Package ‘CLVTools’

June 25, 2020

Title Tools for Customer Lifetime Value Estimation
Version 0.6.0
Date 2020-06-22
Depends R (>= 3.5.0), methods
Description Probabilistic latent customer attrition models (also known as “buy-til-you-die models”) are used to predict future purchase behavior of customers. This package includes fast and accurate implementations of various probabilistic latent customer attrition models for non-contractual settings (e.g., retail business) with and without time-invariant and time-varying covariates. Currently, the package includes the Pareto/NBD model (Pareto/Negative-Binomial-Distribution), the BG/NBD mode (Beta-Gamma/Negative-Binomial-Distribution) and the GGamma/NBD (Gamma-Gompertz/Negative-Binomial-Distribution) for the purchase and the attrition processes as well as the Gamma/Gamma model for the spending process. For reference to the Pareto/NBD model, see Schmittlein DC, Morrison DG, Colombo R (1987) <doi:10.1287/mnsc.33.1.1>, for the BG/NBD model, see Fader PS, Hardie BG, Lee K (2005) <doi:10.1287/mksc.1040.0098> and for the GGamma/NBD model see Bemmaor AC, Gladys N (2012) <doi:10.1287/mnsc.1110.1461>. For reference to the Gamma/Gamma model, see Fader PS, Hardie BG, Lee K (2005) <doi:10.1509/jmkr.2005.42.4.415>.

Imports data.table (>= 1.12.0), foreach (>= 1.5.0), ggplot2 (>= 3.2.0), lubridate (>= 1.7.8), Matrix (>= 1.2-17), MASS, optimx (>= 2019-12.02), stats, utils
Suggests BTYD, covr, doFuture, doParallel, future, knitr, rmarkdown, testthat
License GPL-3
URL https://github.com/bachmannpatrick/CLVTools
BugReports https://github.com/bachmannpatrick/CLVTools/issues
NeedsCompilation yes
SystemRequirements C++11
LinkingTo Rcpp(>= 0.12.12), RcppArmadillo (>= 0.9.500.2.0), RcppGSL (>= 0.3.7)

LazyLoad yes

Encoding UTF-8

Collate 'CLVTools.R' 'RcppExports.R' 'all_generics.R'
'class_clv_time.R' 'class_clv_data.R' 'class_clv_model.R'
'class_clv_fitted.R' 'class_clv_model_bgnbd.R'
'class_clv_bgnbd.R' 'class_clv_fitted_staticcov.R'
'class_clv_data_staticcovariates.R'
'class_clv_model_bgnbd_staticcov_R'
'class_clv_bgnbd_staticcov.R'
'class_clv_data_dynamiccovariates.R'
'class_clv_fitted_dynamiccov.R'
'class_clv_model_ggomnbnd_no cov.R' 'class_clv_ggomnbnd.R'
'class_clv_model_ggomnbnd_staticcov.R'
'class_clv_ggomnbnd_staticcov.R' 'class_clv_model_pnbd_R'
'class_clv_model_pnbd_staticcov.R'
'class_clv_model_pnbd_dynamiccov.R' 'class_clv_pnbd.R'
'class_clv_pnbd_dynamiccov.R' 'class_clv_pnbd_staticcov.R'
'class_clv_pnbd_dynamiccov.R' 'class_clv_pnbd_staticcov.R'
'class_clv_time_date.R' 'class_clv_time_datetime.R'
'class_clv_time_days.R' 'class_clv_time_hours.R'
'class_clv_time_weeks.R' 'class_clv_time_years.R'
'clv_template_controlflow_estimate.R'
'clv_template_controlflow_predict.R' 'data.R'
'_f_DoExpectation.R'_f_clvdata_inputchecks.R'
'_f_clvdata_inputchecks.R'_f_generics_clvdata.R'
'_f_generics_clvdata.R'_f_generics_clvfitted_estimate.R'
'_f_generics_clvfitted.R'_f_generics_clvfitteddynamiccov.R'
'_f_generics_clvfitteddynamiccov.R'_f generics_clvfittedstaticcov.R'
'_f_generics_clvfitteddynamiccov.R'_f_generics_clvfittedstaticcov.R'
'_f_generics_clvpnbddynamiccov.R'_f_interface_bgbb.R'
'_f_interface_bgbb.R'_f_interface_clvdata.R'
'_f_interface_ggomnbnd.R'_f_interface_pnbd.R'
'_f_interface_setdynamiccovariates.R'
'_f_interface_setstaticcovariates.R'_f_s3generics_clvdata.R'
'_f_s3generics_clvdata.R'_f_s3generics_clvdata_dynamico cov.R'
'_f_s3generics_clvdata_dynamico cov.R'_f_s3generics_clvdata_plot.R'
'_f_s3generics_clvdata_plot.R'_f_s3generics_clvdata_staticcov.R'
'_f_s3generics_clvdata_staticcov.R'_f_s3generics_clvfitted.R'
'_f_s3generics_clvdata_plot.R'_f_s3generics_clvtime.R'
'_interlayer_callLL.R'_interlayer_callnextinterlayer.R'
'_interlayer_constraints.R'_interlayer_correlation.R'
'_interlayer_manager.R'_interlayer_regularization.R'
'pnbd dyn cov ABCD.R' 'pnbd dyn cov BkSum.R' 'pnbd dyn cov CET.R'
'pnbd dyn cov DECT.R' 'pnbd dyn cov LL.R' 'pnbd dyn cov LL_Bi.R'
'pnbd dyn cov LL_Di.R' 'pnbd dyn cov createwalks.R'
'pnbd dyn cov expectation.R' 'pnbd dyn cov makewalks.R'
'pnbd dyn cov palate.R'
R topics documented:

RoxygenNote 7.1.0

VignetteBuilder knitr

Author Patrick Bachmann [cre, aut],
Jeffrey Naef [aut],
Patrik Schilter [aut],
Markus Meierer [aut],
Niels Kuebler [aut]

Maintainer Patrick Bachmann <patrick.bachmann@business.uzh.ch>

Repository CRAN

Date/Publication 2020-06-24 22:10:02 UTC

R topics documented:

CLVTools-package ... 4
apparelDynCov .. 5
apparelStaticCov .. 5
apparelTrans ... 6
bgbb .. 6
bgnbd .. 8
bgnbd_CET .. 12
bgnbd_LL ... 14
bgnbd_PAlive .. 15
cdnw ... 17
clvdata .. 17
fitted.clv.fitted ... 20
ggomnbdb .. 21
ggomnbdb_CET ... 24
ggomnbdb_expectation 26
ggomnbdb_LL ... 27
ggomnbdb_PAlive ... 29
gg_LL .. 30
nobs.clv.data ... 31
nobs.clv.fitted ... 31
plot.clv.data ... 32
plot.clv.fitted ... 34
pnbd ... 37
pnbd_CET .. 42
pnbd_DERT .. 44
pnbd_LL ... 46
pnbd_PAlive ... 47
predict.clv.fitted .. 49
SetDynamicCovariates 53
SetStaticCovariates ... 54
summary.clv.fitted ... 56
vcov.clv.fitted .. 59

Index 60
Description

CLVTools is a toolbox for various probabilistic customer attrition models for non-contractual settings. It provides a framework, which is capable of unifying different probabilistic customer attrition models. This package provides tools to estimate the number of future transactions of individual customers as well as the probability of customers being alive in future periods. Further, the average spending by customers can be estimated. Multiplying the future transactions conditional on being alive and the predicted individual spending per transaction results in an individual CLV value.

The implemented models require transactional data from non-contractual businesses (i.e. customers’ purchase history).

Author(s)

Maintainer: Patrick Bachmann <patrick.bachmann@business.uzh.ch>

Authors:

- Jeffrey Naef <naef@stat.math.ethz.ch>
- Patrick Schilter <patrik.schilter@gmail.com>
- Markus Meierer <markus.meierer@business.uzh.ch>
- Niels Kuebler <niels.kuebler@uzh.ch>

See Also

Development for CLVTools can be followed via the GitHub repository at https://github.com/bachmannpatrick/CLVTools.

Examples

```r
data("cdnow")
# Create a CLV data object, split data in estimation and holdout sample
clv.data.cdnow <- clvdata(data.transactions = cdnow, date.format = "ymd",
                           time.unit = "week", estimation.split = 39, name.id = "Id")

# summary of data
summary(clv.data.cdnow)

# Fit a PNBD model without covariates on the first 39 periods
pnbd.cdnow <- pnbd(clv.data.cdnow,
                    start.params.model = c(r=0.5, alpha=8, s=0.5, beta=10))
# inspect fit
```
apparelDynCov

summary(pnbd.cdnow)

Predict 10 periods (weeks) ahead from estimation end
and compare to actuals in this period
pred.out <- predict(pnbd.cdnow, prediction.end = 10)

Plot the fitted model to the actual repeat transactions
plot(pnbd.cdnow)

apparelDynCov

Time-varying Covariates for the Apparel Retailer Dataset

Description

This simulated data contains direct marketing information on all 250 customers in the "apparel-Trans" dataset. This information can be used as time-varying covariates.

Usage

data("apparelDynCov")

Format

A data.table with 20500 rows and 5 variables

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>Customer Id</td>
</tr>
<tr>
<td>Cov.Date</td>
<td>Date of contextual factor</td>
</tr>
<tr>
<td>Marketing</td>
<td>Direct marketing variable: 1 if customer was contacted with direct marketing in this time period</td>
</tr>
<tr>
<td>Gender</td>
<td>0=male, 1=female</td>
</tr>
<tr>
<td>Channel</td>
<td>Acquisition channel: 0=online, 1=offline</td>
</tr>
</tbody>
</table>

apparelStaticCov

Time-invariant Covariates for the Apparel Retailer Dataset

Description

This simulated data contains additional demographic information on all 250 customers in the "apparelTrans" dataset. This information can be used as time-invariant covariates.

Usage

data("apparelStaticCov")
Format

A data.table with 250 rows and 3 variables:

Id Customer Id
Gender 0=male, 1=female
Channel Acquisition channel: 0=online, 1=offline

Description

This is a simulated dataset containing the entire purchase history of customers made their first purchase at an apparel retailer on January 3rd 2005. In total the dataset contains 250 customers who made 3648 transactions between January 2005 and mid July 2006.

Usage

data("apparelTrans")

Format

A data.table with 2353 rows and 3 variables:

Id Customer Id
Date Date of purchase
Price Price of purchase

Description

Fits BG/BB models on transactional data with static and without covariates. Not yet implemented.
Usage

S4 method for signature 'clv.data'
bgbb(
 clv.data,
 start.params.model = c(),
 optimx.args = list(),
 verbose = TRUE,
 ...
)

S4 method for signature 'clv.data.static.covariates'
bgbb(
 clv.data,
 start.params.model = c(),
 optimx.args = list(),
 verbose = TRUE,
 names.cov.life = c(),
 names.cov.trans = c(),
 start.params.life = c(),
 start.params.trans = c(),
 names.cov.constr = c(),
 start.params.constr = c(),
 reg.lambdas = c(),
 ...
)

S4 method for signature 'clv.data.dynamic.covariates'
bgbb(
 clv.data,
 start.params.model = c(),
 optimx.args = list(),
 verbose = TRUE,
 names.cov.life = c(),
 names.cov.trans = c(),
 start.params.life = c(),
 start.params.trans = c(),
 names.cov.constr = c(),
 start.params.constr = c(),
 reg.lambdas = c(),
 ...
)

Arguments

clv.data The data object on which the model is fitted.

start.params.model Named start parameters containing the optimization start parameters for the model without covariates.
optimx.args Additional arguments to control the optimization which are forwarded to \texttt{optimx::optimx}. If multiple optimization methods are specified, only the result of the last method is further processed.

verbose Show details about the running of the function.

... Ignored

names.cov.life Which of the set Lifetime covariates should be used. Missing parameter indicates all covariates shall be used.

names.cov.trans Which of the set Transaction covariates should be used. Missing parameter indicates all covariates shall be used.

start.params.life Named start parameters containing the optimization start parameters for all lifetime covariates.

start.params.trans Named start parameters containing the optimization start parameters for all transaction covariates.

names.cov.constr Which covariates should be forced to use the same parameters for the lifetime and transaction process. The covariates need to be present as both, lifetime and transaction covariates.

start.params.constr Named start parameters containing the optimization start parameters for the constraint covariates.

reg.lambdas Named lambda parameters used for the L2 regularization of the lifetime and the transaction covariate parameters. Lambda have to be ≥ 0.

Value

No value is returned.

bgem

BG/NBD models

Description

Fits BG/NBD models on transactional data without and with static covariates.

Usage

```r
## S4 method for signature 'clv.data'
bgem(
  clv.data,
  start.params.model = c(),
  optimx.args = list(),
  verbose = TRUE,
  ...
```
bgnbd

```r
## S4 method for signature 'clv.data.static.covariates'
bgnbd( 
  clv.data, 
  start.params.model = c(), 
  optimx.args = list(), 
  verbose = TRUE, 
  names.cov.life = c(), 
  names.cov.trans = c(), 
  start.params.life = c(), 
  start.params.trans = c(), 
  names.cov.constr = c(), 
  start.params.constr = c(), 
  reg.lambdas = c(), 
  ...
)
```

Arguments

- `clv.data`
 The data object on which the model is fitted.

- `start.params.model`
 Named start parameters containing the optimization start parameters for the model without covariates.

- `optimx.args`
 Additional arguments to control the optimization which are forwarded to `optimx::optimx`. If multiple optimization methods are specified, only the result of the last method is further processed.

- `verbose`
 Show details about the running of the function.

- `...`
 Ignored

- `names.cov.life`
 Which of the set Lifetime covariates should be used. Missing parameter indicates all covariates shall be used.

- `names.cov.trans`
 Which of the set Transaction covariates should be used. Missing parameter indicates all covariates shall be used.

- `start.params.life`
 Named start parameters containing the optimization start parameters for all lifetime covariates.

- `start.params.trans`
 Named start parameters containing the optimization start parameters for all transaction covariates.

- `names.cov.constr`
 Which covariates should be forced to use the same parameters for the lifetime and transaction process. The covariates need to be present as both, lifetime and transaction covariates.

- `start.params.constr`
 Named start parameters containing the optimization start parameters for the constraint covariates.
Named lambda parameters used for the L2 regularization of the lifetime and the transaction covariate parameters. Lambdas have to be ≥ 0.

Details

Model parameters for the BG/NBD model are $r, \alpha, a,$ and b.
- r: shape parameter of the Gamma distribution of the purchase process.
- α: scale parameter of the Gamma distribution of the purchase process.
- a: shape parameter of the Beta distribution of the dropout process.
- b: shape parameter of the Beta distribution of the dropout process.

If no start parameters are given, $r = 1, \alpha = 3, a = 1, b = 3$ is used. All model start parameters are required to be > 0.

Note that the DERT expression has not been derived (yet) and it consequently is not possible to calculate values for DERT and CLV.

The BG/NBD model: The BG/NBD is an "easy" alternative to the Pareto/NBD model that is easier to implement. The BG/NBD model slight adapts the behavioral "story" associated with the Pareto/NBD model in order to simplify the implementation. The BG/NBD model uses a beta-geometric and exponential gamma mixture distributions to model customer behavior. The key difference to the Pareto/NBD model is that a customer can only churn right after a transaction. This simplifies computations significantly, however has the drawback that a customer cannot churn until he/she makes a transaction. The Pareto/NBD model assumes that a customer can churn at any time.

BG/NBD model with static covariates: The standard BG/NBD model captures heterogeneity was solely using Gamma distributions. However, often exogenous knowledge, such as for example customer demographics, is available. The supplementary knowledge may explain part of the heterogeneity among the customers and therefore increase the predictive accuracy of the model. In addition, we can rely on these parameter estimates for inference, i.e. identify and quantify effects of contextual factors on the two underlying purchase and attrition processes. For technical details we refer to the technical note by Fader and Hardie (2007).

Value

Depending on the data object on which the model was fit, bgnbd returns either an object of class clv.bgnbd or clv.bgnbd.static.cov.

References

See Also

clvdata to create a clv data object. SetStaticCovariates to add static covariates to an existing clv data object.

predict to predict expected transactions, probability of being alive, and customer lifetime value for every customer

plot to plot the unconditional expectation as predicted by the fitted model

The generic functions vcov, summary, fitted.

Examples

data("apparelTrans")
clv.data.apparel <- clvdata(apparelTrans, date.format = "ymd",
 time.unit = "w", estimation.split = 40)

Fit standard bgnbd model
bgnbd(clv.data.apparel)

Give initial guesses for the Model parameters
bgnbd(clv.data.apparel,
 start.params.model = c(r=0.5, alpha=15, a = 2, b=5))

pass additional parameters to the optimizer (optimx)
Use Nelder-Mead as optimization method and print
detailed information about the optimization process
apparel.bgnbd <- bgnbd(clv.data.apparel,
 optimx.args = list(method="Nelder-Mead",
 control=list(trace=6)))

estimated coefs
coef(apparel.bgnbd)

summary of the fitted model
summary(apparel.bgnbd)

predict CLV etc for holdout period
predict(apparel.bgnbd)

predict CLV etc for the next 15 periods
predict(apparel.bgnbd, prediction.end = 15)

To estimate the bgnbd model with static covariates,
add static covariates to the data
data("apparelStaticCov")
clv.data.static.cov <-
 SetStaticCovariates(clv.data.apparel,
 data.cov.life = apparelStaticCov,
 names.cov.life = c("Gender", "Channel"),
 data.cov.trans = apparelStaticCov,
 ...)
names.cov.trans = c("Gender", "Channel")

Fit bgnbd with static covariates
bgnbd(clv.data.static.cov)

Give initial guesses for both covariate parameters
bgnbd(clv.data.static.cov, start.params.trans = c(Gender=0.75, Channel=0.7),
 start.params.life = c(Gender=0.5, Channel=0.5))

Use regularization
bgnbd(clv.data.static.cov, reg.lambdas = c(trans = 5, life=5))

Force the same coefficient to be used for both covariates
bgnbd(clv.data.static.cov, names.cov.constr = "Gender",
 start.params.constr = c(Gender=0.5))

Fit model only with the Channel covariate for life but
keep all trans covariates as is
bgnbd(clv.data.static.cov, names.cov.life = c("Channel"))

bgnbd_CET

BG/NBD: Conditional Expected Transactions

Description

Calculates the expected number of transactions in a given time period based on a customer’s past transaction behavior and the BG/NBD model parameters.

- bgnbd_nocov_CET Conditional Expected Transactions without covariates
- bgnbd_staticcov_CET Conditional Expected Transactions with static covariates

Usage

```r
bgnbd_nocov_CET(r, alpha, a, b, dPeriods, vX, vT_x, vT_cal)

bgnbd_staticcov_CET(
  r,
  alpha,
  a,
  b,
  dPeriods,
  vX,
  vT_x,
  vT_cal,
  vCovParams_trans,
  vCovParams_life,
  mCov_trans,
  mCov_life
)
```
Arguments

- r: shape parameter of the Gamma distribution of the purchase process
- α: scale parameter of the Gamma distribution of the purchase process
- a: shape parameter of the Beta distribution of the lifetime process
- b: shape parameter of the Beta distribution of the lifetime process
- d: number of periods to predict
- vX: Frequency vector of length n counting the numbers of purchases.
- vT_x: Recency vector of length n.
- vT_{cal}: Vector of length n indicating the total number of periods of observation.
- $vCovParams_{trans}$: Vector of estimated parameters for the transaction covariates.
- $vCovParams_{life}$: Vector of estimated parameters for the lifetime covariates.
- $mCov_{trans}$: Matrix containing the covariates data affecting the transaction process. One column for each covariate.
- $mCov_{life}$: Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

Details

$mCov_{trans}$ is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to $vCovParams_{trans}$ at the respective position.

$mCov_{life}$ is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to $vCovParams_{life}$ at the respective position.

Value

Returns a vector containing the conditional expected transactions for the existing customers in the BG/NBD model.

References

BG/NBD: Log-Likelihood functions

Description

Calculates the Log-Likelihood values for the BG/NBD model with and without covariates.

The function bgnbd_nocov_LL_ind calculates the individual LogLikelihood values for each customer for the given parameters.

The function bgnbd_nocov_LL_sum calculates the LogLikelihood value summed across customers for the given parameters.

The function bgnbd_staticcov_LL_ind calculates the individual LogLikelihood values for each customer for the given parameters and covariates.

The function bgnbd_staticcov_LL_sum calculates the individual LogLikelihood values summed across customers.

Usage

bgnbd_nocov_LL_ind(vLogparams, vX, vT_x, vT_cal)
bgnbd_nocov_LL_sum(vLogparams, vX, vT_x, vT_cal)
bgnbd_staticcov_LL_ind(vParams, vX, vT_x, vT_cal, mCov_life, mCov_trans)
bgnbd_staticcov_LL_sum(vParams, vX, vT_x, vT_cal, mCov_life, mCov_trans)

Arguments

vLogparams vector with the BG/NBD model parameters at log scale. See Details.
vX Frequency vector of length n counting the numbers of purchases.
vT_x Recency vector of length n.
vT_cal Vector of length n indicating the total number of periods of observation.
vParams vector with the parameters for the BG/NBD model at log scale and the static covariates at original scale. See Details.
mCov_life Matrix containing the covariates data affecting the lifetime process. One column for each covariate.
mCov_trans Matrix containing the covariates data affecting the transaction process. One column for each covariate.

Details

vLogparams is a vector with model parameters r, alpha_0, a, b at log-scale, in this order.
vParams is vector with the BG/NBD model parameters at log scale, followed by the parameters for the lifetime covariates at original scale and then followed by the parameters for the transaction covariates at original scale.
mCov_trans is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to vLogparams at the respective position.

mCov_life is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to vLogparams at the respective position.

Value

Returns the respective Log-Likelihood value(s) for the BG/NBD model with or without covariates.

References

bgnbd_PAalive

BG/NBD: Probability of Being Alive

Description

Calculates the probability of a customer being alive at the end of the calibration period, based on a customer’s past transaction behavior and the BG/NBD model parameters.

- bgnbd_nocov_PAalive P(alive) for the BG/NBD model without covariates
- bgnbd_staticcov_PAalive P(alive) for the BG/NBD model with static covariates

Usage

bgnbd_nocov_PAalive(r, alpha, a, b, vX, vT_x, vT_cal)

bgnbd_staticcov_PAalive(
 r,
 alpha,
 a,
 b,
 vX,
 vT_x,
 vT_cal,
 vCovParams_trans,
 vCovParams_life,
mCov_trans,
mCov_life
)

Arguments

r shape parameter of the Gamma distribution of the purchase process

alpha scale parameter of the Gamma distribution of the purchase process

a shape parameter of the Beta distribution of the lifetime process

b shape parameter of the Beta distribution of the lifetime process

vX Frequency vector of length n counting the numbers of purchases.

t_x Recency vector of length n.

t_cal Vector of length n indicating the total number of periods of observation.

covParams_trans Vector of estimated parameters for the transaction covariates.

covParams_life Vector of estimated parameters for the lifetime covariates.

mCov_trans Matrix containing the covariates data affecting the transaction process. One column for each covariate.

mCov_life Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

Details

mCov_trans is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to covParams_trans at the respective position.

mCov_life is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to covParams_life at the respective position.

Value

Returns a vector with the PAlive for each customer.

References

Description

A dataset containing the entire purchase history up to the end of June 1998 of the cohort of 23,570 individuals who made their first-ever purchase at CDNOW in the first quarter of 1997.

Usage

data("cdnow")

Format

A data.table with 6696 rows and 4 variables:

- Id Customer Id
- Date Date of purchase
- CDs Amount of CDs purchased
- Price Price of purchase

References

clvdata Create an object for transactional data required to estimate CLV

Description

Creates a data object that contains the prepared transaction data and that is used as input for model fitting. The transaction data may be split in an estimation and holdout sample if desired. The model then will only be fit on the estimation sample.

If covariates should be used when fitting a model, covariate data can be added to an object returned from this function.

Usage

clvdata(
 data.transactions,
 date.format,
 time.unit,
 estimation.split = NULL,
 name.id = "Id",
 name.date = "Date",
 name.price = "Price"
)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.transactions</td>
<td>Transaction data as data.frame or data.table. See details.</td>
</tr>
<tr>
<td>date.format</td>
<td>Character string that indicates the format of the date variable in the data used. See details.</td>
</tr>
<tr>
<td>time.unit</td>
<td>What time unit defines a period. May be abbreviated, capitalization is ignored. See details.</td>
</tr>
<tr>
<td>estimation.split</td>
<td>Indicates the length of the estimation period. See details.</td>
</tr>
<tr>
<td>name.id</td>
<td>Column name of the customer id in data.transaction.</td>
</tr>
<tr>
<td>name.date</td>
<td>Column name of the transaction date in data.transaction.</td>
</tr>
<tr>
<td>name.price</td>
<td>Column name of price in data.transaction. NULL if no spending data is present.</td>
</tr>
</tbody>
</table>

Details

data.transactions A data.frame or data.table with customers' purchase history. Every transaction record consists of a purchase date and a customer id. Optionally, the price of the transaction may be included to also allow for prediction of future customer spending.
time.unit The definition of a single period. Currently available are "hours", "days", "weeks", and "years". May be abbreviated.
date.format A single format to use when parsing any date that is given as character input. This includes the dates given in data.transaction, estimation.split, or as an input to any other function at a later point, such as prediction.end in predict. The function parse_date_time of package lubridate is used to parse inputs and hence all formats it accepts in argument orders can be used. For example, a date of format "year-month-day" (i.e., "2010-06-17") is indicated with "ymd". Other combinations such as "dmy", "dym", "ymd HMS", or "HMS dmy" are possible as well.
estimation.split May be specified as either the number of periods since the first transaction or the timepoint (either as character, Date, or POSIXct) at which the estimation period ends. The indicated timepoint itself will be part of the estimation sample. If no value is provided or set to NULL, the whole dataset will used for fitting the model (no holdout sample).

Aggregation of Transactions:
Multiple transactions by the same customer that occur on the minimally representable temporal resolution are aggregated to a single transaction with their spending summed. For time units days and any other coarser Date-based time units (i.e., weeks, years), this means that transactions on the same day are combined. When using finer time units such as hours which are based on POSIXct, transactions on the same second are aggregated.

For the definition of repeat-purchases, combined transactions are viewed as a single transaction. Hence, repeat-transactions are determined from the aggregated transactions.

Value

An object of class clv.data. See the class definition clv.data for more details about the returned object.

The function summary can be used to obtain and print a summary of the data. The generic accessor function nobs is available to read out the number of customers.
See Also

SetStaticCovariates to add static covariates
SetDynamicCovariates for how to add dynamic covariates
plot to plot the repeat transactions
summary to summarize the transaction data
pnbd to fit Pareto/NBD models on a clv.data object

Examples

data("cdnow")

create clv data object with weekly periods
and no splitting
clv.data.cdnow <- clvdata(data.transactions = cdnow,
 date.format="ymd",
 time.unit = "weeks")

same but split after 37 periods
clv.data.cdnow <- clvdata(data.transactions = cdnow,
 date.format="ymd",
 time.unit = "w",
 estimation.split = 37)

same but estimation end on the 15th Oct 1997
clv.data.cdnow <- clvdata(data.transactions = cdnow,
 date.format="ymd",
 time.unit = "w",
 estimation.split = "1997-10-15")

summary of the transaction data
summary(clv.data.cdnow)

plot the transaction data
plot(clv.data.cdnow)

create data with the weekly periods defined to
start on Mondays

Not run:
set start of week to Monday
oldopts <- options("lubridate.week.start"=1)

create clv.data while Monday is the beginning of the week
clv.data.cdnow <- clvdata(data.transactions = cdnow,
 date.format="ymd",
 time.unit = "weeks")
Dynamic covariates now have to be supplied for every Monday

set week start to what it was before
options(oldopts)

End(Not run)

fitted.clv.fitted

Extract Unconditional Expectation

Description

Extract the unconditional expectation (future transactions unconditional on being "alive") from a fitted clv model. This is the unconditional expectation data that is used when plotting the fitted model.

Usage

```r
## S3 method for class 'clv.fitted'
fitted(object, prediction.end = NULL, verbose = FALSE, ...)
```

Arguments

- `object`: A fitted clv model for which the unconditional expectation is desired.
- `prediction.end`: Until what point in time to predict. This can be the number of periods (numeric) or a form of date/time object. See details.
- `verbose`: Show details about the running of the function.
- `...`: Ignored

Details

`prediction.end` indicates until when to predict or plot and can be given as either a point in time (of class Date, POSIXct, or character) or the number of periods. If `prediction.end` is of class character, the date/time format set when creating the data object is used for parsing. If `prediction.end` is the number of periods, the end of the fitting period serves as the reference point from which periods are counted. Only full periods may be specified. If `prediction.end` is omitted or `NULL`, it defaults to the end of the holdout period if present and to the end of the estimation period otherwise.

The first prediction period is defined to start right after the end of the estimation period. If for example weekly time units are used and the estimation period ends on Sunday 2019-01-01, then the first day of the first prediction period is Monday 2019-01-02. Each prediction period includes a total of 7 days and the first prediction period therefore will end on, and include, Sunday 2019-01-08. Subsequent prediction periods again start on Mondays and end on Sundays. If `prediction.end` indicates a timepoint on which to end, this timepoint is included in the prediction period.
Value

A data.table which contains the following columns:

- **period.until** The timepoint that marks the end (up until and including) of the period to which the data in this row refers.
- **period.num** The number of this period.
- **expectation** The value of the unconditional expectation for the period that ends on `period.until`.

See Also

`plot` to plot the unconditional expectation

ggomnbd
Gamma-Gompertz/NBD model

Description

Fits Gamma-Gompertz/NBD models on transactional data with static and without covariates.

Usage

```r
## S4 method for signature 'clv.data'
ggomnbd(
  clv.data,
  start.params.model = c(),
  optimx.args = list(),
  verbose = TRUE,
  ...
)
```

```r
## S4 method for signature 'clv.data.static.covariates'

**ggomnbd**

```r
ggomnbd(
 clv.data,
 start.params.model = c(),
 optimx.args = list(),
 verbose = TRUE,
 names.cov.life = c(),
 names.cov.trans = c(),
 start.params.life = c(),
 start.params.trans = c(),
 names.cov.constr = c(),
 start.params.constr = c(),
 reg.lambdas = c(),
 ...
)
```
Arguments

clv.data
  The data object on which the model is fitted.
start.params.model
  Named start parameters containing the optimization start parameters for the model without covariates.
optimx.args
  Additional arguments to control the optimization which are forwarded to \texttt{optimx::optimx}. If multiple optimization methods are specified, only the result of the last method is further processed.
verbose
  Show details about the running of the function.
  ... Ignored
names.cov.life
  Which of the set Lifetime covariates should be used. Missing parameter indicates all covariates shall be used.
names.cov.trans
  Which of the set Transaction covariates should be used. Missing parameter indicates all covariates shall be used.
start.params.life
  Named start parameters containing the optimization start parameters for all lifetime covariates.
start.params.trans
  Named start parameters containing the optimization start parameters for all transaction covariates.
names.cov.constr
  Which covariates should be forced to use the same parameters for the lifetime and transaction process. The covariates need to be present as both, lifetime and transaction covariates.
start.params.constr
  Named start parameters containing the optimization start parameters for the constraint covariates.
reg.lambdas
  Named lambda parameters used for the L2 regularization of the lifetime and the transaction covariate parameters. Lambdas have to be \( \geq 0 \).

Details

Model parameters for the GGompertz/NBD model are \( r, \alpha, \beta, b \) and \( s \).

\( r \): shape parameter of the Gamma distribution of the purchase process. The smaller \( r \), the stronger the heterogeneity of the purchase process.
\( \alpha \): scale parameter of the Gamma distribution of the purchase process.
\( \beta \): scale parameter for the Gamma distribution for the lifetime process.
\( b \): scale parameter of the Gompertz distribution (constant across customers).
\( s \): shape parameter of the Gamma distribution for the lifetime process. The smaller \( s \), the stronger the heterogeneity of customer lifetimes.

If no start parameters are given, \( r = 1, \alpha = 1, \beta = 1, b = 1, s = 1 \) is used. The model start parameters are required to be \( > 0 \).

The Gamma-Gompertz/NBD model: There are two key differences of the gamma/Gompertz/NBD (GGom/NBD) model compared to the relative to the well-known Pareto/NBD model: (i) its probability density function can exhibit a mode at zero or an interior mode, and (ii) it can be skewed
to the right or to the left. Therefore, the GGom/NBD model is more flexible than the Pareto/NBD model. According to Bemmaor and Glady (2012) can indicate substantial differences in expected residual lifetimes compared to the Pareto/NBD. The GGom/NBD tends to be appropriate when firms are reputed and their offerings are differentiated.

Value

ggomnbd returns an object of class clv.ggomnbd.

The function summary can be used to obtain and print a summary of the results. The generic accessor functions coefficients, fitted, residuals, vcov, logLik, AIC, BIC, and nobs are available.

References


See Also

clvdata to create a clv data object
predict to predict expected transactions, probability of being alive, and customer lifetime value for every customer
plot to plot the unconditional expectation as predicted by the fitted model

The generic functions summary and fitted.

Examples

data("apparelTrans")
clv.data.apparel <- clvdata(apparelTrans, date.format = "ymd",
                            time.unit = "w", estimation.split = 40)

# Fit standard ggomnbd model
ggomnbd(clv.data.apparel)

# Give initial guesses for the Model parameters
ggomnbd(clv.data.apparel,
       start.params.model = c(r=0.5, alpha=15, b=5, beta=10, s=0.5))

# pass additional parameters to the optimizer (optimx)
#  Use Nelder-Mead as optimization method and print
#  detailed information about the optimization process
apparel.ggomnbd <- ggomnbd(clv.data.apparel,
                           optimx.args = list(method="Nelder-Mead",
                                              control=list(trace=6)))

# estimated coefs
coefficients(apparel.ggomnbd)

# summary of the fitted model
summary(apparel.ggomnbd)

# predict CLV etc for holdout period
predict(apparel.ggomnbd)

# predict CLV etc for the next 15 periods
predict(apparel.ggomnbd, prediction.end = 15)

# To estimate the ggomnbd model with static covariates,
# add static covariates to the data
data("apparelStaticCov")
clv.data.static.cov <-
  SetStaticCovariates(clv.data.apparel,
    data.cov.life = apparelStaticCov,
    names.cov.life = c("Gender", "Channel"),
    data.cov.trans = apparelStaticCov,
    names.cov.trans = c("Gender", "Channel"))

# Fit ggomnbd with static covariates
ggomnbd(clv.data.static.cov)

# Give initial guesses for both covariate parameters
ggomnbd(clv.data.static.cov, start.params.trans = c(Gender=0.75, Channel=0.7),
    start.params.life = c(Gender=0.5, Channel=0.5))

# Use regularization
ggomnbd(clv.data.static.cov, reg.lambdas = c(trans = 5, life=5))

# Force the same coefficient to be used for both covariates
ggomnbd(clv.data.static.cov, names.cov.constr = "Gender",
    start.params.constr = c(Gender=0.5))

# Fit model only with the Channel covariate for life but
# keep all trans covariates as is
ggomnbd(clv.data.static.cov, names.cov.life = c("Channel"))

---

**ggomnbd_CET**

**GGompertz/NBD: Conditional Expected Transactions**

**Description**

Calculates the expected number of transactions in a given time period based on a customer's past transaction behavior and the GGompertz/NBD model parameters.

- **ggomnbd_nocov_CET** Conditional Expected Transactions without covariates
- **ggomnbd_staticcov_CET** Conditional Expected Transactions with static covariates
Usage

ggomnbd_nocov_CET(r, alpha_0, b, s, beta_0, dPeriods, vX, vT_x, vT_cal)

ggomnbd_staticcov_CET(
  r,
  alpha_0,
  b,
  s,
  beta_0,
  dPeriods,
  vX,
  vT_x,
  vT_cal,
  vCovParams_trans,
  vCovParams_life,
  mCov_life,
  mCov_trans
)

Arguments

r shape parameter of the Gamma distribution of the purchase process. The smaller r, the stronger the heterogeneity of the purchase process.

alpha_0 scale parameter of the Gamma distribution of the purchase process.

b scale parameter of the Gompertz distribution (constant across customers)

s shape parameter of the Gamma distribution for the lifetime process. The smaller s, the stronger the heterogeneity of customer lifetimes.

beta_0 scale parameter for the Gamma distribution for the lifetime process

dPeriods number of periods to predict

vX Frequency vector of length n counting the numbers of purchases.

vT_x Recency vector of length n.

vT_cal Vector of length n indicating the total number of periods of observation.

vCovParams_trans Vector of estimated parameters for the transaction covariates.

vCovParams_life Vector of estimated parameters for the lifetime covariates.

mCov_life Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

mCov_trans Matrix containing the covariates data affecting the transaction process. One column for each covariate.

Details

mCov_trans is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to vCovParams_trans at the respective position.
mCov_life is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to vCovParams_life at the respective position.

Value

Returns a vector containing the conditional expected transactions for the existing customers in the GGompertz/NBD model.

References


description

Computes the expected number of repeat transactions in the interval (0, vT_i] for a randomly selected customer, where 0 is defined as the point when the customer came alive.

Usage

ggomnbd_nocov_expectation(r, alpha_0, b, s, beta_0, vT_i)

Arguments

r shape parameter of the Gamma distribution of the purchase process. The smaller r, the stronger the heterogeneity of the purchase process.

alpha_0 scale parameter of the Gamma distribution of the purchase process.

b scale parameter of the Gompertz distribution (constant across customers)

s shape parameter of the Gamma distribution for the lifetime process. The smaller s, the stronger the heterogeneity of customer lifetimes.
beta_0  scale parameter for the Gamma distribution for the lifetime process
vT_i    Number of periods since the customer came alive
vCovParams_trans Vector of estimated parameters for the transaction covariates.
vCovParams_life  Vector of estimated parameters for the lifetime covariates.
mCov_life Matrix containing the covariates data affecting the lifetime process. One column for each covariate.
mCov_trans Matrix containing the covariates data affecting the transaction process. One column for each covariate.

Details

mCov_trans is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to vCovParams_trans at the respective position.

mCov_life is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to vCovParams_life at the respective position.

References


Description

Calculates the Log-Likelihood values for the GGompertz/NBD model with and without covariates. The function ggomnbd_nocov_LL_ind calculates the individual LogLikelihood values for each customer for the given parameters.

The function ggomnbd_nocov_LL_sum calculates the LogLikelihood value summed across customers for the given parameters.

The function ggomnbd_staticcov_LL_ind calculates the individual LogLikelihood values for each customer for the given parameters and covariates.

The function ggomnbd_staticcov_LL_sum calculates the individual LogLikelihood values summed across customers.
Usage

\begin{verbatim}
ggombd_nocovLL_ind(vLogparams, vX, vT_x, vT_cal)
ggombd_nocovLL_sum(vLogparams, vX, vT_x, vT_cal)
ggombd_staticcovLL_ind(vParams, vX, vT_x, vT_cal, mCov_life, mCov_trans)
ggombd_staticcovLL_sum(vParams, vX, vT_x, vT_cal, mCov_life, mCov_trans)
\end{verbatim}

Arguments

- **vLogparams**: vector with the GGompertz/NBD model parameters at log scale. See Details.
- **vX**: Frequency vector of length n counting the numbers of purchases.
- **vT_x**: Recency vector of length n.
- **vT_cal**: Vector of length n indicating the total number of periods of observation.
- **vParams**: vector with the parameters for the GGompertz/NBD model at log scale and the static covariates at original scale. See Details.
- **mCov_life**: Matrix containing the covariates data affecting the lifetime process. One column for each covariate.
- **mCov_trans**: Matrix containing the covariates data affecting the transaction process. One column for each covariate.

Details

- **vLogparams** is a vector with model parameters \( r, \alpha_0, b, s, \beta_0 \) at log-scale, in this order.
- **vParams** is vector with the GGompertz/NBD model parameters at log scale, followed by the parameters for the lifetime covariates at original scale and then followed by the parameters for the transaction covariates at original scale.
- **mCov_trans** is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to vParams at the respective position.
- **mCov_life** is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to vParams at the respective position.

Value

Returns the respective Log-Likelihood value(s) for the GGompertz/NBD model with or without covariates.

References

Description

Calculates the probability of a customer being alive at the end of the calibration period, based on a customer’s past transaction behavior and the GGompertz/NBD model parameters.

- `ggomnbd_nocov_PAlive` P(alive) for the GGompertz/NBD model without covariates
- `ggomnbd_staticcov_PAlive` P(alive) for the GGompertz/NBD model with static covariates

Usage

```r
ggomnbd_staticcov_PAlive(
 r,
 alpha_0,
 b,
 s,
 beta_0,
 vX,
 vT_x,
 vT_cal,
 vCovParams_trans,
 vCovParams_life,
 mCov_life,
 mCov_trans
)
```

```r
ggomnbd_nocov_PAlive(r, alpha_0, b, s, beta_0, vX, vT_x, vT_cal)
```

Arguments

- `r` shape parameter of the Gamma distribution of the purchase process. The smaller `r`, the stronger the heterogeneity of the purchase process.
- `alpha_0` scale parameter of the Gamma distribution of the purchase process.
- `b` scale parameter of the Gompertz distribution (constant across customers)
- `s` shape parameter of the Gamma distribution for the lifetime process The smaller `s`, the stronger the heterogeneity of customer lifetimes.
- `beta_0` scale parameter for the Gamma distribution for the lifetime process
- `vX` Frequency vector of length n counting the numbers of purchases.
- `vT_x` Recency vector of length n.
- `vT_cal` Vector of length n indicating the total number of periods of observation.
- `vCovParams_trans` Vector of estimated parameters for the transaction covariates.
vCovParams_life 
Vector of estimated parameters for the lifetime covariates.

mCov_life 
Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

mCov_trans 
Matrix containing the covariates data affecting the transaction process. One column for each covariate.

Details

mCov_trans is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to vCovParams_trans at the respective position.

mCov_life is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to vCovParams_life at the respective position.

Value

Returns a vector with the PAlive for each customer.

References


---

**gg_LL** 

*Gamma-Gamma: Log-Likelihood Function*

Description

Calculates the Log-Likelihood value for the Gamma-Gamma model.

Usage

\[ \text{gg_LL(vLogparams, vX, vM_x)} \]

Arguments

vLogparams 
a vector containing the log of the parameters p, q, gamma

vX 
frequency vector of length n counting the numbers of purchases

vM_x 
the observed average spending for every customer during the calibration time.

Details

vLogparams is a vector with the parameters for the Gamma-Gamma model. It has three parameters (p, q, gamma). The scale parameter for each transaction is distributed across customers according to a gamma distribution with parameters q (shape) and gamma (scale).
Value

Returns the Log-Likelihood value for the Gamma-Gamma model.

References


---

nobs.clv.data

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of observations is defined as the number of unique customers in the transaction data.</td>
</tr>
</tbody>
</table>

Usage

```r
S3 method for class 'clv.data'
nobs(object, ...)
```

Arguments

- `object`: An object of class `clv.data`.
- `...`: Ignored

Value

The number of customers.

---

nobs.clv.fitted

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of observations is defined as the number of unique customers for which the model was fit.</td>
</tr>
</tbody>
</table>

Usage

```r
S3 method for class 'clv.fitted'
nobs(object, ...)
```
plot.clv.data

Arguments

object An object of class clv.fitted.
...
Ignored

Value
The number of customers.

plot.clv.data  Plot actual repeat transactions

Description
Plots the actual repeat transactions for the given CLV data object.

Usage

## S3 method for class 'clv.data'
plot(
x,
prediction.end = NULL,
cumulative = FALSE,
plot = TRUE,
verbose = TRUE,
...
)

Arguments

x The clv data object to plot
prediction.end Until what point in time to predict. This can be the number of periods (numeric) or a form of date/time object. See details.
cumulative Whether the cumulative actual repeat transactions should be plotted.
plot Whether a plot should be created or only the assembled data returned.
verbose Show details about the running of the function.
...
Ignored

Details
prediction.end indicates until when to predict or plot and can be given as either a point in time (of class Date, POSIXct, or character) or the number of periods. If prediction.end is of class character, the date/time format set when creating the data object is used for parsing. If prediction.end is the number of periods, the end of the fitting period serves as the reference point from which periods are counted. Only full periods may be specified. If prediction.end is omitted or NULL, it defaults to the end of the holdout period if present and to the end of the estimation period otherwise.
The first prediction period is defined to start right after the end of the estimation period. If for example weekly time units are used and the estimation period ends on Sunday 2019-01-01, then the first day of the first prediction period is Monday 2019-01-02. Each prediction period includes a total of 7 days and the first prediction period therefore will end on, and include, Sunday 2019-01-08. Subsequent prediction periods again start on Mondays and end on Sundays. If prediction.end indicates a timepoint on which to end, this timepoint is included in the prediction period.

If there are no repeat transactions until prediction.end, only the time for which there is data is plotted. If the data is returned (i.e. with argument plot=FALSE), the respective rows contain NA in column Number of Repeat Transactions.

Value

An object of class ggplot from package ggplot2 is returned by default. If the parameter plot is FALSE, the data that would have been melted and used to create the plot is returned. It is a data.table which contains the following columns:

period.until The timepoint that marks the end (up until and including) of the period to which the data in this row refers.

Number of Repeat Transactions The number of actual repeat transactions in the period that ends at period.until.

Examples

data("cdnow")
clv.data.cdnow <- clvdata(cdnw, time.unit="w",
estimation.split=37,
date.format="ymd")

# Plot the actual repeat transactions
plot(clv.data.cdnow)

# plot cumulative repeat transactions
plot(clv.data.cdnow, cumulative=TRUE)

# Dont automatically plot but tweak further
gg.cdnow <- plot(clv.data.cdnow)

# change Title
library(ggplot2)
gg.cdnow + ggtitle("CDnow repeat transactions")

# Dont return a plot but only the data from
# which it would have been created
dt.plot.data <- plot(clv.data.cdnow, plot=FALSE)
Plot expected and actual repeat transactions

Description

Plot the actual repeat transactions and overlay it with the repeat transaction as predicted by the fitted model (unconditional expectation).

Usage

```r
S3 method for class 'clv.fitted'
plot(
 x,
 prediction.end = NULL,
 newdata = NULL,
 cumulative = FALSE,
 transactions = TRUE,
 label = NULL,
 plot = TRUE,
 verbose = TRUE,
 ...
)
S4 method for signature 'clv.fitted'
plot(
 x,
 prediction.end = NULL,
 newdata = NULL,
 cumulative = FALSE,
 transactions = TRUE,
 label = NULL,
 plot = TRUE,
 verbose = TRUE,
 ...
)
```

Arguments

- `x`: The fitted clv model to plot
- `prediction.end`: Until what point in time to predict. This can be the number of periods (numeric) or a form of date/time object. See details.
- `newdata`: An object of class clv.data for which the plotting should be made with the fitted model. If none or NULL is given, the plot is made for the data on which the model was fit.
- `cumulative`: Whether the cumulative expected (and actual) transactions should be plotted.
- `transactions`: Whether the actual observed repeat transactions should be plotted.
plot.clv.fitted

label Character string to label the model in the legend
plot Whether a plot should be created or only the assembled data is returned.
verbose Show details about the running of the function.
...

Details

prediction.end indicates until when to predict or plot and can be given as either a point in time (of class Date, POSIXct, or character) or the number of periods. If prediction.end is of class character, the date/time format set when creating the data object is used for parsing. If prediction.end is of class character, the number of periods, the end of the fitting period serves as the reference point from which periods are counted. Only full periods may be specified. If prediction.end is omitted or NULL, it defaults to the end of the holdout period if present and to the end of the estimation period otherwise.

The first prediction period is defined to start right after the end of the estimation period. If for example weekly time units are used and the estimation period ends on Sunday 2019-01-01, then the first day of the first prediction period is Monday 2019-01-02. Each prediction period includes a total of 7 days and the first prediction period therefore will end on, and include, Sunday 2019-01-08. Subsequent prediction periods again start on Mondays and end on Sundays. If prediction.end indicates a timepoint on which to end, this timepoint is included in the prediction period.

Note that only whole periods can be plotted and that the prediction end might not exactly match prediction.end. See the Note section for more details.

The newdata argument has to be a clv data object of the exact same class as the data object on which the model was fit. In case the model was fit with covariates, newdata needs to contain identically named covariate data.

The use case for newdata is mainly two-fold: First, to estimate model parameters only on a sample of the data and then use the fitted model object to predict or plot for the full data set provided through newdata. Second, for models with dynamic covariates, to provide a clv data object with longer covariates than contained in the data on which the model was estimated what allows to predict or plot further. When providing newdata, some models might require additional steps that can significantly increase runtime.

Value

An object of class ggplot from package ggplot2 is returned by default. If the parameter plot is FALSE, the data that would have been melted and used to create the plot is returned. It is a data.table which contains the following columns:

period.until The timepoint that marks the end (up until and including) of the period to which the data in this row refers.

Number of Repeat Transactions
The number of actual repeat transactions in the period that ends at period.until.
Only if transactions is TRUE.

"Name of Model" or "label"
The value of the unconditional expectation for the period that ends on period.until.
Note

Because the unconditional expectation for a period is derived as the difference of the cumulative
expectations calculated at the beginning and at end of the period, all timepoints for which the
expectation is calculated are required to be spaced exactly 1 time unit apart.

If `prediction.end` does not coincide with the start of a time unit, the last timepoint for which the
expectation is calculated and plotted therefore is not `prediction.end` but the start of the first time
unit after `prediction.end`.

Examples

data("cdnow")

# Fit ParetoNBD model on the CDnow data
pnbd.cdnow <- pnbd(clvdata(cdnow, time.unit="w",
estimation.split=37,
date.format="ymd"))

# Plot actual repeat transaction, overlayed with the
# expected repeat transactions as by the fitted model
plot(pnbd.cdnow)

# Plot cumulative expected transactions of only the model
plot(pnbd.cdnow, cumulative=TRUE, transactions=FALSE)

# Plot forecast until 2001-10-21
plot(pnbd.cdnow, prediction.end = "2001-10-21")

# Plot until 2001-10-21, as date
plot(pnbd.cdnow,
prediction.end = lubridate::dym("21-2001-10"))

# Plot 15 time units after end of estimation period
plot(pnbd.cdnow, prediction.end = 15)

# Save the data generated for plotting
# (period, actual transactions, expected transactions)
plot.out <- plot(pnbd.cdnow, prediction.end = 15)

# A ggplot object is returned that can be further tweaked
library("ggplot2")
gg.pnbd.cdnow <- plot(pnbd.cdnow)
gg.pnbd.cdnow + ggtitle("PNBD on CDnow")
pnbd

Pareto/NBD models

Description

Fits Pareto/NBD models on transactional data with and without covariates.

Usage

```r
S4 method for signature 'clv.data'
pnbd(
 clv.data,
 start.params.model = c(),
 use.cor = FALSE,
 start.param.cor = c(),
 optimx.args = list(),
 verbose = TRUE,
 ...
)

S4 method for signature 'clv.data.static.covariates'
pnbd(
 clv.data,
 start.params.model = c(),
 use.cor = FALSE,
 start.param.cor = c(),
 optimx.args = list(),
 verbose = TRUE,
 names.cov.life = c(),
 names.cov.trans = c(),
 start.params.life = c(),
 start.params.trans = c(),
 names.cov.constr = c(),
 start.params.constr = c(),
 reg.lambdas = c(),
 ...
)

S4 method for signature 'clv.data.dynamic.covariates'
pnbd(
 clv.data,
 start.params.model = c(),
 use.cor = FALSE,
 start.param.cor = c(),
 optimx.args = list(),
 verbose = TRUE,
 names.cov.life = c(),
  ```
names.cov.trans = c(),
start.params.life = c(),
start.params.trans = c(),
names.cov.constr = c(),
start.params.constr = c(),
reg.lambdas = c(),
...}

Arguments

clv.data The data object on which the model is fitted.
start.params.model Named start parameters containing the optimization start parameters for the model without covariates.
use.cor Whether the correlation between the transaction and lifetime process should be estimated.
start.param.cor Start parameter for the optimization of the correlation.
optimx.args Additional arguments to control the optimization which are forwarded to optimx::optimx. If multiple optimization methods are specified, only the result of the last method is further processed.
verbose Show details about the running of the function.
... Ignored
names.cov.life Which of the set Lifetime covariates should be used. Missing parameter indicates all covariates shall be used.
names.cov.trans Which of the set Transaction covariates should be used. Missing parameter indicates all covariates shall be used.
start.params.life Named start parameters containing the optimization start parameters for all lifetime covariates.
start.params.trans Named start parameters containing the optimization start parameters for all transaction covariates.
names.cov.constr Which covariates should be forced to use the same parameters for the lifetime and transaction process. The covariates need to be present as both, lifetime and transaction covariates.
start.params.constr Named start parameters containing the optimization start parameters for the constraint covariates.
reg.lambdas Named lambda parameters used for the L2 regularization of the lifetime and the transaction covariate parameters. Lambdas have to be >= 0.
Details

Model parameters for the Pareto/NBD model are $\alpha$, $r$, $\beta$, and $s$.

$s$: shape parameter of the Gamma distribution for the lifetime process. The smaller $s$, the stronger the heterogeneity of customer lifetimes.

$\beta$: scale parameter for the Gamma distribution for the lifetime process.

$r$: shape parameter of the Gamma distribution of the purchase process. The smaller $r$, the stronger the heterogeneity of the purchase process.

$\alpha$: scale parameter of the Gamma distribution of the purchase process.

Ideally, the starting parameters for $r$ and $s$ represent your best guess concerning the heterogeneity of customers in their buy and die rate. If covariates are included into the model additionally parameters for the covariates affecting the attrition and the purchase process are part of the model.

If no start parameters are given, 1.0 is used for all model parameters and 0.1 for covariate parameters. The model start parameters are required to be $> 0$.

The Pareto/NBD model: The Pareto/NBD is the first model addressing the issue of modeling customer purchases and attrition simultaneously for non-contractual settings. The model uses a Pareto distribution, a combination of an Exponential and a Gamma distribution, to explicitly model customers’ (unobserved) attrition behavior in addition to customers’ purchase process.

In general, the Pareto/NBD model consist of two parts. A first process models the purchase behavior of customers as long as the customers are active. A second process models customers’ attrition. Customers live (and buy) for a certain unknown time until they become inactive and "die". Customer attrition is unobserved. Inactive customers may not be reactivated. For technical details we refer to the original paper by Schmittlein, Morrison and Colombo (1987) and the detailed technical note of Fader and Hardie (2005).

Pareto/NBD model with static covariates: The standard Pareto/NBD model captures heterogeneity was solely using Gamma distributions. However, often exogenous knowledge, such as for example customer demographics, is available. The supplementary knowledge may explain part of the heterogeneity among the customers and therefore increase the predictive accuracy of the model. In addition, we can rely on these parameter estimates for inference, i.e. identify and quantify effects of contextual factors on the two underlying purchase and attrition processes. For technical details we refer to the technical note by Fader and Hardie (2007).

Pareto/NBD model with dynamic covariates: In many real-world applications customer purchase and attrition behavior may be influenced by covariates that vary over time. In consequence, the timing of a purchase and the corresponding value of a covariate at that time becomes relevant. Time-varying covariates can affect customer on aggregated level as well as on an individual level: In the first case, all customers are affected simultaneously, in the latter case a covariate is only relevant for a particular customer. For technical details we refer to the paper by Bachmann, Meierer and Näf (2020).

Value

Depending on the data object on which the model was fit, pnbd returns either an object of class clv.pnbd, clv.pnbd.static.cov, or clv.pnbd.dynamic.cov.
Note

Fitting the Pareto/NBD model with dynamic covariates is for the most part implemented using data.table and to a smaller part further parallelized with the foreach package. Registering a parallel backend with doFuture or doParallel before fitting the models allows to take advantage of this. If no parallel backend is set up, the foreach package gives a friendly reminder that it is executed sequentially. In case this is desired but no warning should be given, a parallel backend in sequential mode can be set up, for example package doFuture with plan("sequential").

The part executed with foreach also heavily relies on data.table which is natively parallelized already. When setting up the parallel backend, great care should be taken to reduce the overhead from this nested parallelism as otherwise it can increase runtime. See setDTthreads, getDTthreads, and plan for information on how to do this.

The Pareto/NBD model with dynamic covariates can currently not be fit with data that has a temporal resolution of less than one day (data that was built with time unit hours).

References


See Also
clvdata to create a clv data object, SetStaticCovariates to add static covariates to an existing clv data object.
predict to predict expected transactions, probability of being alive, and customer lifetime value for every customer
plot to plot the unconditional expectation as predicted by the fitted model
The generic functions vcov, summary, fitted.
SetDynamicCovariates to add dynamic covariates on which the pnbd model can be fit.
setDTthreads, getDTthreads,registerDoParallel,registerDoFuture for setting up parallel execution.

Examples

data("apparelTrans")
clv.data.apparel <- clvdata(apparelTrans, date.format = "ymd",
                          time.unit = "w", estimation.split = 40)

# Fit standard pnbd model
pnbd(clv.data.apparel)
# Give initial guesses for the Model parameters
pnbd(clv.data.apparel,
    start.params.model = c(r=0.5, alpha=15, s=0.5, beta=10))

# pass additional parameters to the optimizer (optimx)
# Use Nelder-Mead as optimization method and print
# detailed information about the optimization process
apparel.pnbd <- pnbd(clv.data.apparel,
    optimx.args = list(method="Nelder-Mead",
        control=list(trace=6)))

# estimated coefs
coeff(apparel.pnbd)

# summary of the fitted model
summary(apparel.pnbd)

# predict CLV etc for holdout period
predict(apparel.pnbd)

# predict CLV etc for the next 15 periods
predict(apparel.pnbd, prediction.end = 15)

# Estimate correlation as well
pnbd(clv.data.apparel, use.cor = TRUE)

# To estimate the pnbd model with static covariates,
# add static covariates to the data
data("apparelStaticCov")
clv.data.static.cov <-
    SetStaticCovariates(clv.data.apparel,
        data.cov.life = apparelStaticCov,
        names.cov.life = c("Gender", "Channel"),
        data.cov.trans = apparelStaticCov,
        names.cov.trans = c("Gender", "Channel"))

# Fit pnbd with static covariates
pnbd(clv.data.static.cov)

# Give initial guesses for both covariate parameters
pnbd(clv.data.static.cov, start.params.trans = c(Gender=0.75, Channel=0.7),
    start.params.life = c(Gender=0.5, Channel=0.5))

# Use regularization
pnbd(clv.data.static.cov, reg.lambdas = c(trans = 5, life=5))

# Force the same coefficient to be used for both covariates
pnbd(clv.data.static.cov, names.cov.constr = "Gender",
    start.params.constr = c(Gender=0.5))
# Fit model only with the Channel covariate for life but
# keep all trans covariates as is
pnbd(clv.data.static.cov, names.cov.life = c("Channel"))

# Add dynamic covariates data to the data object
# add dynamic covariates to the data

## Not run:
data("apparelDynCov")
clv.data.dyn.cov <-
  SetDynamicCovariates(clv.data = clv.data.apparel,
    data.cov.life = apparelDynCov,
    data.cov.trans = apparelDynCov,
    names.cov.life = c("Marketing", "Gender", "Channel"),
    names.cov.trans = c("Marketing", "Gender", "Channel"),
    name.date = "Cov.Date")

# Enable parallel execution of some parts of the dyncov LL
library(doFuture)
registerDoFuture()
# avoid overhead from nested parallelism by setting up
# appropriate to _your_ system
setDTthreads(threads=8)
plan("multisession", workers=2)

# Fit PNBD with dynamic covariates
pnbd(clv.data.dyn.cov)

# The same fitting options as for the
# static covariate are available
pnbd(clv.data.dyn.cov, reg.lambdas = c(trans=10, life=2))

## End(Not run)

---

## pnbd_CET

**Pareto/NBD: Conditional Expected Transactions**

### Description

Calculates the expected number of transactions in a given time period based on a customer’s past transaction behavior and the Pareto/NBD model parameters.

- `pnbd_nocov_CET` Conditional Expected Transactions without covariates
- `pnbd_staticcov_CET` Conditional Expected Transactions with static covariates
Usage

```r
pnbd_nocov_CET(r, alpha_0, s, beta_0, dPeriods, vX, vT_x, vT_cal)

pnbd_staticcov_CET(
 r,
 alpha_0,
 s,
 beta_0,
 dPeriods,
 vX,
 vT_x,
 vT_cal,
 vCovParams_trans,
 vCovParams_life,
 mCov_trans,
 mCov_life
)
```

Arguments

- **r**: shape parameter of the Gamma distribution of the purchase process. The smaller the value of `r`, the stronger the heterogeneity of the purchase process.
- **alpha_0**: scale parameter of the Gamma distribution of the purchase process.
- **s**: shape parameter of the Gamma distribution for the lifetime process. The smaller the value of `s`, the stronger the heterogeneity of customer lifetimes.
- **beta_0**: scale parameter for the Gamma distribution for the lifetime process.
- **dPeriods**: number of periods to predict.
- **vX**: Frequency vector of length n counting the numbers of purchases.
- **vT_x**: Recency vector of length n.
- **vT_cal**: Vector of length n indicating the total number of periods of observation.
- **vCovParams_trans**: Vector of estimated parameters for the transaction covariates.
- **vCovParams_life**: Vector of estimated parameters for the lifetime covariates.
- **mCov_trans**: Matrix containing the covariates data affecting the transaction process. One column for each covariate.
- **mCov_life**: Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

Details

**mCov_trans** is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to `vCovParams_trans` at the respective position.

**mCov_life** is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to `vCovParams_life` at the respective position.
**Value**

Returns a vector containing the conditional expected transactions for the existing customers in the Pareto/NBD model.

**References**


---

**pnbd_DERT**

**Pareto/NBD: Discounted Expected Residual Transactions**

**Description**

Calculates the discounted expected residual transactions.

- **pnbd_nocov_DERT** Discounted expected residual transactions for the Pareto/NBD model without covariates
- **pnbd_staticcov_DERT** Discounted expected residual transactions for the Pareto/NBD model with static covariates

**Usage**

```r
pnbd_nocov_DERT(
 r,
 alpha_0,
 s,
 beta_0,
 continuous_discount_factor,
 vX,
 vT_x,
 vT_cal
)

pnbd_staticcov_DERT(
 r,
 alpha_0,
 s,
 beta_0,
 continuous_discount_factor,
```


Arguments

- $r$: shape parameter of the Gamma distribution of the purchase process. The smaller $r$, the stronger the heterogeneity of the purchase process.
- $\alpha_0$: scale parameter of the Gamma distribution of the purchase process.
- $s$: shape parameter of the Gamma distribution for the lifetime process. The smaller $s$, the stronger the heterogeneity of customer lifetimes.
- $\beta_0$: scale parameter for the Gamma distribution for the lifetime process.
- $\text{continuous\_discount\_factor}$: continuous discount factor to use.
- $vX$: Frequency vector of length $n$ counting the numbers of purchases.
- $vT_x$: Recency vector of length $n$.
- $vT_{cal}$: Vector of length $n$ indicating the total number of periods of observation.
- $m\text{Cov\_life}$: Matrix containing the covariates data affecting the lifetime process. One column for each covariate.
- $m\text{Cov\_trans}$: Matrix containing the covariates data affecting the transaction process. One column for each covariate.
- $v\text{CovParams\_life}$: Vector of estimated parameters for the lifetime covariates.
- $v\text{CovParams\_trans}$: Vector of estimated parameters for the transaction covariates.

Details

$m\text{Cov\_trans}$ is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to $v\text{CovParams\_trans}$ at the respective position.

$m\text{Cov\_life}$ is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to $v\text{CovParams\_life}$ at the respective position.

Value

Returns a vector with the DERT for each customer.
References


pnbd_LL

Pareto/NBD: Log-Likelihood functions

Description

Calculates the Log-Likelihood values for the Pareto/NBD model with and without covariates.

The function `pnbd_nocov_LL_ind` calculates the individual LogLikelihood values for each customer for the given parameters.

The function `pnbd_nocov_LL_sum` calculates the LogLikelihood value summed across customers for the given parameters.

The function `pnbd_staticcov_LL_ind` calculates the individual LogLikelihood values for each customer for the given parameters and covariates.

The function `pnbd_staticcov_LL_sum` calculates the individual LogLikelihood values summed across customers.

Usage

```
pnbd_nocov_LL_ind(vLogparams, vX, vT_x, vT_cal)
pnbd_nocov_LL_sum(vLogparams, vX, vT_x, vT_cal)
pnbd_staticcov_LL_ind(vParams, vX, vT_x, vT_cal, mCov_life, mCov_trans)
pnbd_staticcov_LL_sum(vParams, vX, vT_x, vT_cal, mCov_life, mCov_trans)
```

Arguments

- `vLogparams`: vector with the Pareto/NBD model parameters at log scale. See Details.
- `vX`: Frequency vector of length n counting the numbers of purchases.
- `vT_x`: Recency vector of length n.
- `vT_cal`: Vector of length n indicating the total number of periods of observation.
- `vParams`: vector with the parameters for the Pareto/NBD model at log scale and the static covariates at original scale. See Details.
mCov_life  Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

mCov_trans  Matrix containing the covariates data affecting the transaction process. One column for each covariate.

Details

vLogparams is a vector with model parameters r, alpha_0, s, beta_0 at log-scale, in this order.
vParams is vector with the Pareto/NBD model parameters at log scale, followed by the parameters for the lifetime covariates at original scale and then followed by the parameters for the transaction covariates at original scale.
mCov_trans is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to vParams at the respective position.
mCov_life is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to vParams at the respective position.

Value

Returns the respective Log-Likelihood value(s) for the Pareto/NBD model with or without covariates.

References


pnbd_PAlive  Pareto/NBD: Probability of Being Alive

Description

Calculates the probability of a customer being alive at the end of the calibration period, based on a customer’s past transaction behavior and the Pareto/NBD model parameters.

- pnbd_nocov_PAlive P(alive) for the Pareto/NBD model without covariates
- pnbd_staticcov_PAlive P(alive) for the Pareto/NBD model with static covariates
Usage

\texttt{pnbd\_nocov\_PAlive}(r, \alpha_0, s, \beta_0, vX, vT\_x, vT\_cal)

\texttt{pnbd\_staticcov\_PAlive}(
  \texttt{r},
  \texttt{alpha\_0},
  \texttt{s},
  \texttt{beta\_0},
  \texttt{vX},
  \texttt{vT\_x},
  \texttt{vT\_cal},
  \texttt{vCovParams\_trans},
  \texttt{vCovParams\_life},
  \texttt{mCov\_trans},
  \texttt{mCov\_life}
)

Arguments

- **r**: shape parameter of the Gamma distribution of the purchase process. The smaller \( r \), the stronger the heterogeneity of the purchase process
- **alpha\_0**: scale parameter of the Gamma distribution of the purchase process
- **s**: shape parameter of the Gamma distribution for the lifetime process. The smaller \( s \), the stronger the heterogeneity of customer lifetimes
- **beta\_0**: scale parameter for the Gamma distribution for the lifetime process.
- **vX**: Frequency vector of length \( n \) counting the numbers of purchases.
- **vT\_x**: Recency vector of length \( n \).
- **vT\_cal**: Vector of length \( n \) indicating the total number of periods of observation.
- **vCovParams\_trans**: Vector of estimated parameters for the transaction covariates.
- **vCovParams\_life**: Vector of estimated parameters for the lifetime covariates.
- **mCov\_trans**: Matrix containing the covariates data affecting the transaction process. One column for each covariate.
- **mCov\_life**: Matrix containing the covariates data affecting the lifetime process. One column for each covariate.

Details

\( \text{mCov\_trans} \) is a matrix containing the covariates data of the time-invariant covariates that affect the transaction process. Each column represents a different covariate. For every column a gamma parameter needs to added to \text{vCovParams\_trans} at the respective position.

\( \text{mCov\_life} \) is a matrix containing the covariates data of the time-invariant covariates that affect the lifetime process. Each column represents a different covariate. For every column a gamma parameter needs to added to \text{vCovParams\_life} at the respective position.
predict.clv.fitted

Description

Probabilistic customer attrition models predict in general three expected characteristics for every customer:

- "conditional expected transactions" (CET), which is the number of transactions to expect form a customer during the prediction period,
- "probability of a customer being alive" (PAlive) at the end of the estimation period and
- "discounted expected residual transactions" (DERT) for every customer, which is the total number of transactions for the residual lifetime of a customer discounted to the end of the estimation period. In the case of time-varying covariates, instead of DERT, "discounted expected conditional transactions" (DECT) is predicted. DECT does only cover a finite time horizon in contrast to DERT. For continuous.discount.factor=0, DECT corresponds to CET.

If spending information was provided in the clvdata object, by default a Gamma/Gamma model is fitted to predict spending and calculate the predicted CLV. In this case, the prediction additionally contains the following two columns:

- predicted spending estimated by a Gamma/Gamma model
- the customer lifetime value (CLV).

Usage

```r
S3 method for class 'clv.fitted'
predict(
 object,
 newdata = NULL,
 prediction.end = NULL,
 predict.spending = clv.data.has.spending(object@clv.data),
)```
predict.clv.fitted

```r
continuous.discount.factor = 0.1,
verbose = TRUE,
...
)

## S4 method for signature 'clv.fitted'
predict(
  object,
  newdata = NULL,
  prediction.end = NULL,
predict.spending = clv.data.has.spending(object@clv.data),
continuous.discount.factor = 0.1,
verbose = TRUE,
...
)
```

Arguments

- **object**: A fitted clv model for which prediction is desired.
- **newdata**: A clv data object for which predictions should be made with the fitted model. If none or NULL is given, predictions are made for the data on which the model was fit.
- **prediction.end**: Until what point in time to predict. This can be the number of periods (numeric) or a form of date/time object. See details.
- **predict.spending**: Whether the spending and CLV should be calculated and reported additionally. Only possible if the transaction data contains spending information.
- **continuous.discount.factor**: Continuous discount factor to use.
- **verbose**: Show details about the running of the function.
- **...**: Ignored

Details

The `newdata` argument has to be a clv data object of the exact same class as the data object on which the model was fit. In case the model was fit with covariates, `newdata` needs to contain identically named covariate data.

The use case for `newdata` is mainly two-fold: First, to estimate model parameters only on a sample of the data and then use the fitted model object to predict or plot for the full data set provided through `newdata`. Second, for models with dynamic covariates, to provide a clv data object with longer covariates than contained in the data on which the model was estimated what allows to predict or plot further. When providing `newdata`, some models might require additional steps that can significantly increase runtime.

`prediction.end` indicates until when to predict or plot and can be given as either a point in time (of class Date, POSIXct, or character) or the number of periods. If `prediction.end` is of class character, the date/time format set when creating the data object is used for parsing. If `prediction.end`
is the number of periods, the end of the fitting period serves as the reference point from which periods are counted. Only full periods may be specified. If `prediction.end` is omitted or `NULL`, it defaults to the end of the holdout period if present and to the end of the estimation period otherwise.

The first prediction period is defined to start right after the end of the estimation period. If for example weekly time units are used and the estimation period ends on Sunday 2019-01-01, then the first day of the first prediction period is Monday 2019-01-02. Each prediction period includes a total of 7 days and the first prediction period therefore will end on, and include, Sunday 2019-01-08. Subsequent prediction periods again start on Mondays and end on Sundays. If `prediction.end` indicates a timepoint on which to end, this timepoint is included in the prediction period.

`predict.spending` uses a Gamma/Gamma model to predict customer spending. This option is only available if customer spending information was provided when the data object was created.

`continuous.discount.factor` allows to adjust the discount rate used to estimated the discounted expected transactions (DERT). The default value is $0.1 (=10\%)$. Note that a continuous rate needs to be provided.

The Gamma-Gamma model to Predict Spending: Most probabilistic latent customer attrition model capture future customer behavior as a combination of the customer’s purchase and attrition process. However, in order to derive a monetary value such as CLV, customer spending also has to be considered. To model customer spending the Gamma/Gamma is a popular choice.

Value

An object of class `data.table` with each columns containing the predictions:

- **Id**: The respective customer identifier
- **period.first**: First timepoint of prediction period
- **period.last**: Last timepoint of prediction period
- **period.length**: Number of time units covered by the period indicated by `period.first` and `period.last` (including both ends).
- **PAlive**: Probability to be alive at the end of the estimation period
- **CET**: The Conditional Expected Transactions
- **DERT or DECT**: Discounted Expected Residual Transactions or Discounted Expected Conditional Transactions for dynamic covariates models
- **actual.x**: Actual number of transactions until `prediction.end`. Only if there is a holdout period and the prediction ends in it.
- **actual.Spending**: Actual spending until `prediction.end`. Only if there is a holdout period and the prediction ends in it, 0 otherwise.
- **predicted.Spending**: The spending as predicted by the Gamma-Gamma model.
- **predicted.CLV**: Customer Lifetime Value based on DERT and predicted spending.
References

Examples

data("apparelTrans")
Fit pnbd standard model on data, WITH holdout
pnc <- pnbd(clvdata(apparelTrans, time.unit="w", estimation.split=37, date.format="ymd"))

Predict until the end of the holdout period
predict(pnc)

Predict until 10 periods (weeks in this case) after
the end of the 37 weeks fitting period
predict(pnc, prediction.end = 10) # ends on 2010-11-28

Predict until 31th Dec 2016 with the timepoint as a character
predict(pnc, prediction.end = "2016-12-31")

Predict until 31th Dec 2016 with the timepoint as a Date
predict(pnc, prediction.end = lubridate::ymd("2016-12-31"))

Fit pnbd standard model WITHOUT holdout
pnc <- pnbd(clvdata(apparelTrans, time.unit="w", date.format="ymd"))

This fails, because without holdout, a prediction.end is required
Not run:
predict(pnc)
End(Not run)
Now, predict 10 periods from the end of the last transaction
(end of estimation period)
predict(pnc, prediction.end = 10) # ends on 2016-12-17

SetDynamicCovariates
Add Dynamic Covariates to a CLV data object

Description

Add dynamic covariate data to an existing data object of class clv.data. The returned object can be used to fit models with dynamic covariates.

No covariate data can be added to a clv data object which already has any covariate set.
At least 1 covariate is needed for both processes and no categorical covariate may be of only a single category.

Usage

SetDynamicCovariates(
 clv.data,
 data.cov.life,
 data.cov.trans,
 names.cov.life,
 names.cov.trans,
 name.id = "Id",
 name.date = "Date"
)

Arguments

clv.data: CLV data object to add the covariates data to.
data.cov.life: Dynamic covariate data as data.frame or data.table for the lifetime process.
data.cov.trans: Dynamic covariate data as data.frame or data.table for the transaction process.
names.cov.life: Vector with names of the columns in data.cov.life that contain the covariates.
names.cov.trans: Vector with names of the columns in data.cov.trans that contain the covariates.
name.id: Name of the column to find the Id data for both, data.cov.life and data.cov.trans.
nname.date: Name of the column to find the Date data for both, data.cov.life and data.cov.trans.
SetStaticCovariates

Details

data.cov.life and data.cov.trans are data.frames or data.tables that each contain exactly 1 row for every combination of timepoint and customer. For each customer appearing in the transaction data there needs to be covariate data at every timepoint that marks the start of a period as defined by time.unit. It has to range from the start of the estimation sample (timepoint.estimation.start) until the end of the period in which the end of the holdout sample (timepoint.holdout.end) falls. See the the provided data apparelDynCov for illustration. Covariates of class character or factor are converted to k-1 numeric dummies.

Date as character If the Date column in the covariate data is of type character, the date.format given when creating the the clv.data object is used for parsing.

Value

An object of class clv.data.dynamic.covariates. See the class definition clv.data.dynamic.covariates for more details about the returned object.

Examples

```r
## Not run:
data("apparelTrans")
data("apparelDynCov")

# Create a clv data object without covariates
clv.data.apparel <- clvdata(apparelTrans, time.unit="w",
               date.format="ymd")

# Add static covariate data
clv.data.dyn.cov <-
  SetDynamicCovariates(clv.data.apparel,
               data.cov.life = apparelDynCov,
               names.cov.life = c("Marketing", "Gender", "Channel"),
               data.cov.trans = apparelDynCov,
               names.cov.trans = c("Marketing", "Gender", "Channel"),
               name.id = "Id",
               name.date = "Cov.Date")

# summary output about covariates data
summary(clv.data.dyn.cov)

# fit pnbd model with dynamic covariates
pnbd(clv.data.dyn.cov)

## End(Not run)
```

SetStaticCovariates Add Static Covariates to a CLV data object
SetStaticCovariates

Description
Add static covariate data to an existing data object of class clv.data. The returned object then can be used to fit models with static covariates.
No covariate data can be added to a clv data object which already has any covariate set.
At least 1 covariate is needed for both processes and no categorical covariate may be of only a single category.

Usage
SetStaticCovariates(
 clv.data,
 data.cov.life,
 data.cov.trans,
 names.cov.life,
 names.cov.trans,
 name.id = "Id"
)

Arguments
clv.data CLV data object to add the covariates data to.
data.cov.life Static covariate data as data.frame or data.table for the lifetime process.
data.cov.trans Static covariate data as data.frame or data.table for the transaction process.
names.cov.life Vector with names of the columns in data.cov.life that contain the covariates.
names.cov.trans Vector with names of the columns in data.cov.trans that contain the covariates.
name.id Name of the column to find the Id data for both, data.cov.life and data.cov.trans.

Details
data.cov.life and data.cov.trans are data.frames or data.tables that each contain exactly one single row of covariate data for every customer appearing in the transaction data. Covariates of class character or factor are converted to k-1 numeric dummy variables.

Value
An object of class clv.data.static.covariates. See the class definition clv.data.static.covariates for more details about the returned object.

Examples

data("apparelTrans")
data("apparelStaticCov")
Create a clv data object without covariates
clv.data.apparel <- clvdata(apparelTrans, time.unit="w",
date.format="ymd")

Add static covariate data
clv.data.apparel.cov <-
 SetStaticCovariates(clv.data.apparel,
 data.cov.life = apparelStaticCov,
 names.cov.life = "Gender",
 data.cov.trans = apparelStaticCov,
 names.cov.trans = "Gender",
 name.id = "Id")

more summary output
summary(clv.data.apparel.cov)

fit model with static covariates
pnbd(clv.data.apparel.cov)

summary.clv.fitted Summarizing a fitted CLV model

Description

Summary method for fitted CLV models that provides statistics about the estimated parameters and information about the optimization process. If multiple optimization methods were used (for example if specified in parameter optimx.args), all information here refers to the last method/row of the resulting optimx object.

Usage

```r
## S3 method for class 'clv.fitted'
summary(object, ...)

## S3 method for class 'clv.fitted.static.cov'
summary(object, ...)

## S3 method for class 'summary.clv.fitted'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)
```
summary.clv.fitted

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A fitted CLV model</td>
</tr>
<tr>
<td>...</td>
<td>Ignored for summary, forwarded to printCoefmat for print.</td>
</tr>
<tr>
<td>x</td>
<td>an object of class "summary.clv.no.covariates", usually, a result of a call to summary.clv.no.covariates.</td>
</tr>
<tr>
<td>digits</td>
<td>the number of significant digits to use when printing.</td>
</tr>
<tr>
<td>signif.stars</td>
<td>logical. If TRUE, ‘significance stars’ are printed for each coefficient.</td>
</tr>
</tbody>
</table>

Value

This function computes and returns a list of summary information of the fitted model given in object. It returns a list of class summary.clv.no.covariates that contains the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name.model</td>
<td>the name of the fitted model.</td>
</tr>
<tr>
<td>call</td>
<td>The call used to fit the model.</td>
</tr>
<tr>
<td>tp.estimation.start</td>
<td>Date or POSIXct indicating when the fitting period started.</td>
</tr>
<tr>
<td>tp.estimation.end</td>
<td>Date or POSIXct indicating when the fitting period ended.</td>
</tr>
<tr>
<td>estimation.period.in.tu</td>
<td>Length of fitting period in time.units.</td>
</tr>
<tr>
<td>time.unit</td>
<td>Time unit that defines a single period.</td>
</tr>
<tr>
<td>coefficients</td>
<td>a p×4 matrix with columns for the estimated coefficients, its standard error, the t-statistic and corresponding (two-sided) p-value.</td>
</tr>
<tr>
<td>estimated.LL</td>
<td>the value of the log-likelihood function at the found solution.</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike’s An Information Criterion for the fitted model.</td>
</tr>
<tr>
<td>BIC</td>
<td>Schwarz’s Bayesian Information Criterion for the fitted model.</td>
</tr>
<tr>
<td>KKT1</td>
<td>Karush-Kuhn-Tucker optimality conditions of the first order, as returned by optimx.</td>
</tr>
<tr>
<td>KKT2</td>
<td>Karush-Kuhn-Tucker optimality conditions of the second order, as returned by optimx.</td>
</tr>
<tr>
<td>fevals</td>
<td>The number of calls to the log-likelihood function during optimization.</td>
</tr>
<tr>
<td>method</td>
<td>The last method used to obtain the final solution.</td>
</tr>
<tr>
<td>additional.options</td>
<td>A list of additional options used for model fitting.</td>
</tr>
<tr>
<td>Correlation</td>
<td>Whether the correlation between the purchase and the attrition process was estimated.</td>
</tr>
<tr>
<td>estimated.param.cor</td>
<td>Correlation coefficient measuring the correlation between the two processes, if used.</td>
</tr>
</tbody>
</table>

For models fits with static covariates, the list additionally is of class summary.clv.static.covariates and the list in additional.options contains the following elements:
additional.options

- **Regularization** Whether L2 regularization for parameters of contextual factors was used.
- **lambda.life** The regularization lambda used for the parameters of the Lifetime process, if used.
- **lambda.trans** The regularization lambda used for the parameters of the Transaction process, if used.
- **Constraint covs** Whether any covariate parameters were forced to be the same for both processes.
- **Constraint params** Name of the covariate parameters which were constraint, if used.

See Also

The model fitting functions **pnbd**.

Function coef will extract the coefficients matrix including summary statistics and function vcov will extract the vcov from the returned summary object.

Examples

data("apparelTrans")

Fit pnbd standard model, no covariates
clv.data.apparel <- clvdata(apparelTrans, time.unit="w", estimation.split=40, date.format="ymd")
pnbd.apparel <- pnbd(clv.data.apparel)

summary about model fit
summary(pnbd.apparel)

Add static covariate data
data("apparelStaticCov")
data.apparel.cov <- SetStaticCovariates(clv.data.apparel,
 data.cov.life = apparelStaticCov,
 names.cov.life = "Gender",
 data.cov.trans = apparelStaticCov,
 names.cov.trans = "Gender",
 name.id = "Id")

fit model with covariates and regularization
pnbd.apparel.cov <- pnbd(data.apparel.cov,
 reg.lambdas = c(life=2, trans=4))

additional summary about covariate parameters
and used regularization
summary(pnbd.apparel.cov)
vcov.clv.fitted

Calculate Variance-Covariance Matrix for CLV Models fitted with Maximum Likelihood Estimation

Description

Returns the variance-covariance matrix of the parameters of the fitted model object. The variance-covariance matrix is derived from the Hessian that results from the optimization procedure. First, the Moore–Penrose generalized inverse of the Hessian is used to obtain an estimate of the variance-covariance matrix. Next, because some parameters may be transformed for the purpose of restricting their value during the log-likelihood estimation, the variance estimates are adapted to be comparable to the reported coefficient estimates. If the result is not positive definite, `Matrix::nearPD` is used with standard settings to find the nearest positive definite matrix.

If multiple estimation methods were used, the Hessian of the last method is used.

Usage

```r
## S3 method for class 'clv.fitted'
vcov(object, ...)
```

Arguments

- `object` a fitted clv model object
- `...` Ignored

Value

A matrix of the estimated covariances between the parameters of the model. The row and column names correspond to the parameter names given by the `coef` method.

See Also

`MASS::ginv`, `Matrix::nearPD`
Index

Topic datasets
- apparelDynCov, 5
- apparelStaticCov, 5
- apparelTrans, 6
- cdnow, 17
- apparelDynCov, 5
- apparelStaticCov, 5
- apparelTrans, 6

- bgbb, 6
- bgbb, clv.data-method (bgbb), 6
- bgbb, clv.data.dynamic.covariates-method (bgbb), 6
- bgbb, clv.data.static.covariates-method (bgbb), 6
- bgnbd, 8
- bgnbd, clv.data-method (bgnbd), 8
- bgnbd, clv.data.dynamic.covariates-method (bgnbd), 8
- bgnbd, clv.data.static.covariates-method (bgnbd), 8
- bgnbd_CET, 12
- bgnbd_LL, 14
- bgnbd_nocov_CET (bgnbd_CET), 12
- bgnbd_nocov_LL_ind (bgnbd_LL), 14
- bgnbd_nocov_LL_sum (bgnbd_LL), 14
- bgnbd_nocov_PAlive (bgnbd_PAlive), 15
- bgnbd_PAlive, 15
- bgnbd_staticcov_CET (bgnbd_CET), 12
- bgnbd_staticcov_LL_ind (bgnbd_LL), 14
- bgnbd_staticcov_LL_sum (bgnbd_LL), 14
- bgnbd_staticcov_PAlive (bgnbd_PAlive), 15

- cdnow, 17
- clv.bgnbd, 10
- clv.bgnbd.static.cov, 10
- clv.data, 18
- clv.data.dynamic.covariates, 54
- clv.data.static.covariates, 55
- clv.pnbd, 39
- clv.pnbd.dynamic.cov, 39
- clv.pnbd.static.cov, 39
- clvdata, 11, 17, 23, 40
- CLVTools (CLVTools-package), 4
- CLVTools-package, 4
- doFuture, 40
- doParallel, 40
- fitted, 11, 23, 40
- fitted.clv.fitted, 20
- getDTthreads, 40
- gg_LL, 30
- ggomnbd, 21
- ggomnbd, clv.data-method (ggomnbd), 21
- ggomnbd, clv.data.dynamic.covariates-method (ggomnbd), 21
- ggomnbd, clv.data.static.covariates-method (ggomnbd), 21
- ggomnbd_CET, 24
- ggomnbd_expectation, 26
- ggomnbd_LL, 27
- ggomnbd_nocov_CET (ggomnbd_CET), 24
- ggomnbd_nocov_expectation (ggomnbd_expectation), 26
- ggomnbd_nocov_LL_ind (ggomnbd_LL), 27
- ggomnbd_nocov_LL_sum (ggomnbd_LL), 27
- ggomnbd_nocov_PAlive (ggomnbd_PAlive), 29
- ggomnbd_PAlive, 29
- ggomnbd_staticcov_CET (ggomnbd_CET), 24
- ggomnbd_staticcov_expectation (ggomnbd_expectation), 26
- ggomnbd_staticcov_LL_ind (ggomnbd_LL), 27
- ggomnbd_staticcov_LL_sum (ggomnbd_LL), 27
ggomnbd_staticcov_PAlive
 (ggomnbd_PAlive), 29

MASS::ginv, 59
Matrix::nearPD, 59

nobs.clv.data, 31
nobs.clv.fitted, 31

optimx::optimx, 8, 9, 22, 38

parse_date_time, 18
plan, 40
plan(sequential), 40
plot, 11, 19, 21, 23, 40
plot.clv.fitted-method
 (plot.clv.fitted), 34
plot.clv.data, 32
plot.clv.fitted, 34
pnbd, 19, 37, 58
pnbd, clv.data-method (pnbd), 37
pnbd, clv.data.dynamic.covariates-method
 (pnbd), 37
pnbd, clv.data.static.covariates-method
 (pnbd), 37
pnbd_CET, 42
pnbd_DERT, 44
pnbd_LL, 46
pnbd_nocov_CET (pnbd_CET), 42
pnbd_nocov_DERT (pnbd_DERT), 44
pnbd_nocov_LL_ind (pnbd_LL), 46
pnbd_nocov_LL_sum (pnbd_LL), 46
pnbd_nocov_PAlive (pnbd_PAlive), 47
pnbd_PAlive, 47
pnbd_staticcov_CET (pnbd_CET), 42
pnbd_staticcov_DERT (pnbd_DERT), 44
pnbd_staticcov_LL_ind (pnbd_LL), 46
pnbd_staticcov_LL_sum (pnbd_LL), 46
pnbd_staticcov_PAlive (pnbd_PAlive), 47
predict, 11, 23, 40
predict.clv.fitted-method
 (predict.clv.fitted), 49
predict.clv.fitted, 49
print.summary.clv.fitted
 (summary.clv.fitted), 56

registerDoFuture, 40
registerDoParallel, 40

setDTthreads, 40