Package ‘CICA’

February 5, 2024

Type Package
Title Clusterwise Independent Component Analysis
Version 1.0.2
Date 2024-02-05
Depends ica, RNifti, R (>= 2.10)
Imports mclust, plotly, multiway, methods, magrittr, neurobase, oro.nifti, servr, htmltools
Author Jeffrey Durieux [aut, cre], Tom Wilderjans [aut], Juan Claramunt Gonzalez [ctb]
Maintainer Jeffrey Durieux <durieux.jeffrey@gmail.com>
Description Clustering multi-subject resting state functional Magnetic Resonance Imaging data. This method enables the clustering of subjects based on multi-subject resting state functional Magnetic Resonance Imaging data. Objects are clustered based on similarities and differences in cluster-specific estimated components obtained by Independent Component Analysis.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
URL https://www.sciencedirect.com/science/article/pii/S0165027022002448,
https://github.com/jeffreydurieux/CICA
NeedsCompilation no
Repository CRAN
Date/Publication 2024-02-05 16:50:02 UTC

R topics documented:

CICA .. 2
computeRVmat .. 4
embed_papaya .. 5
FindRationalStarts 5
GenRanStarts 7
CICA: Clusterwise Independent Component Analysis

Description

Main function to perform Clusterwise Independent Component Analysis

Usage

CICA(
 DataList,
 nComp,
 nClus,
 RanStarts,
 RatStarts = NULL,
 pseudo = NULL,
 pseudoFac,
 userDef = NULL,
 userGrid = NULL,
 scalevalue = 1000,
 center = TRUE,
 maxiter = 100,
 verbose = TRUE,
 ctol = 1e-06,
 checks = TRUE
)

Arguments

- **DataList**: a list of matrices
- **nComp**: number or vector of ICA components per cluster
- **nClus**: number or vector of clusters
- **RanStarts**: number of random starts
- **RatStarts**: Generate rational starts. Either 'all' or a specific linkage method name (e.g., 'complete'). Use NULL to indicate that Rational starts should not be used.
- **pseudo**: percentage value for perturbing rational starts to obtain pseudo rational starts
- **pseudoFac**: factor to multiply the number of rational starts (7 in total) to obtain pseudo rational starts
- **userDef**: a user-defined starting seed stored in a data.frame, if NULL no userDef starting partition is used
- **userGrid**: user supplied data.frame for multiple model CICA. First column are the requested components. Second column are the requested clusters
- **scalevalue**: desired sum of squares of the block scaling procedure
- **center**: mean center matrices
- **maxiter**: maximum number of iterations for each start
- **verbose**: print loss information to console
- **ctol**: tolerance value for convergence criterion
- **checks**: boolean parameter that indicates whether the input checks should be run (TRUE) or not (FALSE).

Value

CICA returns an object of class "CICA". It contains the estimated clustering, cluster specific component matrices and subject specific time course matrices

- **P**: partitioning vector of size length(DataList)
- **Sr**: list of size nClus, containing cluster specific independent components
- **Ais**: list of size length(DataList), containing subject specific time courses
- **Loss**: loss function value of the best start
- **FinalLossDiff**: value of the loss difference between the last two iterations of the algorithm.
- **IndLoss**: a vector with containing the individual loss function values
- **LossStarts**: loss function values of all starts
- **Iterations**: Number of iterations
- **starts**: dataframe with the used starting partitions

Author(s)

Jeffrey Durieux
computeRVmat

Compute modified RV matrix

Description

This function computes a NxN modified RV matrix

Usage

computeRVmat(DataList = DataList, dist = TRUE, verbose = TRUE)

Arguments

DataList a list with matrices

dist boolean if TRUE distance object is returned

verbose boolean if TRUE progressbar is printed to the console

Value

RVsS a square similarity matrix of class matrix or distance object of class dist containing the pairwise modified RV values

Examples

Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10,
E = 0.4, overlap = .25, externalscore = TRUE)

multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5,
userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2),
pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE,
maxiter = 100, verbose = TRUE, ctol = .000001)

summary(multiple_output$Q_5_R_4)

plot(multiple_output$Q_5_R_4)

End(Not run)
RV <- computeRVmat(DataList = output$Sr, dist = TRUE,
 verbose = FALSE)

apply hierarchical clustering on RV output
hcl <- hclust(RV)
plot(hcl)

low dimensional visualisation using Classical Multidimensional Scaling
mds <- cmdscale(RV)
plot(mds)

End(Not run)

embed_papaya

Embed images with Papaya

Description

Writes temporary images out from nifti objects or passes character filenames of images to papaya JS viewer

Usage

```r
embed_papaya(images, outdir = NULL)
```

Arguments

- **images**: character filenames or nifti objects to be viewed
- **outdir**: output directory for index and all to go

Value

Output html

FindRationalStarts

Plot method for rstarts object

Description

Plot method for rstarts object
FindRationalStarts

Usage

FindRationalStarts(
 DataList,
 RatStarts = "all",
 nComp,
 nClus,
 scalevalue = NULL,
 center = TRUE,
 verbose = TRUE,
 pseudo = NULL,
 pseudoFac = NULL
)

S3 method for class 'rstarts'
plot(x, type = 1, mdsdim = 2, nClus = NULL, ...)

Arguments

DataList a list of matrices
RatStarts type of rational start. ‘all’ computes all types of hclust methods
nComp number of ICA components to extract
nClus Number of clusters for rectangles in dendrogram, default NULL is based on number of clusters present in the object
scalevalue scale each matrix to have an equal sum of squares
center mean center matrices
verbose print output to console
pseudo percentage value for perturbating rational starts to obtain pseudo rational starts
pseudoFac how many pseudo starts per rational start
x an object of class rstarts
type type of plot, 1 for a dendrogram, 2 for a multidimensional scaling configuration
mdsdim 2 for two dimensional mds configuration, 3 for a three dimensional configuration
... optional arguments passed to hclust function

Value

dataframe with (pseudo-) rational and dist object based on the pairwise modified RV values

References

Examples

```r
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10, 
E = 0.4, overlap = .25, externalscore = TRUE)
rats <- FindRationalStarts(DataList = CICA_data$X, nComp = 5, nClus = 4,verbose = TRUE, pseudo = .2)
plot(rats, type = 1, method = 'ward.D2')
plot(rats, type = 2, method = 'ward.D2')
plot(rats, type = 2, method = 'ward.D2', mdsdim = 3)

## End(Not run)

## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10, 
E = 0.4, overlap = .25, externalscore = TRUE)
Out_starts <- FindRationalStarts(DataList = CICA_data$X, nComp = 5, nClus = 4,scalevalue = 1000)
plot(Out_starts)
plot(Out_starts, type = 2)
plot(Out_starts, type = 2,mdsdim = 3, method = 'ward.D2')

## End(Not run)
```

GenRanStarts

Generate random starts

Description

Generate random starts

Usage

```r
GenRanStarts(
  RanStarts,
  nClus,
  nBlocks,
  ARIlim = 0.2,
  itmax = 1000,
  verbose = FALSE
)
```

Arguments

- `RanStarts` number of random starts to generate
- `nClus` number of clusters
- `nBlocks` number of objects
- `ARIlim` maximal value of adjusted Rand Index
GenRatStarts

itmax maximum number of iterations used to find suitable random starts
verbose boolean that indicates whether the output should be printed on the console

Value

a list where the first element is a matrix with random starts, second element all pairwise ARIs

<table>
<thead>
<tr>
<th>GenRatStarts</th>
<th>Title</th>
</tr>
</thead>
</table>

Description

Title

Usage

GenRatStarts(
 DataList,
 RatStarts,
 nComp,
 nClus,
 scalevalue,
 center,
 verbose,
 pseudo,
 pseudoFac
)

Arguments

DataList DataList
RatStarts Type of rational start
nComp number of components
nClus number of clusters
scalevalue value for blockscaling procedure
center center
verbose verbose
pseudo percentage used for perturbation rational starts (between 0)
pseudoFac multiplication factor for pseudo rational starts

Value

out
get_papaya_version

Description
Reads the papaya.js file installed and determines version and build

Usage
get_papaya_version()

Value
List of build and version, both characters

loadNIfTIs

Description
Load Nifti files from directory

Usage
loadNIfTIs(dir, toMatrix = TRUE)

Arguments
- dir: Input directory containing nifti files
- toMatrix: logical if TRUE nifti’s are converted to matrices

Value
list object containing Voxel by Time course matrices

Examples
```r
## Not run:
nifs <- loadNIfTIs('<FolderPath>', toMatrix = T)
outnif <- CICA(DataList = nifs, RanStarts = 2, nComp = 10, nClus = 2)
## End(Not run)
```
matcher

Matcher between cluster specific spatial maps

Description

Match components between cluster specific spatial maps

Usage

```r
matcher(x, reference, RV = FALSE, ...)
```

Arguments

- `x`: object of class CICA
- `reference`: integer cluster index that serves as the reference. If nifti path is supplied, clusters will be matched to this template
- `RV`: compute modified-RV between cluster components
- `...`: other arguments

Value

`out`

Examples

```r
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10,
E = 0.4, overlap = .25, externalscore = TRUE)
multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5,
userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2),
pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE,
maxiter = 100, verbose = TRUE, ctol = .000001)
matcher(multiple_output$Q_5_R_4, reference = 1, RV = TRUE)
## End(Not run)
```
matcher.CICA

Match components between cluster specific spatial maps

Description

Match components between cluster specific spatial maps

Usage

S3 method for class 'CICA'
matcher(x, reference = 1, RV = FALSE, ...)

Arguments

x
object of class CICA

reference
integer cluster index that serves as the reference. If nifti path is supplied, clusters will be matched to this template

RV
compute modified-RV between cluster components

...
other arguments

Value

out

Examples

Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10, E = 0.4, overlap = .25, externalscore = TRUE)
multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5, userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2), pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE, maxiter = 100, verbose = TRUE, ctol = .000001)
matcher(multiple_output$Q_5_R_4, reference = 1, RV = TRUE)

End(Not run)
mpinv

Moore Penrose inverse

Description

Moore Penrose inverse

Usage

`mpinv(X)`

Arguments

`X`
input matrix

Value

mp Moore Penrose inverse of matrix X

papaya

View images with Papaya

Description

Writes temporary images out from nifti objects or passes character filenames of images to papaya JS viewer

Usage

`papaya(images, outdir = NULL, ...)`

Arguments

`images`
character filenames or nifti objects to be viewed

`outdir`
output directory for index and all to go

`...`
Options to be passed to `pass_papaya`

Value

Output directory where index.html, js, and copied nii.gz files
Not run:
library(neurobase)
x = nifti(img = array(rnorm(100^3), dim= rep(100, 3)), dim=rep(100, 3), datatype=16)
thresh = datatyper(x > 1)
index.file = papaya(list(x, thresh))

End(Not run)

Description
Get the necessary div output for embedding a papaya image

Usage
papaya_div()

Value
Character string

Examples
papaya_div()

pass_papaya
View images with Papaya

Description
Writes temporary images out from nifti objects or passes character filenames of images to papaya JS viewer

Usage
pass_papaya(
 L = NULL,
 outdir = NULL,
 daemon = FALSE,
 close_on_exit = TRUE,
 sleeper = 3,
 version = "0.8",
 build = "982"
)
plot.CICA

Plot method for CICA

Description

Plot method for CICA. This function shows the cluster specific independent components in an interactive viewer using the papayar package.

Usage

```r
## S3 method for class 'CICA'
plot(x, brain = "auto", cluster = 1, ...)
```

Arguments

- `x`: Object of class CICA
- `brain`: auto
- `cluster`: Components of cluster to plot. Only used when non fMRI related data is used
- `...`: other arguments

Examples

```r
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10,
E = 0.4, overlap = .25, externalscore = TRUE)
multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5,
userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2),
pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE,
maxiter = 100, verbose = TRUE, ctol = .000001)
plot(multiple_output$Q_5_R_4, cluster = 2)
## End(Not run)
```
plot.ModSel

Plot method for sequential model selection

Description

Plot method for the sequential model selection option for CICA

Usage

```r
## S3 method for class 'ModSel'
plot(x, ...)
```

Arguments

- `x`: Object of class `ModSel`
- `...`: other arguments

Examples

```r
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10, 
E = 0.4, overlap = .25, externalscore = TRUE)

multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5, 
userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2), 
pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE, 
maxiter = 100, verbose = TRUE, ctol = .000001)

ModSelOutput <- SequentialScree(multiple_output)

plot(ModSelOutput)

## End(Not run)
```

SequentialScree

Sequential Model Selection for Multiple CICA model

Description

Sequential Model Selection for Multiple CICA model

Usage

```r
SequentialScree(x)
```
Arguments

- an object of class MultipleCICA

Value

- a list object

Examples

```r
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10,
E = 0.4, overlap = .25, externalscore = TRUE)

multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5,
userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2),
pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE,
maxiter = 100, verbose = TRUE, ctol = .000001)

ModSelOutput <- SequentialScree(multiple_output)

plot(ModSelOutput)

## End(Not run)
```

Sim_CICA

Simulate CICA data

Description

Simulate CICA data

Usage

```r
Sim_CICA(
    Nr,
    Q,
    R,
    voxels,
    timepoints,
    E,
    overlap = NULL,
    externalscore = FALSE
)
```
Sr_to_nifti

Convert Cluster specific independent components to NIFTI format

Description

Convert Cluster specific independent components to NIFTI format

Usage

```r
Sr_to_nifti(x, write = FALSE, ...)
```

Arguments

- `x`: an object of class CICA
- `write`: if TRUE, NIfTI files are written to current working directory
- `...`: other arguments passed to RNifti::writeNifti

Examples

```r
## Not run:
#Use set.seed(1) to obtain the dataset used in the article "Clusterwise
#Independent Component Analysis (CICA): an R package for clustering subjects
#based on ICA patterns underlying three-way (brain) data"

Xe <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10,
E = 0.4, overlap = .25, externalscore = TRUE)
```

Value

a list with simulated CICA data
Value

a list with niftiImage files

Examples

```r
## Not run:
nifs <- loadNIfTIs('<FolderPath>', toMatrix = T)
outnif <- CICA(DataList = nifs, RanStarts = 2, nComp = 10, nClus = 2)
test <- Sr_to_nifti(outnif, write = T, datatype = 'int16', version = 2)

## End(Not run)
```

Summary method for class CICA

Description

Summarize a CICA analysis

Usage

```r
## S3 method for class 'CICA'
summary(object, ...)
```

Arguments

- `object`: Object of the type produced by `CICA`
- `...`: Additional arguments

Value

`summary.CICA` returns an overview of the estimated clustering of a `CICA` analysis

- `PM`: Partitioning matrix
- `tab`: Tabulation of the clustering
- `Loss`: Loss function value of the solution

Examples

```r
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10,
E = 0.4, overlap = .25, externalscore = TRUE)
multiple_output <- CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5,
userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2),
pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE,
maxiter = 100, verbose = TRUE, ctol = .000001)
```
Summary method for class `MultipleCICA`

Description

Summarize a CICA analysis

Usage

```
## S3 method for class 'MultipleCICA'
summary(object, ...)
```

Arguments

- `object` Object of the type produced by `CICA`
- `...` Additional arguments

Value

`summary.MultipleCICA` returns an overview of the estimated clustering of a CICA analysis

- **PM** Partitioning matrix
- **tab** Tabulation of the clustering
- **Loss** Loss function value of the solution

Examples

```
## Not run:
CICA_data <- Sim_CICA(Nr = 15, Q = 5, R = 4, voxels = 100, timepoints = 10, E = 0.4, overlap = .25, externalscore = TRUE)
multiple_output = CICA(DataList = CICA_data$X, nComp = 2:6, nClus = 1:5, userGrid = NULL, RanStarts = 30, RatStarts = NULL, pseudo = c(0.1, 0.2), pseudoFac = 2, userDef = NULL, scalevalue = 1000, center = TRUE, maxiter = 100, verbose = TRUE, ctol = .000001)
summary(multiple_output$Q_5_R_4)
## End(Not run)
```
update_papaya_build
Update Papaya build version from GitHub

Description

Updates the papaya version in the papayar package to the most current on GitHub

Usage

```r
update_papaya_build(
  type = c("standard", "minimal", "nodicom", "nojquery", "standard-with-atlas-local",
            "standard-with-atlas"),
  verbose = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type</code></td>
<td>Type of release. Standard is default</td>
</tr>
<tr>
<td><code>verbose</code></td>
<td>Should download progress be shown?</td>
</tr>
</tbody>
</table>

Value

Result of `get_papaya_version` after downloading
Index

CICA, 2, 18, 19
class, 3
computeRVmat, 4
dist, 4
embed_papaya, 5
FindRationalStarts, 5
GenRanStarts, 7
GenRatStarts, 8
get_papaya_version, 9, 20
loadNIfTIs, 9
matcher, 10
matcher.CICA, 11
matrix, 4
mpinv, 12
papaya, 12
papaya_div, 13
pass_papaya, 12, 13
plot.CICA, 14
plot.ModSel, 15
plot.rstarts(FindRationalStarts), 5
SequentialScree, 15
server_config, 14
Sim_CICA, 16
Sr_to_nifti, 17
summary.CICA, 18
summary.MultipleCICA, 19
update_papaya_build, 20