Package ‘CEC’

July 27, 2018

Title Cross-Entropy Clustering
Version 0.10.2
Date 2018-07-26
Author Konrad Kamieniecki [aut, cre], Przemyslaw Spurek [ctb]
Maintainer Konrad Kamieniecki <konrad.kamieniecki@alumni.uj.edu.pl>
Description CEC divides data into Gaussian type clusters. The implementation allows the simultaneous use of various type Gaussian mixture models, performs the reduction of unnecessary clusters and it’s able to discover new groups. Based on Spurek, P. and Tabor, J. (2014) <doi:10.1016/j.patcog.2014.03.006>.
ByteCompile true
URL https://github.com/azureblue/cec
Encoding UTF-8
NeedsCompilation yes
SystemRequirements C++11
License GPL-3
Imports graphics, methods, stats, utils
Repository CRAN
Date/Publication 2018-07-26 22:00:06 UTC

R topics documented:

CEC-package ... 2
ball ... 2
cec .. 3
fourGaussians .. 7
init.centers .. 7
mixShapes ... 8
mouseset ... 8
plot.cec .. 9
print.cec ... 10
run.cec.tests ... 10
Description

CEC divides data into Gaussian type clusters. The implementation allows the simultaneous use of various type Gaussian mixture models, performs the reduction of unnecessary clusters and it’s able to discover new groups. Based on Spurek, P. and Tabor, J. (2014) <doi:10.1016/j.patcog.2014.03.006> cec.

Details

Package: CEC
Type: Package
Version: 0.10.2
Date: 2018-07-26
License: GPL-3

Author(s)

Konrad Kamieniecki

See Also

cec

ball

Usage

ball(n, r, dim)
Arguments

- n: Number of points to generate.
- r: Radius of the ball.
- dim: Dimension of the points.

Value

Matrix of points with n rows and dim cols.

See Also

mouseset

Examples

```r
M = ball(4000, 0.9)
plot(M, cex = 0.5, pch = 19)
```

cec

Cross-Entropy Clustering

Description

Performs Cross-Entropy Clustering on a data matrix.

Usage

```r
cec(x, centers, type = c("covariance", "fixedr", "spherical", "diagonal", "eigenvalues", "mean", "all"), iter.max = 25, nstart = 1, param, centers.init = c("kmeans++", "random"), card.min = "5X", keep.removed = F, interactive = F, threads = 1, split = F, split.depth = 8, split.tries = 5, split.limit = 100, split.initial.starts = 1, readline = T)
```

Arguments

- x: Numeric matrix of data.
- centers: Either a matrix of initial centers or the number of initial centers (k, single number cec(data, 4, ...) or a vector for variable number of centers cec(data, 3:10, ...)). If centers is a vector, length(centers) clusterings will be performed for each start (nstart argument) and the total number of clusterings will be length(centers) * nstart. If centers is a number or a vector, initial centers will be generated using a method depending on the centers.init argument.
- type: Type (or types) of clustering (density family). This can be either a single value or a vector of length equal to the number of centers. Possible values are: "covariance", "fixedr", "spherical", "diagonal", "eigenvalues", "all" (default). Currently, if the centers argument is a vector, only single type can be used.
iter.max Maximum number of iterations at each clustering.
nstart The number of clusterings to perform (with different initial centers). Only the
 best clustering (with the lowest cost) will be returned. Value greater than one is
 valid only if the centers argument is a number or a vector.
 If the centers argument is a vector, length(centers) clusterings will be per-
 formed for each start and the total number of clusterings will be length(centers) * nstart.
 If the split mode is on (split = T), it's rarely desired use change this parameter
 as the whole procedure (initial clustering + split) will be performed nstart
times.
centers.init Centers initialization method. Possible values are: "kmeans++" (default), "ran-
 dom".
param Parameter (or parameters) specific to a particular type of clustering. Not all types
 of clustering require parameter. Types that require parameter: "covariance" (ma-
 trix parameter), "fixedr" (numeric parameter), "eigenvalues" (vector parameter).
 This can be a vector or a list (when one of the parameters is a matrix or a vector).
card.min Minimal cluster cardinality. If cluster cardinality becomes less than card.min,
 cluster is removed. This argument can be either an integer number or a string
 ended with a percent sign (e.g. "5").
keep.removed If this parameter is TRUE, removed clusters will be visible in the results as NA
 in centers matrix (as well as corresponding values in the list of covariances).
interactive Interactive mode. If TRUE, the result of clustering will be plotted after every
 iteration.
treads Specifies the number of threads to use or "auto" to use default number of threads
 (usually the number of available processing units/cores) when performing mul-
 tiple starts (nstart parameter).
 The execution of a single start is always performed by a single thread, thus
 for nstart = 1 only one thread will be used regardless of the value of this
 parameter.
split Enables split mode. This mode discovers new clusters after initial clustering, by
 trying to split single clusters into two to lower the cost function.
 For each start (nstart), initial clustering will be performed and then split. The
 number of starts in the initial clustering before split is driven by the split.initial.starts
 parameter.
split.depth Cluster subdivision depth used in split mode. Usually a value less than 10 is
 sufficient (when after each subdivision, new clusters have similar sizes). For
 some data, subdivisions may often produce a cluster (one of the two) that will
 not be split further, in that case a higher value of the split.depth is required.
split.tries The number of attempts that are made when trying to split a cluster in split mode.
split.limit Maximum number of centers to be discovered in split mode.
split.initial.starts The number of 'standard' starts performed before starting split.
readline Used only in the interactive mode. If readline is TRUE, at each iteration,
 before plotting it will wait for the user to press <Return> instead of standard
 "before plotting" (par(ask = TRUE)) waiting.
Details

In the context of implementation, Cross-Entropy Clustering (CEC) aims to partition \(m \) points into \(k \) clusters so as to minimize the cost function (energy \(E \) of the clustering) by switching the points between clusters. The presented method is based on the adapted Hartigan approach, where we reduce clusters which cardinalities decreased below some small prefixed level.

The energy function \(E \) is given by:

\[
E(Y_1, F_1; \ldots; Y_k, F_k) = \sum_{i=1}^{k} p(Y_i) \cdot (-\ln(p(Y_i))) + H^x(Y_i\|F_i)
\]

where \(Y_i \) denotes the \(i \)-th cluster, \(p(Y_i) \) is the ratio of the number of points in \(i \)-th cluster to the total number points, \(H(Y_i|F_i) \) is the value of cross-entropy, which represents the internal cluster energy function of data \(Y_i \) defined with respect to a certain Gaussian density family \(F_i \), which encodes the type of clustering we consider.

The value of the internal energy function \(H \) depends on the covariance matrix (computed using maximum-likelihood method) and the mean (in case of the mean model) of the points in the cluster. Seven implementations of \(H \) have been proposed (expressed as a type-model of the clustering):

- "all" - All Gaussian densities. Data will form ellipsoids with arbitrary radiuses.
- "covariance" - Gaussian densities with a fixed given covariance. The shapes of clusters depend on the given covariance matrix (additional parameter).
- "fixedr" - Special case of "covariance", where the covariance matrix equals \(rI \) for the given \(r \) (additional parameter). The clustering will have a tendency to divide data into balls with approximate radius proportional to the square root of \(r \).
- "spherical" - Spherical (radial) Gaussian densities (covariance proportional to the identity). Clusters will have a tendency to form balls of arbitrary sizes.
- "diagonal" - Gaussian densities with diagonal covariance. Data will form ellipsoids with radiiuses parallel to the coordinate axes.
- "eigenvalues" - Gaussian densities with covariance matrix having fixed eigenvalues (additional parameter). The clustering will try to divide the data into fixed-shaped ellipsoids rotated by an arbitrary angle.
- "mean" Gaussian densities with a fixed mean. Data will be covered with ellipsoids with fixed centers.

The implementation of cec function allows mixing of clustering types.

Value

Returns an object of class "cec" with available components: "data", "cluster", "probabilities", "centers", "cost.function", "nclusters", "iterations", "cost", "covariances", "covariances.model", "time".

Author(s)

Konrad Kamieniecki, Jacek Tabor, Przemyslaw Spurek
References

See Also

CEC-package.

Examples

```r
# Cross-Entropy Clustering
#

## Example of clustering random data set of 3 Gaussians,
## 10 random initial centers and 7% as minimal cluster size.

m1 = matrix(rnorm(2000, sd=1), ncol=2)
m2 = matrix(rnorm(2000, mean = 3, sd = 1.5), ncol = 2)
m3 = matrix(rnorm(2000, mean = 3, sd = 1), ncol = 2)
m3[,2] = m3[,2] - 5
m = rbind(m1, m2, m3)
par(ask = TRUE)
plot(m, cex = 0.5, pch = 19)
## Clustering result: Z = cec(m, 10, iter.max = 100, card.min="7%")
plot(Z)
## Result: Z

## Example of clustering mouse-like set using spherical Gaussian densities.
m = mouseset(n=7000, r.head=2, r.left.ear=1.1, r.right.ear=1.1, left.ear.dist=2.5,
right.ear.dist=2.5, dim=2)
plot(m, cex = 0.5, pch = 19)
## Clustering result: Z = cec(m, 3, type="sp", iter.max = 100, nstart=4, card.min="5%")
plot(Z)
## Result: Z

## Example of clustering data set "Tset" using "eigenvalues" clustering type.
data(Tset);
plot(Tset, cex = 0.5, pch = 19)
centers = init.centers(Tset, 2)
## Clustering result: Z <- cec(Tset, 5, "eigenvalues", param=c(0.02,0.002), nstart=4)
plot(Z)
## Result: Z

## Example of using CEC split method starting with a single cluster.
data(mixShapes)
plot(mixShapes, cex = 0.5, pch = 19)
## Clustering result:
```

```
### fourGaussians

Matrix of 2-dimensional points of four Gaussians.

#### Usage

data(fourGaussians)

#### Examples

data(fourGaussians)
plot(fourGaussians, cex = 0.5, pch = 19);

---

### init.centers

**Center initialization**

Creates a matrix of \(k\) points (centers) based on a given matrix of points. One of two method can be used: Kmeans++ centers initialization method or a random choice of data points.

#### Usage

init.centers(x, k, method = c("kmeans++", "random"))

#### Arguments

- **x**: Dataset as a matrix of n-dimensional points.
- **k**: Number of points (centers) to generate.
- **method**: Generation method. Possible values are: "kmeans++", "random.points".

#### Value

Matrix points (centers) with \(k\) rows.

#### Examples

m = matrix(runif(3000), 1000, 3)
init.centers(m, 3, method = "km")
mixShapes

Description

Matrix of 2-dimensional points that form circular and elliptical patterns.

Usage

data(mixShapes)

Examples

data(mixShapes)
plot(mixShapes, cex = 0.5, pch = 19);

mouseset

Description

Creates a matrix of dim-dimensional points that form a "mouse-like" set with uniform density.

Usage

mouseset(n = 4000, r.head = 2, r.left.ear = 1.1, r.right.ear = 1.1, left.ear.dist = 2.5,
right.ear.dist = 2.5, dim = 2)

Arguments

n Number of points to generate.
r.head Radius of mouse head.
r.left.ear Radius of mouse left ear.
r.right.ear Radius of mouse right ear.
left.ear.dist Distance between the center of the head and the center the left ear.
right.ear.dist Distance between the center of the head and the center the right ear.
dim Dimension of points.

Value

Matrix of points with n rows and dim cols.

See Also

ball
Examples

```r
M = mouseset(n=7000, r.head=2, r.left.ear=1.1, r.right.ear=1.1, left.ear.dist=2.5, right.ear.dist=2.5, dim=2)
plot(M, cex = 0.5, pch = 19)
```

Description

Presents the results of `cec` function in the form of a plot. Colors of data points depend of the cluster they belong to. Ellipses are drawn with regards to the covariance (either model or sample) of each cluster.

Usage

```r
S3 method for class 'cec'
plot(x, col, cex = 0.5, pch = 19, cex.centers = 1, pch.centers = 8, ellipses.lwd = 4, ellipses = TRUE, model = T, xlab, ylab, ...)
```

Arguments

- `x` The result of `cec` function.
- `col` Use this argument to change default colors of points in the clusters.
- `cex` Basically the size of the points, see `points`.
- `pch` See `points`.
- `cex.centers` The same as `cex` parameter, except that it's related to the centers' means.
- `pch.centers` The same as `pch` parameter, except that it's related to the centers' means.
- `ellipses.lwd` Width of ellipses, `points`.
- `ellipses` If this parameter is TRUE, ellipses will be drawn.
- `model` If this parameter is TRUE, the model (expected) covariance will be used for each cluster instead of sample covariance (MLE) of the points in the cluster, when drawing ellipses.
- `xlab` See `plot`.
- `ylab` See `plot`.
- `...` Arguments are passed to `plot` function when drawing data points.

See Also

- `print.cec`

Examples

```r
See the examples of function cec.
```
print.cec

---

**Print CEC.**

**Description**

Presents a structure of the cec results object in the form of text.

**Usage**

```r
S3 method for class 'cec'
print(x, ...)
```

**Arguments**

- `x`: Result of the cec function.
- `...`: Ignored.

**See Also**

`plot.cec`

**Examples**

```r
See the examples of function cec.
```

---

run.cec.tests

---

**CEC package tests.**

**Description**

This function is used to run cec package "unit test"-like system. The set of tests is located in inst/cec_tests directory and it consists of .R files defining each test case. This is also used for R CMD check.

**Usage**

```r
run.cec.tests()
```
**threeGaussians**

| threeGaussians | threeGaussians |

**Description**
Matrix of 2-dimensional points from three Gaussians with means equal (0, 0).

**Usage**
```r
data(threeGaussians)
```

**Examples**
```r
data(threeGaussians)
plot(threeGaussians, cex = 0.5, pch = 19);
```

---

**Tset**

| Tset |

**Description**
Matrix of 2-dimensional points that form T letter.

**Usage**
```r
data(Tset)
```

**Examples**
```r
data(Tset)
plot(Tset, cex = 0.5, pch = 19);
```
Index

*Topic \texttt{\textasciitildeball}
  ball, 2
*Topic \texttt{\textasciitildececc}
  cec, 3
  plot.cec, 9
  print.cec, 10
  run.cec.tests, 10
*Topic \texttt{\textasciitildecenters}
  init.centers, 7
*Topic \texttt{\textasciitildeclustering}
  cec, 3
*Topic \texttt{\textasciitildeinitialization}
  init.centers, 7
*Topic \texttt{\textasciitildemouseset}
  mouseset, 8
*Topic \texttt{\textasciitildemouse}
  mouseset, 8
*Topic \texttt{\textasciitildeplot}
  plot.cec, 9
*Topic \texttt{\textasciitildepoints}
  ball, 2
  mouseset, 8
*Topic \texttt{\textasciitildeprint}
  print.cec, 10
*Topic \texttt{\textasciitildetests}
  run.cec.tests, 10
*Topic \texttt{\textasciitildeuniform}
  ball, 2
  mouseset, 8
*Topic \texttt{\textasciitildeunit}
  run.cec.tests, 10
*Topic clustering, entropy, gaussian, kmeans
  CEC-package, 2
*Topic datasets
  fourGaussians, 7
  mixShapes, 8
  threeGaussians, 11
  Tset, 11