Package ‘CIARA’

February 22, 2022

Type Package
Title Cluster Independent Algorithm for Rare Cell Types Identification
Version 0.1.0
Author Gabriele Lubatti
Maintainer Gabriele Lubatti
 <gabriele.lubatti@helmholtz-muenchen.de>
Description Identification of markers of rare cell types by looking at genes whose expression is confined in small regions of the expression space <https://github.com/ScialdoneLab>.
License Artistic-2.0
Depends R (>= 4.0)
Imports Biobase, ggplot2, ggraph, magrittr
Suggests circlize, clustree, ComplexHeatmap, plotly, Seurat (>= 4.0), testthat, knitr, rmarkdown
biocViews software
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2022-02-22 20:00:02 UTC

R topics documented:

CIARA ... 2
CIARA_gene ... 3
cluster_analysis_integrate_rare 4
cluster_analysis_sub .. 5
find_resolution ... 6
get_background_full ... 7
CIARA

Description

It selects highly localized genes as specified in CIARA_gene, starting from genes in \textit{background}

Usage

CIARA(
 norm_matrix,
 knn_matrix,
 background,
 cores_number = 1,
 p_value = 0.001,
 odds_ratio = 2,
 local_region = 1,
 approximation = FALSE
)

Arguments

\begin{itemize}
 \item \textbf{norm_matrix} \hspace{0.5cm} Norm count matrix (n_genes X n_cells).
 \item \textbf{knn_matrix} \hspace{0.5cm} K-nearest neighbors matrix (n_cells X n_cells).
 \item \textbf{background} \hspace{0.5cm} Vector of genes for which the function \textit{CIARA_gene} is run.
 \item \textbf{cores_number} \hspace{0.5cm} Integer. Number of cores to use.
 \item \textbf{p_value} \hspace{0.5cm} p value returned by the function \textit{fisher_test} with parameter alternative = "g"
 \item \textbf{odds_ratio} \hspace{0.5cm} odds_ratio returned by the function \textit{fisher_test} with parameter alternative = "g"
 \item \textbf{local_region} \hspace{0.5cm} Integer. Minimum number of local regions (cell with its knn neighbours) where the binarized gene expression is enriched in 1.
 \item \textbf{approximation} \hspace{0.5cm} Logical. For a given gene, the fisher test is run in the local regions of only the cells where the binarized gene expression is 1.
\end{itemize}
Value

Dataframe with n_rows equal to the length of background. Each row is the output from CIARA_gene.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

Description

The gene expression is binarized (1/0) if the value in a given cell is above/below the median. Each cell with its first K nearest neighbors defined a local region. If there are at least local_region enriched in 1 according to fisher.test, then the gene is defined as highly localized and a final p value is assigned to it. The final p value is the minimum of the p values from all the enriched local regions. If there are no enriched local regions, then the p value by default is set to 1.

Usage

CIARA_gene(
 norm_matrix,
 knn_matrix,
 gene_expression,
 p_value = 0.001,
 odds_ratio = 2,
 local_region = 1,
 approximation = FALSE
)

Arguments

- **norm_matrix**: Norm count matrix (n_genes X n_cells).
- **knn_matrix**: K-nearest neighbors matrix (n_cells X n_cells).
- **gene_expression**: numeric vector with the gene expression (length equal to n_cells). The gene expression is binarized (equal to 0/1 in the cells where the value is below/above the median).
- **p_value**: p value returned by the function fisher.test with parameter alternative = "g".
- **odds_ratio**: odds_ratio returned by the function fisher.test with parameter alternative = "g".
- **local_region**: Integer. Minimum number of local regions (cell with its knn neighbours) where the binarized gene expression is enriched in 1.
- **approximation**: Logical. For a given gene, the fisher test is run in the local regions of only the cells where the binarized gene expression is 1.
Value
List with one element corresponding to the p value of the gene.

Author(s)
Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/fisher.test

cluster_analysis_integrate_rare

Description
cluster_analysis_integrate_rare

Usage
cluster_analysis_integrate_rare(
 raw_counts,
 project_name,
 resolution,
 neighbors,
 max_dimension,
 feature_genes = NULL
)

Arguments
raw_counts Raw count matrix (n_genes X n_cells).
project_name Character name of the Seurat project.
resolution Numeric value specifying the parameter resolution used in the Seurat function FindClusters.
neighbors Numeric value specifying the parameter k.param in the Seurat function FindNeighbors.
max_dimension Numeric value specifying the maximum number of the PCA dimensions used in the parameter dims for the Seurat function FindNeighbors.
feature_genes vector of features specifying the argument features in the Seurat function RunPCA.

Value
Seurat object including raw and normalized counts matrices, UMAP coordinates and cluster result.
cluster_analysis_sub

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://www.rdocumentation.org/packages/Seurat/versions/4.0.1/topics/FindClusters
https://www.rdocumentation.org/packages/Seurat/versions/4.0.1/topics/FindNeighbors
https://www.rdocumentation.org/packages/Seurat/versions/4.0.1/topics/RunPCA

cluster_analysis_sub cluster_analysis_sub

Description

cluster_analysis_sub

Usage

cluster_analysis_sub(
 raw_counts,
 resolution,
 neighbors,
 max_dimension,
 name_cluster
)

Arguments

 raw_counts Raw count matrix (n_genes X n_cells).
 resolution Numeric value specifying the parameter resolution used in the Seurat function FindClusters.
 neighbors Numeric value specifying the parameter k.param in the Seurat function FindNeighbors
 max_dimension Numeric value specifying the maximum number of the PCA dimensions used in the parameter dims for the Seurat function FindNeighbors
 name_cluster Character.Name of the original cluster for which the sub clustering is done.

Value

Seurat object including raw and normalized counts matrices and cluster result.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>
find_resolution

Description

find_resolution

Usage

find_resolution(seurat_object, resolution_vector)

Arguments

seurat_object Seurat object as returned by `cluster_analysis_integrate_rare`
resolution_vector vector with all values of resolution for which the Seurat function `FindClusters` is run

Value

Clustree object showing the connection between clusters obtained at different level of resolution as specified in `resolution_vector`.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://CRAN.R-project.org/package=clustree
get_background_full

Description

get_background_full

Usage

get_background_full(
 norm_matrix,
 threshold = 1,
 n_cells_low = 3,
 n_cells_high = 20
)

Arguments

- norm_matrix: Norm count matrix (n_genes X n_cells).
- threshold: threshold in expression for a given gene
- n_cells_low: minimum number of cells where a gene is expressed at a level above threshold
- n_cells_high: maximum number of cells where a gene is expressed at a level above threshold

Value

Character vector with all genes expressed at a level higher than threshold in a number of cells between n_cells and n_cells_high.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

markers_cluster_seurat

Description

The Seurat function FindMarkers is used to identify general marker for each cluster (specific cluster vs all other cluster). This list of markers is then filtered keeping only the genes that appear as markers in a unique cluster.

Usage

markers_cluster_seurat(seurat_object, cluster, cell_names, number_top)
merge_cluster

Arguments

- `seurat_object` Seurat object as returned by `cluster_analysis_sub` or by `cluster_analysis_integrate_rare`.
- `cluster` Vector of length equal to the number of cells, with cluster assignment.
- `cell_names` Vector of length equal to the number of cells, with cell names.
- `number_top` Integer. Number of top marker genes to keep for each cluster.

Value

List of three elements. The first is a vector with `number_top` marker genes for each cluster. The second is a vector with `number_top` marker genes and corresponding cluster. The third element is a vector with all marker genes for each cluster.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://www.rdocumentation.org/packages/Seurat/versions/4.0.1/topics/FindMarkers

merge_cluster

Description

merge_cluster

Usage

merge_cluster(old_cluster, new_cluster, max_number = NULL)

Arguments

- `old_cluster` original cluster assignment that need to be updated
- `new_cluster` new cluster assignment that need to be integrated with `old_cluster`.
- `max_number` Threshold in size for clusters in `new_cluster`. Only cluster with number of cells smaller than `max_number` will be integrated in `old_cluster`. If `max_number` is NULL, then all the clusters in `new_cluster` are integrated in `old_cluster`.

Value

Numeric vector of length equal to `old_cluster` showing the merged cluster assignment between `old_cluster` and `new_cluster`.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>
Description

plot_balloon_marker

Usage

plot_balloon_marker(
 norm_counts,
 cluster,
 marker_complete,
 max_number,
 max_size = 5,
 text_size = 7
)

Arguments

- **norm_counts**: Norm count matrix (genes X cells).
- **cluster**: Vector of length equal to the number of cells, with cluster assignment.
- **marker_complete**: Third element of the output list as returned by the function `markers_cluster_seurat`.
- **max_number**: Integer. Maximum number of markers for each cluster for which we want to plot the expression.
- **max_size**: Integer. Size of the dots to be plotted.
- **text_size**: Size of the text in the heatmap plot.

Value

ggplot2 object showing balloon plot.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>
plot_gene

Description

Cells are coloured according to the expression of gene_id and plotted according to coordinate_umap.

Usage

plot_gene(norm_counts, coordinate_umap, gene_id, title_name)

Arguments

- **norm_counts**: Norm count matrix (genes X cells).
- **coordinate_umap**: Data frame with dimensionality reduction coordinates. Number of rows must be equal to the number of cells.
- **gene_id**: Character name of the gene.
- **title_name**: Character name.

Value

ggplot2 object.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://CRAN.R-project.org/package=ggplot2

plot_genes_sum

Description

The sum of each gene in genes_relevant across all cells is first normalized to 1. Then for each cell, the sum from the (normalized) genes expression is computed and shown in the output plot.

Usage

plot_genes_sum(coordinate_umap, norm_counts, genes_relevant, name_title)
plot_heatmap_marker

Arguments
coordinate_umap
Data frame with dimensionality reduction coordinates. Number of rows must be equal to the number of cells
norm_counts
Norm count matrix (genes X cells).
genes_relevant
Vector with gene names for which we want to visualize the sum in each cell.
name_title
Character value.

Value
ggplot2 object.

Author(s)
Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also
https://CRAN.R-project.org/package=ggplot2

Description
plot_heatmap_marker

Usage
plot_heatmap_marker(
 marker_top,
 marker_all_cluster,
 cluster,
 condition,
 norm_counts,
 text_size
)

Arguments
marker_top
First element returned by markers_cluster_seurat
marker_all_cluster
Second element returned by markers_cluster_seurat
cluster
Vector of length equal to the number of cells, with cluster assignment.
condition
Vector or length equal to the number of cells, specifying the condition of the cells (i.e. batch, dataset of origin..)
norm_counts
Norm count matrix (genes X cells).
text_size
Size of the text in the heatmap plot.
Value

Heatmap class object.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://www.rdocumentation.org/packages/ComplexHeatmap/versions/1.10.2/topics/Heatmap

plot_interactive

plot_interactive

Description

It shows in an interactive plot which are the highly localized genes in each cell. It is based on plotly library.

Usage

plot_interactive(
 coordinate_umap,
 color,
 text,
 min_x = NULL,
 max_x = NULL,
 min_y = NULL,
 max_y = NULL
)

Arguments

coordinate_umap Data frame with dimensionality reduction coordinates. Number of rows must be equal to the number of cells.

color vector of length equal to n_rows in coordinate_umap. Each cell will be coloured following a gradient according to the corresponding value of this vector.

text Character vector specifying the highly localized genes in each cell. It is the output from selection_localized_genes.

min_x Set the min limit on the x axis.

max_x Set the max limit on the x axis.

min_y Set the min limit on the y axis.

max_y Set the min limit on the y axis.
plot_umap

Value

plotly object given by `plot_ly` function (from library `plotly`).

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://plotly.com/r/

plot_umap

Description

plot_umap

Usage

plot_umap(coordinate_umap, cluster)

Arguments

coordinate_umap

Data frame with dimensionality reduction coordinates. Number of rows must be equal to the number of cells

cluster

Vector of length equal to the number of cells, with cluster assignment.

Value

ggplot2 object.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://CRAN.R-project.org/package=ggplot2
selection_localized_genes

selection_localized_genes

Description

selection_localized_genes

Usage

```r
selection_localized_genes(
  norm_counts,
  localized_genes,
  min_number_cells = 4,
  max_number_genes = 10
)
```

Arguments

- `norm_counts`: Norm count matrix (genes X cells).
- `localized_genes`: vector of highly localized genes as provided by the last element of the list given as output from `CIARA_mixing_final`.
- `min_number_cells`: Minimum number of cells where a genes must be expressed (> 0).
- `max_number_genes`: Maximum number of genes to show for each cell in the interactive plot from `plot_interactive`.

Value

Character vector where each entry contains the name of the top `max_number_genes` for the corresponding cell.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>
Description

For each cluster in `cluster`, HVGs are defined with Seurat function `FindVariableFeatures`. A Fisher test is performed to see if there is a statistically significant enrichment between the top `number_hvg` and the `localized_genes`.

Usage

```r
test_hvg(
  raw_counts,
  cluster,
  localized_genes,
  background,
  number_hvg,
  min_p_value
)
```

Arguments

- `raw_counts`: Raw count matrix (n_genes X n_cells).
- `cluster`: Vector of length equal to the number of cells, with cluster assignment.
- `localized_genes`: Character vector with localized genes detected by CIARA.
- `background`: Character vector with all the genes names to use as background for the Fisher test.
- `number_hvg`: Integer value. Number of top HVGs provided by the Seurat function `FindVariableFeatures`.
- `min_p_value`: Threshold on p values provided by Fisher test.

Value

A list with two elements.

- `first element`: The first one is a list with length equal to the number of clusters. Each entry is list of three elements. The first two elements contain the p value and the odds ration given by the Fisher test. The third is a vector with genes names that are present both in `localized_genes` and in top `number_hvg` HVGs.
- `second element`: A character vector with the name of the cluster that have a p value smaller than `min_p_value`.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>
white_black_markers

See Also

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/fisher.test

Description

A white-marker is a gene whose median expression across cells belong to single_cluster is greater than threshold and in all the other clusters is equal to zero.

Usage

white_black_markers(
 cluster,
 single_cluster,
 norm_counts,
 marker_list,
 threshold = 0
)

Arguments

- **cluster**: Vector of length equal to the number of cells, with cluster assignment.
- **single_cluster**: Character. Label of one specify cluster.
- **norm_counts**: Norm count matrix (genes X cells).
- **marker_list**: Third element of the output list as returned by the function markers_cluster_seurat.
- **threshold**: Numeric. The median of the genes across cells belong to single_cluster has to be greater than threshold in order to be consider as a white-black marker for single_cluster.

Value

Logical vector of length equal to marker_list, with TRUE/FALSE if the gene is/is not a white-black marker for single_cluster.

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>
Index

CIARA, 2
CIARA_gene, 3
cluster_analysis_integrate_rare, 4
cluster_analysis_sub, 5
find_resolution, 6
get_background_full, 7
markers_cluster_seurat, 7
merge_cluster, 8
plot_balloon_marker, 9
plot_gene, 10
plot_genes_sum, 10
plot_heatmap_marker, 11
plot_interactive, 12
plot_umap, 13
selection_localized_genes, 14
test_hvg, 15
white_black_markers, 16