE", FALSE, TRUE),
 withinSE = FALSE,
 minVar = 2, trControl = caret::trainControl(),
 tuneLength = 3,
 tuneGrid = NULL, seed = sample(1:1000, 1),
 verbose = TRUE, ...)

Arguments

predictors see train
response see train
method see train
metric see train
maximize see train
withinSE Logical Models are only selected if they are better than the currently best models

Standard error

minVar Numeric. Number of variables to combine for the first selection. See Details.

trControl see train

tuneLength see train

tuneGrid see train

seed A random number used for model training

verbose Logical. Should information about the progress be printed?

... arguments passed to the classification or regression routine (such as randomForest).

Details

Models with two predictors are first trained using all possible pairs of predictor variables. The best model of these initial models is kept. On the basis of this best model the predictor variables are iteratively increased and each of the remaining variables is tested for its improvement of the currently best model. The process stops if none of the remaining variables increases the model performance when added to the current best model.

The internal cross validation can be run in parallel. See information on parallel processing of carets train functions for details.

Using withinSE will favour models with less variables and probably shorten the calculation time

Per Default, the ffs starts with all possible 2-pair combinations. minVar allows to start the selection with more than 2 variables, e.g. minVar=3 starts the ffs testing all combinations of 3 (instead of 2) variables first and then increasing the number. This is important for e.g. neural networks that often cannot make sense of only two variables. It is also relevant if it is assumed that the optimal variables can only be found if more than 2 are considered at the same time.

Value

A list of class train. Beside of the usual train content the object contains the vector "selectedvars" and "selectedvars_perf" that give the order of the best variables selected as well as their corresponding performance (starting from the first two variables). It also contains "perf_all" that gives the performance of all model runs.

Note

This validation is particulary suitable for spatial leave-location-out cross validations where variable selection MUST be based on the performance of the model on the hold out station. See Meyer et al. (2018) and Meyer et al. (2019) for further details.

Author(s)

Hanna Meyer
References

See Also

train.bss, trainControl, CreateSpacetimeFolds

Examples

```r
## Not run:
data(iris)
ffsmodel <- ffs(iris[,1:4],iris$Species)
ffsmodel$selectedvars
ffsmodel$selectedvars_perf

## End(Not run)

# or perform model with target-oriented validation (LLO CV)
# the example is taken from the GSIF package and is described
#in Gasch et al. (2015). The ffs approach for this dataset is described in
#Meyer et al. (2018). Due to high computation time needed, only a small and thus not robust example
#is shown here.

## Not run:
# run the model on three cores:
library(doParallel)
cl <- makeCluster(3)
registerDoParallel(cl)

# load and prepare dataset:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
trainDat <- dat[dat$altitude==-0.3&year(dat$Date)==2012&week(dat$Date)%in%c(13:14),]

# visualize dataset:
ggplot(data = trainDat, aes(x=Date, y=VW)) + geom_line(aes(colour=SOURCEID))

# create folds for Leave Location Out Cross Validation:
set.seed(10)
indices <- CreateSpacetimeFolds(trainDat,spacevar = "SOURCEID",k=3)
ctrl <- trainControl(method="cv",index = indices$index)

# define potential predictors:
predictors <- c("DEM","TWI","BLD","Precip_cum","cday","MaxT_wrcc",
```
```r
#run ffs model with Leave Location out CV
set.seed(10)
ffsmodel <- ffs(trainDat[,predictors], trainDat$VW, method="rf",
tuneLength=1, trControl=ctrl)
ffsmodel

#compare to model without ffs:
model <- train(trainDat[,predictors], trainDat$VW, method="rf",
tuneLength=1, trControl=ctrl)
model
stopCluster(cl)

## End(Not run)
```

plot_ffs

Plot results of a Forward feature selection or best subset selection

Description

A plotting function for a forward feature selection result. Each point is the mean performance of a model run. Error bars represent the standard errors from cross validation. Marked points show the best model from each number of variables until a further variable could not improve the results. If type=="selected", the contribution of the selected variables to the model performance is shown.

Usage

```r
plot_ffs(ffs_model, plotType = "all", palette = rainbow, reverse = FALSE, marker = "black", size = 1.5, lwd = 0.5, pch = 21, ...)
```

Arguments

- `ffs_model` Result of a forward feature selection see `ffs`
- `plotType` character. Either "all" or "selected"
- `palette` A color palette
- `reverse` Character. Should the palette be reversed?
- `marker` Character. Color to mark the best models
- `size` Numeric. Size of the points
- `lwd` Numeric. Width of the error bars
- `pch` Numeric. Type of point marking the best models
- `...` Further arguments for base plot if type="selected"

Author(s)

Marvin Ludwig and Hanna Meyer
plot_ffs

See Also

ffs, bss

Examples

Not run:
data(iris)
ffsmodel <- ffs(iris[,1:4], iris$Species)
plot_ffs(ffsmodel)
#plot performance of selected variables only:
plot_ffs(ffsmodel, plotType="selected")

End(Not run)
Index

*Topic package
 CAST, 5

aoa, 2

bss, 4, 9, 11

CAST, 5
CAST-package (CAST), 5
CreateSpacetimeFolds, 5, 6, 9

ffs, 5, 7, 7, 10, 11
plot_bss (plot_ffs), 10
plot_ffs, 10

train, 4, 5, 7–9
trainControl, 5, 7, 9