Package ‘CJIVE’

January 20, 2023

Type Package

Title Canonical Joint and Individual Variation Explained (CJIVE)

Version 0.1.0

Maintainer Raphiel Murden <rmurden@emory.edu>

Description Joint and Individual Variation Explained (JIVE) is a method for decomposing multiple datasets obtained on the same subjects into shared structure, structure unique to each dataset, and noise. The two most common implementations are R.JIVE, an iterative approach, and AJIVE, which uses principal angle analysis. JIVE estimates subspaces but interpreting these subspaces can be challenging with AJIVE or R.JIVE. We expand upon insights into AJIVE as a canonical correlation analysis (CCA) of principal component scores. This reformulation, which we call CJIVE, 1) provides an ordering of joint components by the degree of correlation between corresponding canonical variables; 2) uses a computationally efficient permutation test for the number of joint components, which provides a p-value for each component; and 3) can be used to predict subject scores for out-of-sample observations. Please cite the following article when utilizing this package:

License MIT + file LICENSE

Encoding UTF-8

Imports rootSolve, ggplot2, reshape2, fields, gplots, psych

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Raphiel Murden [aut, cre] (<https://orcid.org/0000-0002-6396-9105>),
Benjamin Risk [aut]

Repository CRAN

Date/Publication 2023-01-20 10:10:13 UTC
R topics documented:

- AdjSigVarExp
- cc.jive
- cc.jive.pred
- chord.norm.diff
- ConvSims_gg
- create.graph.long
- GenerateToyData
- GetSimResults_Dir
- gg.corr.plot
- gg.load.norm.plot
- gg.norm.plot
- gg.rank.plot
- gg.score.norm.plot
- MatVar
- MatVar2
- Melt.Sim.Cors
- perm.jntrank
- scale_loadings
- show.image.2
- sjive
- vec2net.l
- vec2net.u

Index

- AdjSigVarExp 2
- Adjust Signal Variation Explained 2

Description

Adjusts the proportion of total variation attributable to each signal component to predetermined values.

Usage

```
AdjSigVarExp(J, I, N, JntVarEx, IndVarEx)
```

Arguments

- **J**
 joint signal matrix of size n-by-p
- **I**
 individual signal matrix of size n-by-p
- **N**
 noise/error matrix of size n-by-p
- **JntVarEx**
 desired proportion of total variation explained by the joint signal
- **IndVarEx**
 desired proportion of total variation explained by the individual signal
Value

a list of 3 items: 1) adjusted joint signal matrix; 2) adjusted individual signal matrix; 3) data matrix additively comprised of the adjusted signal matrices

Description

Performs Canonical JIVE as described in the CJVE manuscript. This method is equivalent to AJIVE for 2 data sets.

Usage

c.c.jive(
 dat.blocks, # a list of two matrices with samples along rows and features along columns, which contain data on the same n individuals/sampling units
 signal.ranks = NULL, # a vector of length two which contains the rank for the signal within each data block. The rank corresponds to the number of principal components (PCs) to be retained within each data block. If NULL, the ranks are determined by the parameter 'perc.var.' Default is NULL
 joint.rank = 1, # The rank of the joint subspace i.e., number of components in the joint subspace
 perc.var = 0.95, # an alternative to signal.ranks that allows specification of ranks based on the desired proportion of total variation to be retained. F For perc.var = p (where 0<p<1), rank is determined as the minimum number of eigenvalues whose cumulative sum is at least p*(total sum of eigenvalues) Default is 0.95 (i.e. 95% of total variation preserved for each data block).
 perm.test = TRUE, # logical (TRUE/FALSE) of whether permutation test for joint rank should be performed. Overrides 'joint.rank' parameter if TRUE. Default is TRUE
 center = FALSE, # logical (TRUE/FALSE) indicating whether data should be column-centered prior to testing. Default is TRUE
 nperms = 1000 # integer value indicating the number of permutations that should be performed. Default is 1000
)

Arguments

dat.blocks # a list of two matrices with samples along rows and features along columns, which contain data on the same n individuals/sampling units
signal.ranks # a vector of length two which contains the rank for the signal within each data block. The rank corresponds to the number of principal components (PCs) to be retained within each data block. If NULL, the ranks are determined by the parameter 'perc.var.' Default is NULL
joint.rank # The rank of the joint subspace i.e., number of components in the joint subspace
perc.var # an alternative to signal.ranks that allows specification of ranks based on the desired proportion of total variation to be retained. F For perc.var = p (where 0<p<1), rank is determined as the minimum number of eigenvalues whose cumulative sum is at least p*(total sum of eigenvalues) Default is 0.95 (i.e. 95% of total variation preserved for each data block).
perm.test # logical (TRUE/FALSE) of whether permutation test for joint rank should be performed. Overrides 'joint.rank' parameter if TRUE. Default is TRUE
center # logical (TRUE/FALSE) indicating whether data should be column-centered prior to testing. Default is TRUE
nperms # integer value indicating the number of permutations that should be performed. Default is 1000
Value

A list of two lists: 1) 'CanCorRes' contains results from the canonical correlation of PC scores including, the joint rank, joint subject scores, canonical correlations (and their respective p-values if perm.test was used), canonical loadings for the joint subspace, and total signal ranks 2) 'sJIVE', i.e. Simple JIVE results, correspond to the AJIVE when all ranks are known; includes the joint and individual signal matrices, concatenated PC scores, and the projection matrix used to project each data block onto the joint subspace

Examples

```r
# Assign sample size and the number of features in each dataset
n = 200  # sample size
p1 = 100  # Number of features in data set X1
p2 = 100  # Number of features in data set X2

# Assign values of joint and individual signal ranks
r.J = 1  # joint rank
r.I1 = 2  # individual rank for data set X1
r.I2 = 2  # individual rank for data set X2

# Simulate data sets
ToyDat = GenerateToyData(n = 200, p1 = p1, p2 = p2, JntVarEx1 = 0.05, JntVarEx2 = 0.05,
                           IndVarEx1 = 0.25, IndVarEx2 = 0.25, jnt_rank = r.J, equal.eig = FALSE,
                           ind_rank1 = r.I1, ind_rank2 = r.I2, SVD.plots = TRUE, Error = TRUE,
                           print.cor = TRUE)
blocks <- ToyDat$'Data Blocks'

# Save Subject scores as R objects
JntScores = ToyDat[['Scores']]$['Joint']
IndivScore.X = ToyDat[['Scores']]$['Indiv_1']
IndivScore.Y = ToyDat[['Scores']]$['Indiv_2']

# Save joint variable loadings as R objects
JntLd.X = t(ToyDat$Loadings$Joint_1)
JntLd.Y = t(ToyDat$Loadings$Joint_2)

# Save individual variable loadings as R objects
IndivLd.X = t(ToyDat$Loadings$Indiv_1)
IndivLd.Y = t(ToyDat$Loadings$Indiv_2)

# Save joint, individual, and noise signal matrices as R objects
JX = ToyDat[[1]]$J1
JY = ToyDat[[1]]$J2
IX = ToyDat[[1]]$I1
IY = ToyDat[[1]]$I2
EX = ToyDat[[1]]$E1
EY = ToyDat[[1]]$E2
```

```r
## Check that proportions of variation explained are (approximately) equal to intended values
```
cc.jive.pred

\[
\begin{align*}
JVE.X & = \text{MatVar}(JX)/\text{MatVar}(\text{blocks}[[1]]) \\
JVE.Y & = \text{MatVar}(JY)/\text{MatVar}(\text{blocks}[[2]]) \\
IVE.X & = \text{MatVar}(IX)/\text{MatVar}(\text{blocks}[[1]]) \\
IVE.Y & = \text{MatVar}(IY)/\text{MatVar}(\text{blocks}[[2]]) \\
\text{TotVE.X} & = \text{MatVar}((JX + IX))/\text{MatVar}(\text{blocks}[[1]]) \\
\text{TotVE.Y} & = \text{MatVar}((JY + IY))/\text{MatVar}(\text{blocks}[[2]])
\end{align*}
\]

\[
\begin{align*}
\text{CJIVE.res} & = \text{cc.jive}(\text{blocks, } c(r.I1, r.I2)+r.J, r.J, \text{perm.test} = \text{FALSE}) \\
\text{CJIVE signal matrix estimates} \\
J.hat & = \text{CJIVE.res}$sJIVE$joint_matrix \\
I.hat & = \text{CJIVE.res}$sJIVE$indiv_matrix \\
\text{CJIVE loading estimates} \\
WJ & = \text{lapply}(J.hat, \text{function}(x) x[[\text{Var}]]/\text{Var}) \\
WI & = \text{lapply}(I.hat, \text{function}(x) x[[\text{Var}]]/\text{Var})
\end{align*}
\]

Plots of CJIVE estimates against true counterparts and include an estimate of their chordal norm
\[
\begin{align*}
\text{layout(matrix(1:6,2, byrow = TRUE))} \\
\text{plot(JntScores, CJIVE.res$CanCorRes$Jnt_Scores, xlab = "True Joint Scores", ylab = "CJIVE Joint Scores", sub = paste0("Chordal Norm = ", round(chord.norm.diff(JntScores, CJIVE.res$CanCorRes$Jnt_Scores), 3)))} \\
\text{plot(JntLd.X, WJ[[1]],[,1], xlab = "True Joint Loadings X", ylab = "CJIVE Joint Loadings X", sub = paste0("Chordal Norm = ", round(chord.norm.diff(JntLd.X, WJ[[1]],[,1]), 3)))} \\
\text{plot(JntLd.Y, WJ[[2]],[,1], xlab = "True Joint Loadings Y", ylab = "CJIVE Joint Loadings Y", sub = paste0("Chordal Norm = ", round(chord.norm.diff(JntLd.Y, WJ[[2]],[,1]), 3)))} \\
\text{plot.new(); legend("left", paste("Comp." , 1:2), pch = 1, col = c("orange", "green"), bty = "n")} \\
\text{plot(IndivLd.X, WI[[1]],[,1:2], xlab = "True Individual Loadings X", ylab = "CJIVE Individual Loadings X", col = c(rep("orange",p1), rep("green",p2)), sub = paste0("Chordal Norm = ", round(chord.norm.diff(IndivLd.X, WI[[1]],[,1:2]), 3)))} \\
\text{plot(IndivLd.Y, WI[[2]],[,1:2], xlab = "True Individual Loadings Y", ylab = "CJIVE Individual Loadings Y", col = c(rep("orange",p1), rep("green",p2)), sub = paste0("Chordal Norm = ", round(chord.norm.diff(IndivLd.Y, WI[[2]],[,1:2]), 3)))} \\
\text{layout(1)}
\end{align*}
\]

cc.jive.pred

CJIVE joint subject score prediction

Description

Predicts joint scores for new subjects based on CJIVE joint scores.
Usage

cc.jive.pred(
 orig.dat.blocks,
 new.subjs,
 signal.ranks,
 cc.jive.loadings,
 can.cors
)

Arguments

orig.dat.blocks
 list of the two data matrices on which CJIVE was initially conducted
new.subjs
 list of two data matrices containing information on new subjects
signal.ranks
 a vector of length two which contains the rank for the signal within each data block. The rank corresponds to the number of principal components (PCs) to be retained within each data block. If NULL, the ranks are determined by the parameter `perc.var.' Default is NULL
cc.jive.loadings
 canonical loadings for the joint subspace
can.cors
 canonical correlations from the PCs of the data on which CJIVE was initially conducted - notated as rho_j in CJIVE manuscript

Value

matrix of joint subject score for new subjects

Examples

n = 200 # sample size
p1 = 100 # Number of features in data set X1
p2 = 100 # Number of features in data set X2
Assign values of joint and individual signal ranks
r.J = 1 # joint rank
r.I1 = 2 # individual rank for data set X1
r.I2 = 2 # individual rank for data set X2
true_signal_ranks = r.J + c(r.I1, r.I2)
Simulate data sets
ToyDat = GenerateToyData(n = n, p1 = p1, p2 = p2, JntVarEx1 = 0.05, JntVarEx2 = 0.05,
 IndVarEx1 = 0.25, IndVarEx2 = 0.25, jnt_rank = r.J, equal.eig = FALSE,
 ind_rank1 = r.I1, ind_rank2 = r.I2, SVD.plots = TRUE, Error = TRUE,
 print.cor = TRUE)
Store simulated data sets in an object called 'blocks'
blocks <- ToyDat$'Data Blocks'
Split data randomly into two subsamples
rnd.smp = sample(n, n/2)
blocks.sub1 = lapply(blocks, function(x){x[rnd.smp,]}))
blocks.sub2 = lapply(blocks, function(x){x[-rnd.smp,]})
Joint scores for the two sub samples
Chord norm between column-subspaces of two matrices

Description

Calculates the chordal norm between the column subspaces of two matrices. Matrices must have the same number of rows. Let U_x and U_y represent the singular vectors of matrices X and Y, respectively. The chordal norm can be calculated as the square root of the sum of the singular values of $t(U_x)$.

Usage

```r
chord.norm.diff(X, Y, tol = 1e-08)
```
Arguments

- **X**: a matrix with the same number of rows as Y and any number of columns
- **Y**: a matrix with the same number of rows as X and any number of columns
- **tol**: threshold under which singular values of inner product are zeroed out

Value

(Numeric) Chordal norm between column-subspaces of X and Y, scaled to the interval [0,1]

ConvSims_gg

Convert simulation study results

Description

Convert results from simulation study into a form for graphing with ggplot

Usage

ConvSims_gg(AllSims)

Arguments

- **AllSims**: matrix with each row representing results from a replicate in the simulation study described in CJIVE manuscript

Value

list of 2 items: 1) joint ranks determined by each method employed in the simulations study 2) chordal norms between true and estimated joint/individual loadings/scores for each method employed in the simulation study

create.graph.long

Function for plotting networks with ggplot

Description

Convert matrix representation of a network for graphical display via ggplot

Usage

create.graph.long(gmatrix, sort_indices = NULL)
GenerateToyData

Arguments

- **gmatrix**: square matrix of size p-by-p in which entries represent the strength of (undirected) edges between the p nodes
- **sort_indices**: vector of length p by which nodes are sorted. If NULL, then nodes are not sorted. Default is NULL.

Value

- a data frame of three variables: X1, which represents the row from which the edge comes; X2, which represents the column from which the edge comes; 3) value, matrix entry representing the strength of the edge between the nodes represented by X1 and X2

GenerateToyData

Generate 'Toy' Data

Description

Generates two Simulated Datasets that follow JIVE Model using binary subject scores

Usage

```r
GenerateToyData(
  n,
  p1,
  p2,
  JntVarEx1,
  JntVarEx2,
  IndVarEx1,
  IndVarEx2,
  jnt_rank = 1,
  equal.eig = FALSE,
  ind_rank1 = 2,
  ind_rank2 = 2,
  SVD.plots = TRUE,
  Error = TRUE,
  print.cor = TRUE
)
```

Arguments

- **n**: integer for sample size, i.e. number of subjects
- **p1**: integer for number of features/variables in first data set
- **p2**: integer for number of features/variables in second data set
- **JntVarEx1**: numeric between (0,1) which describes proportion of variance in the first data set which is attributable to the joint signal
Value

A 'list' object which contains 1) list of signal matrices which additively comprise the simulated data sets, i.e. joint, individual, and error matrices for each data set; 2) list of simulated data sets (each equal to the sum of the matrices in part 1); 3) list of joint subject scores and individual subject scores for each data set, and 4) list of joint and individual loadings for each data set.

Examples

ToyDat = GenerateToyData(n = 200, p1 = 2000, p2 = 1000, JntVarEx1 = 0.05, JntVarEx2 = 0.05, IndVarEx1 = 0.25, IndVarEx2 = 0.25, jnt_rank = 1, equal.eig = FALSE, ind_rank1 = 2, ind_rank2 = 3, SVD.plots = TRUE, Error = TRUE, print.cor = TRUE)

GetSimResults_Dir

Description

Retrieves and compiles results from simulation study which are stored in a directory. A directory should contain separate .csv files (one per replicate), each of which will include all evaluation metrics and most experimental settings for that particular replicate. For the CJIVE manuscript, a directory houses results of all 100 replicates for each combination of experimental factors.
Usage

GetSimResults_Dir(sim.dir, p1, p2, Preds = FALSE)

Arguments

- sim.dir: (character string) file path for the directory from which results will be retrieved
- p1: number of features in data set 1
- p2: number of features in data set 2
- Preds: (logical) do the replicate results contain correlations between predicted and true joint subject scores. Default is FALSE

Value

upper triangular p-by-p matrix

gg.corr.plot

Function for plotting Pearson correlations between predicted and true subject scores within the simulation study described in CJIVE manuscript

Description

Graphically displays the center and spread of chordal norms for joint/individual subject score subspaces

Usage

gg.corr.plot(cor.dat, cols, show.legend = FALSE, text.size)

Arguments

- cor.dat: data frame with at least the 5 following variables: Norm - the value of the norm for a particular subspace; Type - the subspace for which the norm is given (i.e., joint/individual score/loading for dataset X1 or X2 (except for joint scores)) Method - the method by which the subspace was estimated, e.g. CJIVE, AJIVE, R.JIVE JVE_1 and JVE_2 - labels describing the proportion of joint variation explained in each dataset (and typically the number of variables in dataset X2)
- cols: a vector of colors, must have length equal to the number of methods used in the simulation
- show.legend: logical (TRUE/FALSE) for whether a legend should be included in the plot. Default is FALSE
- text.size: numeric value for the font size

Value

graphical display (via ggplot2)
gg.load.norm.plot

Function for plotting chordal norms between estimated and true variable loading subspaces within the simulation study described in CJIVE manuscript

Description

Graphically displays the center and spread of chordal norms for joint/individual variable loading subspaces

Usage

```r
gg.load.norm.plot(
  norm.dat,
  cols,
  show.legend = FALSE,
  text.size,
  lty = 1,
  y.max = 1,
  x.lab.angle = 70
)
```

Arguments

- `norm.dat`: data frame with at least the 5 following variables: Norm - the value of the norm for a particular subspace; Type - the subspace for which the norm is given (i.e., joint/individual variable loadings for dataset X1 or X2) Method - the method by which the subspace was estimated, e.g. CJIVE, AJIVE, R.JIVE JVE_1 and JVE_2 - labels describing the proportion of joint variation explained in each dataset (and typically the number of variables in dataset X2)
- `cols`: a vector of colors, must have length equal to the number of methods used in the simulation
- `show.legend`: logical (TRUE/FALSE) for whether a legend should be included in the plot. Default is FALSE
- `text.size`: numeric value for the font size
- `lty`: linetype (see ggplot2). Default = 1
- `y.max`: maximum value for the horizontal axis of the plot
- `x.lab.angle`: angle at which x-axis labels are tilted

Value

graphical display (via ggplot2)
gg.norm.plot

Function for plotting chordal norms between estimated and true subspaces within the simulation study described in CJIVE manuscript

Description

Graphically displays the center and spread of chordal norms for joint/individual score/loading subspaces

Usage

```r
gg.norm.plot(
  norm.dat, cols,
  show.legend = FALSE, text.size,
  lty = 1, y.max = 1, x.lab.angle = 70
)
```

Arguments

- `norm.dat`: data frame with at least the 5 following variables: Norm - the value of the norm for a particular subspace; Type - the subspace for which the norm is given (i.e., joint/individual score/loading for dataset X1 or X2 (except for joint scores)) Method - the method by which the subspace was estimated, e.g. CJIVE, AJIVE, R.JIVE JVE.1 and JVE.2 - labels describing the proportion of joint variation explained in each dataset (and typically the number of variables in dataset X2)
- `cols`: a vector of colors, must have length equal to the number of methods used in the simulation
- `show.legend`: logical (TRUE/FALSE) for whether a legend should be included in the plot. Default is FALSE
- `text.size`: numeric value for the font size
- `lty`: linetype (see ggplot2). Default = 1
- `y.max`: maximum value for the horizontal axis of the plot
- `x.lab.angle`: angle at which x-axis labels are tilted

Value

graphical display (via ggplot2)
gg.rank.plot

Function for plotting selected joint ranks

Description
Graphically displays the count of joint ranks selected by each method employed in the simulation study described in the CJIVE manuscript

Usage
```r
gg.rank.plot(rank.dat, cols, show.legend = FALSE, text.size, num.sims)
```

Arguments
- `rank.dat`: data frame expected to be built with the functions dplyr::count and tidyr::complete, which should include the following variables
 - Rank: numeric values of the rank selected by each method in each replicate simulation
 - n: the number of times this value was selected as the rank
 - Type: the subspace for which the norm is given (i.e., joint/individual score/loading for dataset X1 or X2 (except for joint scores))
 - Method: the method by which the subspace was estimated, e.g. CJIVE, AJIVE, R.JIVE
 - JVE_1 and JVE_2: labels describing the proportion of joint variation explained in each dataset (and typically the number of variables in dataset X2)
- `cols`: a vector of colors, must have length equal to the number of methods used in the simulation
- `show.legend`: logical (TRUE/FALSE) for whether a legend should be included in the plot. Default is FALSE
- `text.size`: numeric value for the font size
- `num.sims`: numeric value for the number of replicates evaluated in each full combination of experimental settings

Value
Graphical display (via ggplot2)

gg.score.norm.plot

Function for plotting chordal norms between estimated and true subject score subspaces within the simulation study described in CJIVE manuscript

Description
Graphically displays the center and spread of chordal norms for joint/individual subject score subspaces
MatVar

Usage

\[\text{gg.score.norm.plot(} \]
\begin{align*}
\text{norm.dat,} \\
\text{cols,} \\
\text{show.legend = FALSE,} \\
\text{text.size,} \\
\text{lty = 1,} \\
\text{y.max = 1,} \\
\text{x.lab.angle = 70} \\
\} \]

Arguments

- `norm.dat`: data frame with at least the 5 following variables: Norm - the value of the norm for a particular subspace; Type - the subspace for which the norm is given (i.e., joint and individual subject scores for dataset X1 or X2 (except joint scores, which are for both datasets)); Method - the method by which the subspace was estimated, e.g. CJIVE, AJIVE, R.JIVE JVE_1 and JVE_2 - labels describing the proportion of joint variation explained in each dataset (and typically the number of variables in dataset X2)
- `cols`: a vector of colors, must have length equal to the number of methods used in the simulation
- `show.legend`: logical (TRUE/FALSE) for whether a legend should be included in the plot. Default is FALSE
- `text.size`: numeric value for the font size
- `lty`: linetype (see ggplot2). Default = 1
- `y.max`: maximum value for the horizontal axis of the plot
- `x.lab.angle`: angle at which x-axis labels are tilted

Value

graphical display (via ggplot2)

MatVar

Matrix variation (i.e. Frobenius norm)

Description

Calculates the Frobenius norm of a matrix, which can be used as a measure of total variation

Usage

\[\text{MatVar}(X) \]
Arguments

X a matrix of any size

Value

The Frobenius norm of the matrix X, calculated as the square root of the sum of squared entries in X

Examples

X = matrix(rnorm(10), 5,2)
MatVar(X)

MatVar2 Alternative calculation - Matrix variation (i.e. Frobenius norm)

Description

Calculates the Frobenius norm of a matrix, which can be used as a measure of total variation

Usage

MatVar2(X)

Arguments

X a matrix of any size

Value

The Frobenius norm of the matrix X, calculated as the square root of the trace of t(X)

Examples

X = matrix(rnorm(10), 5,2)
MatVar2(X)
Melt.Sim.Cors

Description

Converts correlations of predicted to true joint subject scores to a format conducive to ggplot2

Usage

Melt.Sim.Cors(sim.dat, r.J, p1, p2)

Arguments

- **sim.dat**
 - matrix with each row representing results from a replicate in the simulation study described in CJIVE manuscript
- **r.J**
 - (Numeric/integer) the joint rank, i.e. number of components in the joint subspace
- **p1**
 - number of variables/features in data set X1
- **p2**
 - number of variables/features in data set X2

Value

data frame with seven columns: one each for the joint variance explained in each data set, one column containing the method by which predictions were obtained, one column containing the component number (1,...,r.J),

perm.jnrank

Permutation Test for Joint Rank in CJIVE

Description

Conducts the permutation test for the number of joint components as described in CJIVE manuscript. Briefly, canonical correlations (CC) between principal component vectors of the data are obtained (PC). Then for 1:nperms, the rows of one data set are permuted and CCs between PC vectors are calculated, retaining the maximum CC. These maximum CCs form a null distribution against which the original CCs are tested. The number of original CCs exceeding the (1-alpha)*th percentile is the returned as the joint rank.
Usage

perm.jntrank(
 dat.blocks,
 signal.ranks = NULL,
 nperms = 500,
 perc.var = 0.95,
 alpha = 0.05,
 center = TRUE
)

Arguments

dat.blocks: a list of two matrices with samples along rows and features along columns, which contain data on the same n individuals/sampling units

signal.ranks: a vector of length two which contains the rank for the signal within each data block. The rank corresponds to the number of principal components (PCs) to be retained within each data block. If NULL, the ranks are determined by the parameter 'perc.var.' Default is NULL

nperms: integer value indicating the number of permutations that should be performed

perc.var: numeric value of either a scalar or of length 2: an alternative to signal.ranks that allows specification of signal ranks based on the desired proportion of total variation to be retained in each data block. For perc.var = p (where 0<p<1), rank is determined as the minimum number of eigenvalues whose cumulative sum is at least p*(total sum of eigenvalues). Default is 0.95 (i.e. 95% of total variation preserved for each data block). For p=c(p1,p2) pk is used to determine the rank of block k

alpha: nominal type-I error rate

center: logical (TRUE/FALSE) indicating whether data should be column-centered prior to testing. Default is TRUE

Value

The Frobenius norm of the matrix X, calculated as the sum of square entries in X

Description

Scale loadings for a joint or individual component by its largest absolute value resulting in loadings between -1 and 1. Loadings are also sign-corrected to result in positive skewness

Usage

scale_loadings(loading.comp)
show.image.2

Arguments

- `loading.comp`: numeric vector of variable loadings from a JIVE analysis

Value

numeric vector of loadings which have been scaled and sign-corrected

show.image.2

Display a heatmap of a matrix (adapted from Erick Lock’s show.image function in the rjive package)

Description

Visual display of a matrix as a heatmap with colors determined by entry values, and including a colorbar to aid interpretation of the heatmap

Usage

```r
show.image.2(
  Image,
  ylab = "",
  xlab = "",
  net = FALSE,
  main = "",
  sub = "",
  colorbar = TRUE
)
```

Arguments

- `Image`: matrix to display
- `ylab`: lab for y-axis of heatmap
- `xlab`: lab for x-axis of heatmap
- `net`: logical (TRUE/FALSE) of whether entries correspond to edges between regions of interest in the Power-264 brain atlas. Default is FALSE
- `main`: main title for heatmap
- `sub`: subtitle for heatmap
- `colorbar`: logical (TRUE/FALSE) of whether colorbar should be included to aid interpretation. Default is TRUE

Value

graphical display of matrix as a heatmap
sjive

Simple JIVE

Description

Conducts AJIVE estimation under the assumption that all ranks are known and no components are discarded.

Usage

sjive(blocks, signal_ranks, joint.rank, joint_scores = NULL)

Arguments

- **blocks**
 list of data blocks, i.e. matrices, all having the same number of rows, which correspond to the same sampling units (i.e. study participants, patients, etc.)
- **signal_ranks**
 numerical vector of the same length as 'blocks' with each entry corresponding to the rank of the respective matrix in 'blocks'
- **joint.rank**
 integer value corresponding to the rank of the joint signal subspace, i.e. number of components in the signal subspace
- **joint_scores**
 numerical matrix containing joint subject scores if they were calculated by some other method, e.g. Canonical Correlation of PC scores. Must have the same number of rows as each matrix in 'blocks' and number of columns equal to 'joint_rank'. If NULL, joint scores are calculated and returned. Default is NULL.

Value

list of 4 or 5 items: 1) joint signal matrices, their SVDs, and the proportion of total variation in each matrix that is attributable to the joint signal 2) individual signal matrices, their SVDs, and the proportion of total variation in each matrix that is attributable to the individual signal 3) concatenated PC scores, used to determine joint subspace 4) projection matrix for joint subspace 5) joint subject scores (only returned if not provided initially)

vec2net.1

Convert vector to network

Description

Converts a vector of size p choose 2 into a p-by-p lower triangular matrix

Usage

vec2net.1(invector)
vec2net.u

Arguments

- `invector` numeric vector of size \(\binom{p}{2} \)

Value

- lower triangular \(p \times p \) matrix

vec2net.u
Convert vector to network

Description

Converts a vector of size \(\binom{p}{2} \) into a \(p \times p \) upper triangular matrix

Usage

`vec2net.u(invector)`

Arguments

- `invector` numeric vector of size \(\binom{p}{2} \)

Value

- upper triangular \(p \times p \) matrix
Index

AdjSigVarExp, 2
cc.jive, 3
cc.jive.pred, 5
chord.norm.diff, 7
ConvSims_gg, 8
create.graph.long, 8
GenerateToyData, 9
GetSimResults_Dir, 10
gg.corr.plot, 11
gg.load.norm.plot, 12
gg.norm.plot, 13
gg.rank.plot, 14
gg.score.norm.plot, 14
MatVar, 15
MatVar2, 16
Melt.Sim.Cors, 17
perm.jntrank, 17
scale_loadings, 18
show.image.2, 19
sjive, 20
vec2net.l, 20
vec2net.u, 21