Package ‘CDatanet’

April 5, 2022

Type Package
Title Modeling Count Data with Peer Effects
Version 1.0.1
Date 2022-04-04
Description Likelihood-based estimation and data generation from a class of models used to estimate peer effects on count data by controlling for the network endogeneity. This class includes count data models with social interactions (Houndetoungan 2022; <doi:10.2139/ssrn.3721250>), spatial tobit models (Xu and Lee 2015; <doi:10.1016/j.jeconom.2015.05.004>), and spatial linear-in-means models (Lee 2004; <doi:10.1111/j.1468-0262.2004.00558.x>).
License GPL-3
Language en-US
Encoding UTF-8
BugReports https://github.com/ahoundetoungan/CDatanet/issues
URL https://github.com/ahoundetoungan/CDatanet
Depends R (>= 3.5.0)
Imports Rcpp (>= 1.0.0), Formula, formula.tools, ddpcr, Matrix
LinkingTo Rcpp, RcppArmadillo, RcppProgress, RcppDist
RoxygenNote 7.1.2
Suggests ggplot2, MASS, knitr, rmarkdown
NeedsCompilation yes
Author Élysée Aristide Houndetoungan [cre, aut]
Maintainer Élysée Aristide Houndetoungan <ariel92and@gmail.com>
Repository CRAN
Date/Publication 2022-04-05 06:40:06 UTC
The **CDatanet** package implements the count data model with social interactions and the dyadic linking model developed in Houndetoungan (2020). It also simulates data from the count data model and implements the Spatial Autoregressive Tobit model (LeSage, 2000; Xu and Lee, 2015) for left censored data and the Spatial Autoregressive Model (Lee, 2004). To make the computations faster **CDatanet** uses C++ through the **Rcpp** package (Eddelbuettel et al., 2011).

Author(s)

Maintainer: Elysée Aristide Houndetoungan <ariel92and@gmail.com>

References

cdnet

See Also

Useful links:
- https://github.com/ahoundetoungan/CDatanet
- Report bugs at https://github.com/ahoundetoungan/CDatanet/issues

Description

Estimate Count Data Model with Social Interactions using NPL Method

Usage

cdnet(
 formula, contextual, Glist, Rbar = NULL,
 starting = list(theta = NULL, delta = NULL),
 yb0 = NULL, optimizer = "optim",
 npl.ctr = list(), opt.ctr = list(),
 cov = TRUE,
 data
)

Arguments

formula an object of class formula: a symbolic description of the model. The formula should be as for example \(y \sim x1 + x2 | x1 + x2 \) where \(y \) is the endogenous vector, the listed variables before the pipe, \(x1, x2 \) are the individual exogenous variables and the listed variables after the pipe, \(x1, x2 \) are the contextual observable variables. Other formulas may be \(y \sim x1 + x2 \) for the model without contextual effects, \(y \sim -1 + x1 + x2 | x1 + x2 \) for the model without intercept or \(y \sim x1 + x2 | x2 + x3 \) to allow the contextual variable to be different from the individual variables.

contextual (optional) logical; if true, this means that all individual variables will be set as contextual variables. Set the the formula as \(y \sim x1 + x2 \) and contextual as TRUE is equivalent to set the formula as \(y \sim x1 + x2 | x1 + x2 \).

Glist the adjacency matrix or list sub-adjacency matrix.

Rbar the value of Rbar. If not provided, it is automatically set at quantile(y, 0.9).
starting (optional) starting value of \(\theta = (\lambda, \beta', \gamma')' \) and \(\delta = (\delta_2, ..., \delta_{\bar{R}}) \). The parameter \(\gamma \) should be removed if the model does not contain contextual effects (see details).

\(\text{yb}\theta \) (optional) expectation of \(y \).

optimizer is either \texttt{nlm} (referring to the \texttt{nlm} function) or \texttt{optim} (referring to the \texttt{optim} function). At every step of the NPL method, the estimation is performed using \texttt{nlm} or \texttt{optim}. Other arguments of these functions such as, control and method can be defined through the argument \texttt{opt.ctr}.

\texttt{npl.ctr} list of controls for the NPL method (see details).

\texttt{opt.ctr} list of arguments of \texttt{nlm} or \texttt{optim} (the one set in optimizer) such as control, method, ...

\texttt{cov} a boolean indicating if the covariance should be computed.

\texttt{data} an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in data, the variables are taken from \texttt{environment(formula)}, typically the environment from which \texttt{cdnet} is called.

Details

Model:

Following Houndetoungan (2020), the count data \(y \) is generated from a latent variable \(y^* \). The latent variable is given for all \(i \) as

\[
y^*_i = \lambda g_i \bar{y} + x'_i \beta + g_i X \gamma + \epsilon_i,
\]

where \(\epsilon_i \sim N(0, 1) \).

Then, \(y_i = r \) iff \(a_r \leq y^*_i \leq a_{r+1} \), where \(a_0 = -\infty \), \(a_1 = 0 \), \(a_r = \sum_{k=1}^r \delta_k \) if \(1 \leq r \leq \bar{R} \), and \(a_r = (r - \bar{R}) \delta_{\bar{R}} + a_{\bar{R}} \) otherwise.

\texttt{npl.ctr}:

The model parameters is estimated using the Nested Partial Likelihood (NPL) method. This approach starts with a guess of \(\theta \) and \(\bar{y} \) and constructs iteratively a sequence of \(\theta \) and \(\bar{y} \). The solution converges when the \(L_1 \) distance between two consecutive \(\theta \) and \(\bar{y} \) is less than a tolerance.

The argument \texttt{npl.ctr} is an optional list which contain

- tol the tolerance of the NPL algorithm (default 1e-4),
- maxim the maximal number of iterations allowed (default 500),
- print a boolean indicating if the estimate should be printed at each step.
- \(S \) the number of simulation performed use to compute integral in the covariance by important sampling.

Value

A list consisting of:

- \texttt{info} list of general information about the model.
- \texttt{estimate} NPL estimator.
yb ybar (see details), expectation of y.
Gyb average of the expectation of y among friends.
cov list of covariance matrices.
details step-by-step output as returned by the optimizer.

See Also
sart, sar, simcdnet.

Examples

Groups’ size
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

Parameters
lambda <- 0.4
beta <- c(1.5, 2.2, -0.9)
gamma <- c(1.5, -1.2)
delta <- c(1, 0.87, 0.75, 0.6, 0.4)
theta <- c(lambda, beta, gamma)

X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

Network
Glist <- list()
for (m in 1:M) {
 nm <- nvec[m]
 Gm <- matrix(0, nm, nm)
 max_d <- 30
 for (i in 1:nm) {
 tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
 Gm[i, tmp] <- 1
 }
 rs <- rowSums(Gm); rs[rs == 0] <- 1
 Gm <- Gm/rs
 Glist[[m]] <- Gm
}

data <- data.frame(x1 = X[,1], x2 = X[,2])
rm(list = ls()[!(ls() %in% c(“Glist”, “data”, “theta”, “delta”))])
ytmp <- simcdnet(formula = ~ x1 + x2 | x1 + x2, Glist = Glist, theta = theta, delta = delta, data = data)
homophily <- ytmp$y

plot histogram
hist(y, breaks = max(y))

data <- data.frame(yt = y, x1 = data$x1, x2 = data$x2)
rm(list = ls()[!(ls() %in% c("Glist", "data"))])

out <- cdnet(formula = yt ~ x1 + x2, contextual = TRUE, Glist = Glist, data = data, Rbar = 6)
summary(out)

homophily | **Estimate Network Formation Model**

Description

Estimate Network Formation Model

Usage

```r
homophily(
  network,
  formula,
  data,
  fixed.effects = FALSE,
  init = list(),
  iteration = 1000,
  print = TRUE
)
```

Arguments

- **network**: matrix or list of sub-matrix of social interactions containing 0 and 1, where links are represented by 1
- **formula**: an object of class formula: a symbolic description of the model. The formula should be as for example ~ x1 + x2 where x1, x2 are explanatory variable of links formation
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which homophily is called.
- **fixed.effects**: boolean indicating if sub-network heterogeneity as fixed effects should be included.
homophily

init (optional) list of starting values containing beta, an K-dimensional vector of the explanatory variables parameter, mu an n-dimensional vector, and nu an n-dimensional vector, smu2 the variance of mu, and snu2 the variance of nu, where K is the number of explanatory variables and n is the number of individuals.

iteration the number of iterations to be performed.

print boolean indicating if the estimation progression should be printed.

Value

A list consisting of:

n number of individuals in each network.

n.obs number of observations.

n.links number of links.

K number of explanatory variables.

posterior list of simulations from the posterior distribution.

iteration number of performed iterations.

init returned list of starting values.

Examples

set.seed(1234)
library(MASS)
M <- 4 # Number of sub-groups
nvec <- round(runif(M, 100, 500))
beta <- c(.1, -.1)
Glist <- list()
dX <- matrix(0, 0, 2)
mu <- list()
nu <- list()
cst <- runif(M, -1.5, 0)
smu2 <- 0.2
snu2 <- 0.2
rho <- 0.8
Smunu <- matrix(c(smu2, rho*sqrt(smu2*snu2), rho*sqrt(smu2*snu2), snu2), 2)
for (m in 1:M) {
 n <- nvec[m]
tmp <- mvrnorm(n, c(0, 0), Smunu)
mum <- tmp[,1] - mean(tmp[,1])
num <- tmp[,2] - mean(tmp[,2])
X1 <- rnorm(n, 0, 1)
X2 <- rbinom(n, 1, 0.2)
Z1 <- matrix(0, n, n)
Z2 <- matrix(0, n, n)

 for (i in 1:n) {
 for (j in 1:n) {
 Z1[i, j] <- abs(X1[i] - X1[j])
Z2[i, j] <- 1*(X2[i] == X2[j])
}

 kronecker(mum, t(num), "+") + rnorm(n^2)) > 0)
diag(Gm) <- 0
diag(Z1) <- NA
diag(Z2) <- NA
Z1 <- Z1[!is.na(Z1)]
Z2 <- Z2[!is.na(Z2)]

dX <- rbind(dX, cbind(Z1, Z2))
Glist[[m]] <- Gm
mu[[m]] <- mum
nu[[m]] <- num

mu <- unlist(mu)
u <- unlist(nu)

out <- homophily(network = Glist, formula = ~ dX, fixed.effects = TRUE,
 iteration = 1e3)

plot simulations
plot(out$posterior$beta[,1], type = "l")
abline(h = cst[1], col = "red")
plot(out$posterior$beta[,2], type = "l")
abline(h = cst[2], col = "red")
plot(out$posterior$beta[,3], type = "l")
abline(h = cst[3], col = "red")
plot(out$posterior$beta[,4], type = "l")
abline(h = cst[4], col = "red")
plot(out$posterior$beta[,5], type = "l")
abline(h = beta[1], col = "red")
plot(out$posterior$beta[,6], type = "l")
abline(h = beta[2], col = "red")
plot(out$posterior$sigma2_mu, type = "l")
abline(h = smu2, col = "red")
plot(out$posterior$sigma2_nu, type = "l")
abline(h = snu2, col = "red")
plot(out$posterior$rho, type = "l")
abline(h = rho, col = "red")
i <- 10
plot(out$posterior$mu[,i], type = "l")
abline(h = mu[i], col = "red")
plot(out$posterior$nu[,i], type = "l")
abline(h = nu[i], col = "red")
Description

Estimate SAR model

Usage

sar(
 formula,
 contextual,
 Glist,
 lambda0 = NULL,
 optimizer = "optim",
 opt.ctr = list(),
 print = TRUE,
 cov = TRUE,
 data
)

Arguments

formula an object of class formula: a symbolic description of the model. The formula should be as for example y ~ x1 + x2 | x1 + x2 where y is the endogenous vector, the listed variables before the pipe, x1, x2 are the individual exogenous variables and the listed variables after the pipe, x1, x2 are the contextual observable variables. Other formulas may be y ~ x1 + x2 for the model without contextual effects, y ~ -1 + x1 + x2 | x1 + x2 for the model without intercept or y ~ x1 + x2 | x2 + x3 to allow the contextual variable to be different from the individual variables.

contextual (optional) logical; if true, this means that all individual variables will be set as contextual variables. Set the formula as y ~ x1 + x2 and contextual as TRUE is equivalent to set the formula as y ~ x1 + x2 | x1 + x2.

Glist the adjacency matrix or list sub-adjacency matrix.

lambda0 (optional) starting value of λ. The parameter γ should be removed if the model does not contain contextual effects (see details).

optimizer is either nlm (referring to the function nlm) or optim (referring to the function optim). Other arguments of these functions such as, the control values and the method can be defined through the argument opt.ctr.

opt.ctr list of arguments of nlm or optim (the one set in optimizer) such as control, method, ...

print a boolean indicating if the estimate should be printed at each step.

cov a boolean indicating if the covariance should be computed.
data
an optional data frame, list or environment (or object coercible by `as.data.frame`
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from `environment(formula)`, typically the environment
from which `mcmcARD` is called.

Details

Model:
The variable y is given for all i as

$$y_i = \lambda g_i y + x_i' \beta + g_i X \gamma + \epsilon_i,$$

where $\epsilon_i \sim N(0, \sigma^2)$.

Value
A list consisting of:

- `info` list of general information on the model.
- `estimate` Maximum Likelihood (ML) estimator.
- `cov` covariance matrix of the estimate.
- `details` outputs as returned by the optimizer.

See Also

`sart, cdnet, simsar`.

Examples

```r
# Groups
M <- 5 # Number of sub-groups	nvec <- round(runif(M, 100, 1000))	n <- sum(nvec)

# Parameters
lambda <- 0.4
beta <- c(2, -1.9, 0.8)
gamma <- c(1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, beta, gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
Glist <- list()

for (m in 1:M) {
  nm <- nvec[m]
  Gm <- matrix(0, nm, nm)
  # ...
"
max_d <- 30
for (i in 1:nm) {
  tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
  Gm[i, tmp] <- 1
}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
Glist[[m]] <- Gm
}

# data
data <- data.frame(x1 = X[,1], x2 = X[,2])
rm(list = ls()[!(ls() %in% c("Glist", "data", "theta"))])
ytmp <- simsar(formula = ~ x1 + x2 | x1 + x2, Glist = Glist,
               theta = theta, data = data)
y <- ytmp$y

# plot histogram
hist(y, breaks = max(y))
data <- data.frame(yt = y, x1 = data$x1, x2 = data$x2)
rm(list = ls()[!(ls() %in% c("Glist", "data"))])
out <- sar(formula = yt ~ x1 + x2, contextual = TRUE,
           Glist = Glist, optimizer = "optim", data = data)
summary(out)

sart  

Estimate sart model

Description

Estimate sart model

Usage

sart(
  formula, contextual, Glist, theta0 = NULL, yb0 = NULL,
  optimizer = "optim", npl.ctr = list(), opt.ctr = list(),
)
print = TRUE,
cov = TRUE,
RE = FALSE,
data)

Arguments
  formula an object of class formula: a symbolic description of the model. The formula should be as for example \( y \sim x_1 + x_2 | x_1 + x_2 \) where \( y \) is the endogenous vector, the listed variables before the pipe, \( x_1, x_2 \) are the individual exogenous variables and the listed variables after the pipe, \( x_1, x_2 \) are the contextual observable variables. Other formulas may be \( y \sim x_1 + x_2 \) for the model without contextual effects, \( y \sim -1 + x_1 + x_2 | x_1 + x_2 \) for the model without intercept or \( y \sim x_1 + x_2 | x_2 + x_3 \) to allow the contextual variable to be different from the individual variables.
  contextual (optional) logical; if true, this means that all individual variables will be set as contextual variables. Set the formula as \( y \sim x_1 + x_2 \) and contextual as TRUE is equivalent to set the formula as \( y \sim x_1 + x_2 | x_1 + x_2 \).
  Glist the adjacency matrix or list sub-adjacency matrix.
  theta0 (optional) starting value of \( \theta = (\lambda, \beta, \gamma, \sigma) \). The parameter \( \gamma \) should be removed if the model does not contain contextual effects (see details).
  yb0 (optional) expectation of \( y \).
  optimizer is either nlm (referring to the function nlm) or optim (referring to the function optim). Other arguments of these functions such as, the control values and the method can be defined through the argument opt.ctr.
  npl.ctr list of controls for the NPL method (see cdnet).
  opt.ctr list of arguments of nlm or optim (the one set in optimizer) such as control, method, ...
  print a boolean indicating if the estimate should be printed at each step.
  cov a boolean indicating if the covariance should be computed.
  RE a boolean which indicates if the model if under rational expectation of not.
  data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which sart is called.

Details

Model:
The left-censored variable \( y \) is generated from a latent variable \( y^* \). The latent variable is given for all \( i \) as
\[
y^*_i = \lambda g_i \gamma + x'_i \beta + g_i X Y \gamma + \epsilon_i,
\]
where \( \epsilon_i \sim N(0, \sigma^2) \).
The count variable \( y_i \) is then define that is \( y_i = 0 \) if \( y^*_i \leq 0 \) and \( y_i = y^*_i \) otherwise.
Value

A list consisting of:

- `info`: list of general information on the model.
- `estimate`: Maximum Likelihood (ML) estimator.
- `yb`: \( y_{\text{bar}} \) (see details), expectation of \( y \).
- `Gyb`: average of the expectation of \( y \) among friends.
- `cov`: List of covariances.
- `details`: outputs as returned by the optimizer.

See Also

`sar`, `cdnet`, `simsart`.

Examples

```r
Groups' size
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

Parameters
lambda <- 0.4
beta <- c(2, -1.9, 0.8)
gamma <- c(1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, beta, gamma, sigma)

X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

Network
Glist <- list()
for (m in 1:M) {
 nm <- nvec[m]
 Gm <- matrix(0, nm, nm)
 max_d <- 30
 for (i in 1:nm) {
 tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
 Gm[i, tmp] <- 1
 }
 rs <- rowSums(Gm); rs[rs == 0] <- 1
 Gm <- Gm/rs
 Glist[[m]] <- Gm
}

data
data <- data.frame(x1 = X[,1], x2 = X[,2])
rm(list = ls() %in% c("Glist", "data", "theta"))
ytmp <- simsart(formula = ~ x1 + x2 | x1 + x2, Glist = Glist, theta = theta, data = data)
y <- ytmp$y

plot histogram
hist(y)

opt.ctr <- list(method = "Nelder-Mead", control = list(abstol = 1e-16, abstol = 1e-11, maxit = 5e3))
data <- data.frame(yt = y, x1 = data$x1, x2 = data$x2)
rm(list = ls() %in% c("Glist", "data"))
out <- sart(formula = yt ~ x1 + x2, optimizer = "nlm", contextual = TRUE, Glist = Glist, data = data)
summary(out)

simcdnet

Simulate data from Count Data Model with Social Interactions

Description

Simulate data from Count Data Model with Social Interactions

Usage

```r
simcdnet(
  formula, contextual, Glist, theta, delta, tol = 1e-15, maxit = 500, data
)
```

Arguments

- `formula`: an object of class formula: a symbolic description of the model. The formula should be as for example `y ~ x1 + x2 | x1 + x2` where `y` is the endogenous vector, the listed variables before the pipe, `x1, x2` are the individual exogenous variables and the listed variables after the pipe, `x1, x2` are the contextual observable variables. Other formulas may be `y ~ x1 + x2` for the model without
contextual effects, $y \sim -1 + x1 + x2 | x1 + x2$ for the model without intercept or $y \sim x1 + x2 | x2 + x3$ to allow the contextual variable to be different from the individual variables.

contextual

(optional) logical; if true, this means that all individual variables will be set as contextual variables. Set the formula as $y \sim x1 + x2$ and contextual as TRUE is equivalent to set the formula as $y \sim x1 + x2 | x1 + x2$.

Glist

the adjacency matrix or list sub-adjacency matrix.

theta

the true value of the vector $\theta = (\lambda, \beta', \gamma')'$. The parameter γ should be removed if the model does not contain contextual effects (see details).

delta

the true value of the vector $\delta = (\delta_2, ..., \delta_{\bar{R}})$

tol

the tolerance value used in the Fixed Point Iteration Method to compute the expectancy of y. The process stops if the L_1 distance between two consecutive values of the expectancy of y is less than tol.

maxit

the maximal number of iterations in the Fixed Point Iteration Method.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which mcmcARD is called.

Details

Following Houndetoungan (2020), the count data y is generated from a latent variable y^*. The latent variable is given for all i as

$$y_i^* = \lambda g_i \bar{y} + x'_i \beta + g_i X \gamma + \epsilon_i,$$

where $\epsilon_i \sim N(0, 1)$.

Then, $y_i = r$ iff $a_r \leq y_i^* < a_{r+1}$, where $a_0 = -\infty$, $a_1 = 0$, $a_r = \sum_{k=1}^{r} \delta_k$ if $1 \leq r \leq \bar{R}$, and $a_r = (r - \bar{R}) \delta_{\bar{R}} + a_{\bar{R}}$ otherwise.

Value

A list consisting of:

- **yst**
 ys (see details), the latent variable.

- **y**
 the observed count data.

- **yb**
 ybar (see details), the expectation of y.

- **Gyb**
 the average of the expectation of y among friends.

- **marg.effects**
 the marginal effects.

- **iteration**
 number of iterations performed by sub-network in the Fixed Point Iteration Method.

See Also

cdnet, simsart, simsar.
Examples

```r
# Groups' size
M <- 5  # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

# Parameters
lambda <- 0.4
beta <- c(1.5, 2.2, -0.9)
gamma <- c(1.5, -1.2)
delta <- c(1, 0.87, 0.75, 0.6, 0.4)
theta <- c(lambda, beta, gamma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
Glist <- list()
for (m in 1:M) {
  nm <- nvec[m]
  Gm <- matrix(0, nm, nm)
  max_d <- 30
  for (i in 1:nm) {
    tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
    Gm[i, tmp] <- 1
  }
  rs <- rowSums(Gm); rs[rs == 0] <- 1
  Gm <- Gm/rs
  Glist[[m]] <- Gm
}

# data
data <- data.frame(x1 = X[,1], x2 = X[,2])

rm(list = ls()[!(ls() %in% c("Glist", "data", "theta", "delta"))])

ytmp <- simcdnet(formula = ~ x1 + x2 | x1 + x2, Glist = Glist, theta = theta,
delta = delta, data = data)
y <- ytmp$y

# plot histogram
hist(y, breaks = max(y))
```

simsar

Simulate data from the linear-in-mean Model with Social Interactions
Description

Simulate data from the linear-in-mean Model with Social Interactions

Usage

`simsar(formula, contextual, Glist, theta, data)`

Arguments

- `formula`: an object of class `formula`: a symbolic description of the model. The `formula` should be as for example `y ~ x1 + x2 | x1 + x2` where `y` is the endogenous vector, the listed variables before the pipe, `x1, x2` are the individual exogenous variables and the listed variables after the pipe, `x1, x2` are the contextual observable variables. Other formulas may be `y ~ x1 + x2` for the model without contextual effects, `y ~ -1 + x1 + x2 | x1 + x2` for the model without intercept or `y ~ x1 + x2 | x2 + x3` to allow the contextual variable to be different from the individual variables.

- `contextual`: (optional) logical; if true, this means that all individual variables will be set as contextual variables. Set the `formula` as `y ~ x1 + x2` and `contextual` as `TRUE` is equivalent to set the `formula` as `y ~ x1 + x2 | x1 + x2`.

- `Glist`: the adjacency matrix or list sub-adjacency matrix.

- `theta`: the parameter value as `θ = (λ, β, γ, σ)`. The parameter `γ` should be removed if the model does not contain contextual effects (see details).

- `data`: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `mcmcARD` is called.

Details

The variable `y` is given for all `i` as

\[y_i = \lambda g_i y + x_i' \beta + g_i X \gamma + \epsilon_i, \]

where `\epsilon_i \sim N(0, \sigma^2)`.

Value

A list consisting of:

- `y`: the observed count data.
- `Gy`: the average of `y` among friends.

See Also

`sar, simsart, simcdnet`.
Examples

```r
# Groups' size
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

# Parameters
lambda <- 0.4
beta <- c(2, -1.9, 0.8)
gamma <- c(1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, beta, gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
Glist <- list()
for (m in 1:M) {
  nm <- nvec[m]
  Gm <- matrix(0, nm, nm)
  max_d <- 30
  for (i in 1:nm) {
    tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
    Gm[i, tmp] <- 1
  }
  rs <- rowSums(Gm); rs[rs == 0] <- 1
  Gm <- Gm/rs
  Glist[[m]] <- Gm
}

# data
data <- data.frame(x1 = X[,1], x2 = X[,2])
rm(list = ls()[!(ls() %in% c("Glist", "data", "theta"))])
ytmp <- simsar(formula = ~ x1 + x2 | x1 + x2, Glist = Glist, theta = theta, data = data)
y <- ytmp$y

# plot histogram
hist(y)
```

simsart Simulate data from the Tobit Model with Social Interactions
Description

Simulate data from the Tobit Model with Social Interactions

Usage

simsart(
 formula,
 contextual,
 Glist,
 theta,
 tol = 1e-15,
 maxit = 500,
 RE = FALSE,
 data
)

Arguments

- **formula**: an object of class *formula*: a symbolic description of the model. The formula should be as for example \(y \sim x_1 + x_2 | x_1 + x_2 \) where \(y \) is the endogenous vector, the listed variables before the pipe, \(x_1, x_2 \) are the individual exogenous variables and the listed variables after the pipe, \(x_1, x_2 \) are the contextual observable variables. Other formulas may be \(y \sim x_1 + x_2 \) for the model without contextual effects, \(y \sim -1 + x_1 + x_2 | x_1 + x_2 \) for the model without intercept or \(y \sim x_1 + x_2 | x_2 + x_3 \) to allow the contextual variable to be different from the individual variables.

- **contextual** (optional) logical; if true, this means that all individual variables will be set as contextual variables. Set the formula as \(y \sim x_1 + x_2 \) and contextual as TRUE is equivalent to set the formula as \(y \sim x_1 + x_2 | x_1 + x_2 \).

- **Glist**: the adjacency matrix or list sub-adjacency matrix.

- **theta**: the parameter value as \(\theta = (\lambda, \beta, \gamma, \sigma) \). The parameter \(\gamma \) should be removed if the model does not contain contextual effects (see details).

- **tol**: the tolerance value used in the Fixed Point Iteration Method to compute \(y \). The process stops if the \(L_1 \) distance between two consecutive values of \(y \) is less than tol.

- **maxit**: the maximal number of iterations in the Fixed Point Iteration Method.

- **RE**: a boolean which indicates if the model if under rational expectation of not.

- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `mcmcARD` is called.

Details

The left-censored variable \(y \) is generated from a latent variable \(y^* \). The latent variable is given for all \(i \) as

\[
y^*_i = \lambda g_i y + x'_i \beta + g_i X \gamma + \epsilon_i,
\]
where $\epsilon_i \sim N(0, \sigma^2)$.

The count variable y_i is then define that is $y_i = 0$ if $y_i^* \leq 0$ and $y_i = y_i^*$ otherwise.

Value

A list consisting of:

- `yst`: the observed count data.
- `ys`: (see details), the latent variable.
- `yb`: expectation of y under rational expectation.
- `Gy`: the average of y among friends.
- `Gyb`: Average of expectation of y among friends under rational expectation.
- `marg.effects`: the marginal effects.
- `iteration`: number of iterations performed by sub-network in the Fixed Point Iteration Method.

See Also

`sart, simsar, simcdnet`.

Examples

```r
# Groups size
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

# Parameters
lambda <- 0.4
beta <- c(2, -1.9, 0.8)
gamma <- c(1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, beta, gamma, sigma)

# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

# Network
Glist <- list()
for (m in 1:M) {
    nm <- nvec[m]
    Gm <- matrix(0, nm, nm)
    max_d <- 30
    for (i in 1:nm) {
        tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
        Gm[i, tmp] <- 1
    }
    rs <- rowSums(Gm); rs[rs == 0] <- 1
    Gm <- Gm/rs
    Glist[[m]] <- Gm
}
```

summary.cdnet <- function(object, Glist, data, S = 1000L, ...)
{
 # data
 data <- data.frame(x1 = X[,1], x2 = X[,2])
 rm(list = ls() %in% c("Glist", "data", "theta"))
 ytmp <- simsart(formula = ~ x1 + x2 | x1 + x2, Glist = Glist, theta = theta, data = data)
 y <- ytmp$y
 # plot histogram
 hist(y)
}

summary.cdnet

Summarize Count Data Model with Social Interactions

Description

Summary and print methods for the class cdnet as returned by the function cdnet.

Usage

```r
## S3 method for class 'cdnet'
summary(object, Glist, data, S = 1000L, ...)

## S3 method for class 'summary.cdnet'
print(x, ...)

## S3 method for class 'cdnet'
print(x, ...)

## S3 method for class 'cdnets'
summary(object, ...)

## S3 method for class 'summary.cdnets'
print(x, ...)

## S3 method for class 'cdnets'
print(x, ...)
```

Arguments

- `object` an object of class cdnet, output of the function cdnet.
Glist adjacency matrix or list sub-adjacency matrix. This is not necessary if the covariance method was computed in `cdnet`.
data a dataframe containing the explanatory variables. This is not necessary if the covariance method was computed in `cdnet`.
S number of simulation to be used to compute integral in the covariance by important sampling.
... further arguments passed to or from other methods.
x an object of class `summary.cdnet`, output of the function `summary.cdnet`, class `summary.cdnets`, list of outputs of the function `summary.cdnet` (when the model is estimated many times to control for the endogeneity) or class `cdnet` of the function `cdnet`.

Value
A list of the same objects in object.

summary.sar

```r
## S3 method for class 'sar'
summary(object, ...)
## S3 method for class 'summary.sar'
print(x, ...)
## S3 method for class 'sar'
print(x, ...)
## S3 method for class 'sars'
summary(object, ...)
## S3 method for class 'summary.sars'
print(x, ...)
## S3 method for class 'sars'
print(x, ...)
```

Description
Summary and print methods for the class sar as returned by the function `sar`.

Usage

```r
# S3 method for class 'sar'
summary(object, ...)
# S3 method for class 'summary.sar'
print(x, ...)
# S3 method for class 'sar'
print(x, ...)
# S3 method for class 'sars'
summary(object, ...)
# S3 method for class 'summary.sars'
print(x, ...)
# S3 method for class 'sars'
print(x, ...)
```
summary.sart

Arguments

object an object of class sar, output of the function sar.

... further arguments passed to or from other methods.

x an object of class summary.sar, output of the function summary.sar or class sar, output of the function sar.

Value

A list of the same objects in object.

summary.sart

Summarize sar Model

Description

Summary and print methods for the class sar as returned by the function sart.

Usage

```r
## S3 method for class 'sar'
summary(object, Glist, data, ...)

## S3 method for class 'summary.sar'
print(x, ...)

## S3 method for class 'sar'
print(x, ...)

## S3 method for class 'sarts'
summary(object, ...)  # S3 method for class 'sarts'

## S3 method for class 'summary.sarts'
print(x, ...)

## S3 method for class 'sarts'
print(x, ...)
```

Arguments

object an object of class sar, output of the function sar.

Glist adjacency matrix or list sub-adjacency matrix. This is not necessary if the covariance method was computed in cdnet.

data dataframe containing the explanatory variables. This is not necessary if the covariance method was computed in cdnet.

... further arguments passed to or from other methods.

x an object of class summary.sar, output of the function summary.sar or class sar, output of the function sar.
Value

A list of the same objects in object.
Index

as.data.frame, 4, 6, 10, 12, 15, 17, 19
CDatanet (CDatanet-package), 2
CDatanet-package, 2
cdnet, 3, 10, 12, 13, 15, 21–23
formula, 3, 6, 9, 12, 14, 17, 19
homophily, 6
nlm, 4, 9, 12
optim, 4, 9, 12
print.cdnet (summary.cdnet), 21
print.cdnets (summary.cdnet), 21
print.sar (summary.sar), 22
print.sars (summary.sar), 22
print.sart (summary.sart), 23
print.sarts (summary.sart), 23
print.summary.cdnet (summary.cdnet), 21
print.summary.cdnets (summary.cdnet), 21
print.summary.sar (summary.sar), 22
print.summary.sars (summary.sar), 22
print.summary.sart (summary.sart), 23
print.summary.sarts (summary.sart), 23
sar, 5, 9, 13, 17, 22, 23
sart, 5, 10, 11, 20, 23
simcdnet, 5, 14, 17, 20
simsar, 10, 15, 16, 20
simsart, 13, 15, 17, 18
summary.cdnet, 21, 22
summary.cdnets (summary.cdnet), 21
summary.sar, 22, 23
summary.sars (summary.sar), 22
summary.sart, 23, 23
summary.sarts (summary.sart), 23