Package ‘CGPfunctions’

April 2, 2020

Title Powell Miscellaneous Functions for Teaching and Learning Statistics

Version 0.6.0

Description Miscellaneous functions useful for teaching statistics as well as actually practicing the art. They typically are not new methods but rather wrappers around either base R or other packages.

Depends R (>= 3.6.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports BayesFactor, broom, car, DescTools (>= 0.99.32), dplyr, forcats, ggmosaic (>= 0.2.0), ggplot2 (>= 3.3.0), ggrepel, grid, methods, paletteer, partykit, purrr, rlang, scales (>= 1.1.0), sjstats (>= 0.17.9), stats, stringr, tidy

Suggests BSDA, ggthemes, hrbrthemes, janitor, knitr, lsr, magrittr, productplots, pwr, rmarkdown, stringi, tibble, testthat, tidyselect

VignetteBuilder knitr

RoxygenNote 7.1.0

URL https://github.com/ibecav/CGPfunctions

BugReports https://github.com/ibecav/CGPfunctions/issues

NeedsCompilation no

Author Chuck Powell [aut, cre] (<https://orcid.org/0000-0002-3606-2188>)

Maintainer Chuck Powell <ibecav@gmail.com>

Repository CRAN

Date/Publication 2020-04-02 14:10:03 UTC
Description

A package that includes miscellaneous functions useful for teaching statistics as well as actually practicing the art. They typically are not new methods but rather wrappers around either base R or other packages.

Functions included

- `newggslopegraph` creates a "slopegraph" as conceptualized by Edward Tufte.
- `Plot2WayANOVA` which as the name implies conducts a 2 way ANOVA and plots the results using 'ggplot2'.
- `PlotXTabs2` which wraps around ggplot2 to provide Bivariate bar charts for categorical and ordinal data.
- `chaid_table` provides tabular summary of CHAID partykit object.
- `cross2_var_vectors` helper function to cross a vector of variables.
- `PlotXTabs` Plots cross tabulated variables using 'ggplot2'.
- `Mode` which finds the modal value in a vector of data
- `SeeDist` which wraps around ggplot2 to provide visualizations of univariate data.
- `OurConf` which wraps around ggplot2 to provide visualizations of sampling confidence intervals.
chaidUS

U.S. 2000 Election Data (short)

Description

Data from a post-election survey following the year 2000 U.S. presidential elections. This is a subset from package ‘CHAID’.

Usage

chaidUS

Format

A partykit on the following 6 variables::

- **vote3**: candidate voted for Gore or Bush
- **gender**: gender, a factor with levels male and female
- **ager**: age group, an ordered factor with levels 18-24 < 25-34 < 35-44 < 45-54 < 55-64 < 65+
- **empstat**: status of employment, a factor with levels yes, no or retired
- **educr**: status of education, an ordered factor with levels <HS < HS < >HS < College < Post Coll
- **marstat**: status of living situation, a factor with levels married, widowed, divorced or never married

Source

https://r-forge.r-project.org/R/?group_id=343

chaid_table

Produce CHAID results tables from a partykit CHAID model

Description

Produce CHAID results tables from a partykit CHAID model

Usage

chaid_table(chaidobject)

Arguments

chaidobject: An object of type ‘constparty’ or ‘party’ which was produced by ‘CHAID::chaid’ see simple example below.
cross2_var_vectors

Value

A tibble containing the results.

Author(s)

Chuck Powell

Examples

library(CGPfunctions)
chaid_table(chaidUS)

cross2_var_vectors(data, x, y, verbose = FALSE)

description

Cross two vectors of variable names from a dataframe.

Usage

cross2_var_vectors(data, x, y, verbose = FALSE)

Arguments

data: the dataframe or tibble the variables are contained in.
x, y: These are either character or integer vectors containing the names, e.g. "am" or the column numbers e.g. 9
verbose: the default is FALSE, setting to TRUE will cat additional output to the screen

Value

A list with two sublists ‘lista’ and ‘listb’. Very handy for feeding the lists to ‘purrr’ for further processing.

Author(s)

Chuck Powell
Examples

cross2_var_vectors(mtcars, 9, c(2, 10:11))
cross2_var_vectors(mtcars, "am", c("cyl", "gear", "carb"))
x2 <- c("am", "carb")
y2 <- c("vs", "cyl", "gear")
cross2_var_vectors(mtcars, x2, y2, verbose = TRUE)

Not run:
variables_list <- cross2_var_vectors(mtcars, x2, y2)
mytitles <- stringr::str_c(
 stringr::str_to_title(variables_list$lista),
 " by ",
 stringr::str_to_title(variables_list$listb),
 " in mtcars data"
)
purrr::pmap(
 .l = list(
 x = variables_list[[1]], # variables_list$lista
 y = variables_list[[2]], # variables_list$listb
 title = mytitles
),
 .f = CGPfunctions::PlotXTabs2,
 data = mtcars,
 ylab = NULL,
 perc.k = 1,
 palette = "Set2"
)

End(Not run)

Mode

Derive the modal value(s) for a set of data

Description

This function takes a vector and returns one or mode values that represent the mode point of the data

Usage

Mode(x)

Arguments

- **x**: a vector
Value

a vector containing one or more modal values for the input vector

Warning

Be careful the function does some basic error checking but the return to \texttt{Mode(NA)} is \texttt{NA} and a vector where the majority of entries are \texttt{NA} is also \texttt{NA}

Examples

\begin{verbatim}
Mode(sample(1:100, 1000, replace = TRUE))
Mode(mtcars$hp)
Mode(iris$Sepal.Length)
\end{verbatim}

\begin{tabular}{ll}
\textbf{newcancer} & \textit{Tufte dataset on cancer survival rates} \\
\end{tabular}

Description

A dataset containing cancer survival rates for different types of cancer over a 20 year period.

Usage

\texttt{newcancer}

Format

A data frame with 96 rows and 3 variables:

\textbf{Year} ordered factor for the 5, 10, 15 and 20 year survival rates

\textbf{Type} factor containing the name of the cancer type

\textbf{Survival} numeric for this data a whole number corresponding to the percent survival rate

Source

newgdp

Description

Current receipts of fifteen national governments as a percentage of gross domestic product

Usage

newgdp

Format

A data frame with 30 rows and 3 variables:

- **Year** character for 1970 and 1979
- **Country** factor country name
- **GDP** numeric a percentage of gross domestic product

Source

newggslopegraph

Description

Creates a "slopegraph" as conceptualized by Edward Tufte. Slopegraphs are minimalist and efficient presentations of your data that can simultaneously convey the relative rankings, the actual numeric values, and the changes and directionality of the data over time. Takes a dataframe as input, with three named columns being used to draw the plot. Makes the required adjustments to the ggplot2 parameters and returns the plot.

Usage

newggslopegraph(
 dataframe,
 Times,
 Measurement,
 Grouping,
 Title = "No title given",
 SubTitle = "No subtitle given",
 Caption = "No caption given",
 XTextSize = 12,
)
Arguments

dataframe a dataframe or an object that can be coerced to a dataframe. Basic error checking is performed, to include ensuring that the named columns exist in the dataframe. See the newcancer dataset for an example of how the dataframe should be organized.

times a column inside the dataframe that will be plotted on the x axis. Traditionally this is some measure of time. The function accepts a column of class ordered, factor or character. NOTE if your variable is currently a “date” class you must convert before using the function with as.character(variablename).

measurement a column inside the dataframe that will be plotted on the y axis. Traditionally this is some measure such as a percentage. Currently the function accepts a column of type integer or numeric. The slopegraph will be most effective when the measurements are not too disparate.

grouping a column inside the dataframe that will be used to group and distinguish measurements.

title Optionally the title to be displayed. Title = NULL will remove it entirely. Title = "" will provide an empty title but retain the spacing.

subtitle Optionally the sub-title to be displayed. SubTitle = NULL will remove it entirely. SubTitle = "" will provide and empty title but retain the spacing.

caption Optionally the caption to be displayed. Caption = NULL will remove it entirely. Caption = "" will provide and empty title but retain the spacing.

xtextsize Optionally the font size for the X axis labels to be displayed. XTextSize = 12 is the default must be a numeric. Note that X & Y axis text are on different scales.

ytextsize Optionally the font size for the Y axis labels to be displayed. YTextSize = 3 is the default must be a numeric. Note that X & Y axis text are on different scales.
newggslopegraph

TitleTextSize
Optionally the font size for the Title to be displayed. TitleTextSize = 14 is the default must be a numeric.

SubTitleTextSize
Optionally the font size for the SubTitle to be displayed. SubTitleTextSize = 10 is the default must be a numeric.

CaptionTextSize
Optionally the font size for the Caption to be displayed. CaptionTextSize = 8 is the default must be a numeric.

TitleJustify
Justification of title can be either a character "L", "R" or "C" or use the hjust = notation from ggplot2 with a numeric value between '0' (left) and '1' (right).

SubTitleJustify
Justification of subtitle can be either a character "L", "R" or "C" or use the hjust = notation from ggplot2 with a numeric value between '0' (left) and '1' (right).

CaptionJustify
Justification of caption can be either a character "L", "R" or "C" or use the hjust = notation from ggplot2 with a numeric value between '0' (left) and '1' (right).

LineThickness
Optionally the thickness of the plotted lines that connect the data points. LineThickness = 1 is the default must be a numeric.

LineColor
Optionally the color of the plotted lines. By default it will use the ggplot2 color palette for coloring by Grouping. The user may override with one valid color of their choice e.g. "black" (see colors() for choices) OR they may provide a vector of colors such as c("gray", "red", "green", "gray", "blue") OR a named vector like c("Green" = "gray", "Liberal" = "red", "NDP" = "green", "Others" = "gray", "PC" = "blue"). Any input must be character, and the length of a vector should equal the number of levels in Grouping. If the user does not provide enough colors they will be recycled.

DataTextSize
Optionally the font size of the plotted data points. DataTextSize = 2.5 is the default must be a numeric.

DataTextColor
Optionally the font color of the plotted data points. "black" is the default can be either 'colors()' or hex value e.g. "#FF00FF".

DataLabelPadding
Optionally the amount of space between the plotted data point numbers and the label "box". By default very small = 0.05 to avoid overlap. Must be a numeric. Too large a value will risk "hiding" datapoints.

DataLabelLineSize
Optionally how wide a line to plot around the data label box. By default = 0 to have no visible border line around the label. Must be a numeric.

DataLabelFillColor
Optionally the fill color or background of the plotted data points. "white" is the default can be any of the 'colors()' or hex value e.g. "#FF00FF".

WiderLabels
logical, set this value to TRUE if your "labels" or Grouping variable values tend to be long as they are in the newcancer dataset. This setting will give them more room in the same plot size.

ReverseYAxis
logical, set this value to TRUE if you want to reverse the Y scale, especially useful for rankings when you want #1 on top.

ReverseXAxis
logical, set this value to TRUE if you want to reverse the **factor levels** on the X scale.
newggslopegraph

RemoveMissing

logical, by default set to TRUE so that if any Measurement is missing all rows for that Grouping are removed. If set to FALSE then the function will try to remove and graph what data it does have. N.B. missing values for Times and Grouping are never permitted and will generate a fatal error with a warning.

ThemeChoice

character, by default set to "bw" the other choices are "ipsum", "econ", "wsj", "gdocs", and "tufte".

Value

a plot of type ggplot to the default plot device

Author(s)

Chuck Powell

References

See Also

cancer and newgdp

Examples

the minimum command to generate a plot
newggslopegraph(newcancer, Year, Survival, Type)

adding a title which is always recommended
newggslopegraph(newcancer, Year, Survival, Type,
 Title = "Estimates of Percent Survival Rates",
 subTitle = NULL,
 Caption = NULL)

simple formatting changes
newggslopegraph(newcancer, Year, Survival, Type,
 Title = "Estimates of Percent Survival Rates",
 LineColor = "darkgray",
 LineThickness = .5,
 subTitle = NULL,
 Caption = NULL)

complex formatting with recycling and wider labels see vignette for more examples
newggslopegraph(newcancer, Year, Survival, Type,
 Title = "Estimates of Percent Survival Rates",
 subTitle = "Based on: Edward Tufte, Beautiful Evidence, 174, 176.",
 LineColor = c("black", "red", "grey"),
 LineThickness = .5,
not a great example but demonstrating functionality
newgdp$rGDP <- round(newgdp$GDP)

newggsslopegraph(newgdp,
 Year,
 rGDP,
 Country,
 LineColor = c(rep("grey", 3), "red", rep("grey", 11)),
 DataTextSize = 3,
 DataLabelFillColor = "gray",
 DataLabelPadding = .2,
 DataLabelLineSize = .5
)

OurConf

Plotting random samples of confidence intervals around the mean

Description

This function takes some parameters and simulates random samples and their confidence intervals

Usage

```
OurConf(samples = 100, n = 30, mu = 0, sigma = 1, conf.level = 0.95)
```

Arguments

- `samples` The number of times to draw random samples
- `n` The sample size we draw each time
- `mu` The population mean mu
- `sigma` The population standard deviation
- `conf.level` What confidence level to compute 1 - alpha (significance level)

Value

A ggplot2 object

Author(s)

Chuck Powell

See Also

`qnorm, rnorm, CIsim`
Examples

OurConf(samples = 100, n = 30, mu = 0, sigma = 1, conf.level = 0.95)
OurConf(samples = 2, n = 5)
OurConf(samples = 25, n = 25, mu = 100, sigma = 20, conf.level = 0.99)

Description

Takes a formula and a dataframe as input, conducts an analysis of variance prints the results (AOV summary table, table of overall model information and table of means) then uses ggplot2 to plot an interaction graph (line or bar). Also uses Brown-Forsythe test for homogeneity of variance. Users can also choose to save the plot out as a png file.

Usage

Plot2WayANOVA(formula,
 dataframe = NULL,
 confidence=.95,
 plottype = "line",
 xlab = NULL,
 ylab = NULL,
 title = NULL,
 subtitle = NULL,
 interact.line.size = 2,
 ci.line.size = 1,
 mean.label = FALSE,
 mean.ci = TRUE,
 mean.size = 4,
 mean.shape = 23,
 mean.color = "darkred",
 mean.label.size = 3,
 offset.style = "none",
 overlay.type = NULL,
 posthoc.method = "scheffe",
 show.dots = FALSE,
 PlotSave = FALSE)

Arguments

formula a formula with a numeric dependent (outcome) variable, and two independent (predictor) variables e.g. mpg ~ am * vs. The independent variables are coerced to factors (with warning) if possible.

dataframe a dataframe or an object that can be coerced to a dataframe
Plot2WayANOVA

confidence what confidence level for confidence intervals
plottype bar or line (quoted)
xlab, ylab Labels for ‘x’ and ‘y’ axis variables. If ‘NULL’ (default), variable names for ‘x’ and ‘y’ will be used.
title The text for the plot title. A generic default is provided.
subtitle The text for the plot subtitle. If ‘NULL’ (default), key model information is provided as a subtitle.
interact.line.size Line size for the line connecting the group means (Default: ‘2’).
ci.line.size Line size for the confidence interval bracketing the group means (Default: ‘1’).
mean.label Logical that decides whether the value of the group mean is to be displayed (Default: ‘FALSE’).
mean.ci Logical that decides whether the confidence interval for group means is to be displayed (Default: ‘TRUE’).
mean.size Point size for the data point corresponding to mean (Default: ‘4’).
mean.shape Shape of the plot symbol for the mean (Default: ‘23’ which is a diamond).
mean.color Color for the data point corresponding to mean (Default: ”darkred“).
mean.label.size, mean.label.color Aesthetics for the label displaying mean. Defaults: ‘3’, “black”, respectively.
offset.style A character string (e.g., ”wide” or ”narrow”, or ”none”) which controls whether items are offset from the centerline for clarity. Useful when you want to add individual datapoints or confidence interval lines overlap. (Default: ”none”).
overlay.type A character string (e.g., ”box” or ”violin”), if you wish to overlay that information on factor1
posthoc.method A character string, one of ”hsd”, ”bonf”, ”lsd”, ”scheffe”, ”newmankeuls”, defining the method for the pairwise comparisons. (Default: ”scheffe”).
show.dots Logical that decides whether the individual data points are displayed (Default: ”FALSE”).
PlotSave a logical indicating whether the user wants to save the plot as a png file

Details

Details about how the function works in order of steps taken.

1. Some basic error checking to ensure a valid formula and dataframe. Only accepts fully *crossed* formula to check for interaction term
2. Ensure the dependent (outcome) variable is numeric and that the two independent (predictor) variables are or can be coerced to factors – user warned on the console
3. Remove missing cases – user warned on the console
4. Calculate a summarized table of means, sds, standard errors of the means, confidence intervals, and group sizes.
5. Use aov function to execute an Analysis of Variance (ANOVA)
6. Use `anova_stats` to calculate eta squared and omega squared values per factor. If the design is unbalanced warn the user and use Type II sums of squares

7. Produce a standard ANOVA table with additional columns

8. Use the `PostHocTest` for producing a table of post hoc comparisons for all effects that were significant

9. Use the `leveneTest` for testing Homogeneity of Variance assumption with Brown-Forsythe

10. Use the `PostHocTest` for conducting post hoc tests for effects that were significant

11. Use the `shapiro.test` for testing normality assumption with Shapiro-Wilk

12. Use `ggplot2` to plot an interaction plot of the type the user specified.

The defaults are deliberately constructed to emphasize the nature of the interaction rather than focusing on distributions. So while a violin plot of the first factor by level is displayed along with dots for individual data points shaded by the second factor, the emphasis is on the interaction lines.

Value

A list with 5 elements which is returned invisibly. These items are always sent to the console for display but for user convenience the function also returns a named list with the following items in case the user desires to save them or further process them - `$ANOVATable`, `$ModelSummary`, `$MeansTable`, `$PosthocTable`, `$BFTest`, and `$SWTest`. The plot is always sent to the default plot device

Author(s)

Chuck Powell

References

: ANOVA: Delacre, Leys, Mora, & Lakens, *PsyArXiv*, 2018

See Also

`aov`, `leveneTest`, `anova_stats`, `replications`, `shapiro.test`

Examples

```r
Plot2WayANOVA(mpg ~ am * cyl, mtcars, plottype = "line")
Plot2WayANOVA(mpg ~ am * cyl,
    mtcars,
    plottype = "line",
    overlay.type = "box",
    mean.label = TRUE )
Plot2WayANOVA(mpg ~ am * vs, mtcars, confidence = .99)
```

Create a new dataset
library(dplyr)
library(ggplot2)
library(stringi)
newmpg <- mpg %>%
 filter(cyl != 5) %>%
 mutate(am = stringi::stri_extract(trans, regex = "auto\|manual")))

Plot2WayANOVA(
 formula = hwy ~ am * cyl,
 dataframe = newmpg,
 ylab = "Highway mileage",
 xlab = "Transmission type",
 plottype = "line",
 offset.style = "wide",
 overlay.type = "box",
 mean.label = TRUE,
 mean.shape = 20,
 mean.size = 5,
 mean.label.size = 5,
 show.dots = TRUE)

PlotXTabs

Plot a Cross Tabulation of two variables using dplyr and ggplot2

Description
Takes a dataframe and at least two variables as input, conducts a crosstabulation of the variables using dplyr. Removes NAs and then plots the results as one of three types of bar (column) graphs using ggplot2. The function accepts either bare variable names or column numbers as input (see examples for the possibilities)

Usage
PlotXTabs(dataframe, xwhich, ywhich, plottype = "side")

Arguments
dataframe an object that is of class dataframe
xwhich either a bare variable name that is valid in the dataframe or one or more column numbers. An attempt will be made to coerce the variable to a factor but odd plots will occur if you pass it a variable that is by rights continuous in nature.
ywhich either a bare variable name that is valid in the dataframe or one or more column numbers that exist in the dataframe. An attempt will be made to coerce the variable to a factor but odd plots will occur if you pass it a variable that is by rights continuous in nature.
plottype one of three options "side", "stack" or "percent"

Value
One or more ggplots to the default graphics device as well as advisory information in the console
Description

Bivariate bar charts for nominal and ordinal data with (optionally) statistical details included in the plot as a subtitle.

Usage

PlotXTabs2(
 data,
 x,
 y,
 counts = NULL,
 results.subtitle = TRUE,
 title = NULL,
 subtitle = NULL,
 caption = NULL,
plottype = "percent",
 xlab = NULL,
 ylab = "Percent",
 legend.title = NULL,
 legend.position = "right",
 labels.legend = NULL,
 sample.size.label = TRUE,
 data.label = "percentage",
 label.text.size = 4,
 label.fill.color = "white",
 label.fill.alpha = 1,
 bar.outline.color = "black",
 x.axis.orientation = NULL,
 conf.level = 0.95,
 k = 2,
 perc.k = 0,
 mosaic.offset = 0.003,
 mosaic.alpha = 1,
 bf.details = FALSE,
 bf.display = "regular",
 sampling.plan = "jointMulti",
 fixed.margin = "rows",
 prior.concentration = 1,
 paired = FALSE,
 ggtheme = ggplot2::theme_bw(),
 package = "RColorBrewer",
 palette = "Dark2",
 direction = 1,
 ggplot.component = NULL
)

Arguments

data A dataframe or tibble containing the ‘x’ and ‘y’ variables.
x The variable to plot on the X axis of the chart.
y The variable to segment the **columns** and test for independence.
counts If the dataframe is based upon counts rather than individual rows for observations, ‘counts’ must contain the name of variable that contains the counts. See 'HairEyeColor' example.

results.subtitle Decides whether the results of statistical tests are displayed as a subtitle (Default: TRUE). If set to FALSE, no subtitle.
title The text for the plot title.
subtitle The text for the plot subtitle. **N.B** if statistical results are requested through ‘results.subtitle = TRUE’ the results will have precedence.
caption The text for the plot caption. Please note the interaction with ‘bf.details’.
plottype one of four options "side", "stack", "mosaic" or "percent"
xlab Custom text for the ‘x’ axis label (Default: ‘NULL’, which will cause the ‘x’ axis label to be the ‘x’ variable).

ylab Custom text for the ‘y’ axis label (Default: ‘”Percent”’). Set to ‘NULL’ for no label.

legend.title Title text for the legend.

legend.position The position of the legend ‘”none”’, ‘”left”’, ‘”right”’, ‘”bottom”’, ‘”top”’ (Default: ‘”right”’).

labels.legend A character vector with custom labels for levels of the ‘y’ variable displayed in the legend.

sample.size.label Logical that decides whether sample size information should be displayed for each level of the grouping variable ‘y’ (Default: ‘TRUE’).

data.label Character decides what information needs to be displayed on the label in each bar segment. Possible options are ‘”percentage”’ (default), ‘”counts”’, ‘”both”’.

label.text.size Numeric that decides size for bar labels (Default: ‘4’).

label.fill.color Character that specifies fill color for bar labels (Default: ‘white’).

label.fill.alpha Numeric that specifies fill color transparency or ‘”alpha”’ for bar labels (Default: ‘1’ range ‘0’ to ‘1’).

bar.outline.color Character specifying color for bars (default: ‘”black”’).

x.axis.orientation The orientation of the ‘x’ axis labels one of ‘”slant”’ or ‘”vertical”’ to change from the default horizontal orientation (Default: ‘NULL’ which is horizontal).

conf.level Scalar between 0 and 1. If unspecified, the defaults return lower and upper confidence intervals (0.95).

k Number of digits after decimal point (should be an integer) (Default: k = 2) for statistical results.

perc.k Numeric that decides number of decimal places for percentage labels (Default: ‘0’).

mosaic.offset Numeric that decides size of spacing between mosaic blocks (Default: ‘.003’ which is very narrow). "reasonable" values probably lie between .05 and .001

mosaic.alpha Numeric that controls the "alpha” level of the mosaic plot blocks (Default: ‘1’ which is essentially no "fading"). Values must be in the range 0 to 1 see: ‘ggplot2::aes_colour_fill_alpha’

bf.details Logical that decides whether to display additional information from the Bayes Factor test in the caption (default: ‘FALSE’). This will take precedence over any text you enter as a ‘caption’.

bf.display Character that determines how the Bayes factor value is is displayed. The default is simply the number rounded to ‘k’. Other options include "sensible", "log" and "support".
PlotXTabs2

- **sampling.plan**: the sampling plan (see details in `?contingencyTableBF`).
- **fixed.margin**: (see details in `?contingencyTableBF`).
- **prior.concentration**: (see details in `?contingencyTableBF`).
- **paired**: Not used yet.
- **ggtheme**: A function, ggplot2 theme name. Default value is ggplot2::theme_bw(). Any of the ggplot2 themes, or themes from extension packages are allowed (e.g., hrbrthemes::theme_ipsum(), etc.).
- **package**: Name of package from which the palette is desired as string or symbol.
- **palette**: Name of palette as string or symbol.
- **direction**: Either `1` or `-1`. If `-1` the palette will be reversed.
- **ggplot.component**: A ggplot component to be added to the plot prepared by ggstatsplot. Default is NULL. The argument should be entered as a function. If the given function has an argument axes.range.restrict and if it has been set to TRUE, the added ggplot component might not work as expected.

Author(s)

Chuck Powell, Indrajeet Patil

Examples

```r
# for reproducibility
set.seed(123)

# simplest possible call with the defaults
PlotXTabs2(
  data = mtcars,
  y = vs,
  x = cyl
)

# more complex call
PlotXTabs2(
  data = datasets::mtcars,
  y = vs,
  x = cyl,
  bf.details = TRUE,
  labels.legend = c("0 = V-shaped", "1 = straight"),
  legend.title = "Engine Style",
  legend.position = "right",
  title = "The perennial mtcars example",
  palette = "Pastel1"
)

PlotXTabs2(
  data = as.data.frame(HairEyeColor),
```
SeeDist

Description

This function takes a vector of numeric data and returns one or more ggplot2 plots that help you visualize the data.

Usage

SeeDist(
 x,
 numbins = 0,
 xlab = NULL,
 var_explain = NULL,
 data.fill.color = "deepskyblue",
 mean.line.color = "darkgreen",
 median.line.color = "yellow",
 mode.line.color = "orange",
 mean.line.type = "longdash",
 median.line.type = "dashed",
 mode.line.type = "dashed",
 mean.line.size = 1.5,
 median.line.size = 1.5,
 mean.point.shape = 21,
 median.point.shape = 23,
 mean.point.size = 4,
 median.point.size = 4,
)
```r
zcurve.color = "red",
zcurve.type = "twodash",
zcurve.size = 1,
tcurve.color = "black",
tcurve.type = "dotted",
tcurve.size = 1,
mode.line.size = 1,
whatplots = c("d", "b", "h", "v"),
k = 2,
ggtheme = ggplot2::theme_bw()
)
```

Arguments

- `x`: the data to be visualized must be numeric.
- `numbins`: the number of bins to use for any plots that bin. If nothing is specified the function will calculate a rational number using Freedman-Diaconis via the `nclass.FD` function.
- `xlab`: Custom text for the 'x' axis label (Default: `NULL`, which will cause the 'x' axis label to be the 'x' variable).
- `var_explain`: additional contextual information about the variable as a string such as "Miles Per Gallon".
- `data.fill.color`: Character string that specifies fill color for our data (Default: 'deepskyblue').
- `mean.line.color`, `median.line.color`, `mode.line.color`: Character string that specifies line color (Default: 'darkgreen', 'yellow', 'orange').
- `mean.line.type`, `median.line.type`, `mode.line.type`: Character string that specifies line color (Default: 'longdash', 'dashed', 'dashed').
- `mean.line.size`, `median.line.size`, `mode.line.size`: Numeric that specifies line size (Default: '1.5', '1.5', '1'). You can set to '0' to make any of the lines "disappear".
- `mean.point.shape`, `median.point.shape`: Integer in 0 - 25 specifies shape of mean or median point mark on the violin plot (Default: '21', '23').
- `mean.point.size`, `median.point.size`: Integer specifies size of mean or median point mark on the violin plot (Default: '4'). You can set to '0' to make any of the points "disappear".
- `zcurve.color`, `tcurve.color`: Character string that specifies line color (Default: 'red', 'black').
- `zcurve.type`, `tcurve.type`: Character string that specifies line color (Default: 'twodash', 'dotted').
- `zcurve.size`, `tcurve.size`: Numeric that specifies line size (Default: '1'). You can set to '0' to make any of the lines "disappear".
- `whatplots`: what type of plots? The default is `whatplots = c("d", "b", "h", "v")` for a density, a boxplot, a histogram, and a violin plot.
k Number of digits after decimal point (should be an integer) (Default: k = 2) for statistical results.

ggtheme A function, ggplot2 theme name. Default value is ggplot2::theme_bw(). Any of the ggplot2 themes, or themes from extension packages are allowed (e.g., hrbrthemes::theme_ipsum(), etc.).

Value

from 1 to 4 plots depending on what the user specifies as well as an extensive summary courtesy of DescTools::Desc printed to the console

Warning

If the data has more than 3 modal values only the first three of them are plotted. The rest are ignored and the user is warned on the console.

Missing values are removed with a warning to the user

Author(s)

Chuck Powell

See Also

nclass

Examples

SeeDist(rnorm(100, mean = 100, sd = 20), numbins = 15, var_explain = "A Random Sample")
SeeDist(mtcars$hp, var_explain = "Horsepower", whatplots = c("d", "b"))
SeeDist(iris$Sepal.Length, var_explain = "Sepal Length", whatplots = "d")

USvoteS

U.S. 2000 Election Data (short)

Description

Data from a post-election survey following the year 2000 U.S. presidential elections. This is a subset from package ‘CHAID’.

Usage

USvoteS
Format

A data frame with 1000 observations on the following 6 variables:

- vote3: candidate voted for Gore or Bush
- gender: gender, a factor with levels male and female
- ager: age group, an ordered factor with levels 18-24 < 25-34 < 35-44 < 45-54 < 55-64 < 65+
- empstat: status of employment, a factor with levels yes, no or retired
- educr: status of education, an ordered factor with levels <HS < HS < >HS < College < Post Coll
- marstat: status of living situation, a factor with levels married, widowed, divorced or never married

Source

https://r-forge.r-project.org/R/?group_id=343
Index

*Topic datasets
 chaidUS, 3
 newcancer, 6
 newgdp, 7
 USvoteS, 22

anova_stats, 14
aov, 13, 14

CGPfunctions, 2
chaid_table, 2, 3
chaidUS, 3
CISim, 11
cross2_var_vectors, 2, 4

janitor, 16
leveneTest, 14

Mode, 2, 5

nclass, 22
newcancer, 6, 8, 10
newgdp, 7, 10
newggslopegraph, 2, 7

OurConf, 2, 11
Plot2WayANOVA, 2, 12
PlotXTabs, 2, 15
PlotXTabs2, 2, 16
PostHocTest, 14

qnorm, 11

replications, 14
rnorm, 11

SeeDist, 2, 20
shapiro.test, 14

USvoteS, 22