Package ‘CPsurv’

March 4, 2017

Type Package
Title Nonparametric Change Point Estimation for Survival Data
Version 1.0.0
Date 2017-03-03
Author Stefanie Krügel [aut, cre],
 Alessandra R. Brazzale, [aut],
 Helmut Kuechenhoff [aut]
Maintainer Stefanie Krügel <stefanie.kruegel@gmail.com>
Description Nonparametric change point estimation for survival data based on p-values of exact binomial tests.
License GPL-2
LazyData TRUE
Encoding UTF-8
Depends R (>= 3.1.0)
Imports survival (>= 2.40-1), muhaz (>= 1.2.6), parallel (>= 3.2.3)
Suggests testthat (>= 0.11.0)
RoxygenNote 6.0.1
Collate 'CPsurv-package.R' 'bootbiascorrect.R' 'cpest.R'
 'cpsurv-data.R' 'cpsurv.R' 'km.sim.survtimes.R' 'methods.R'
 'neg.loglik.WeibExp.R' 'sim.survdata.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2017-03-04 08:21:36

R topics documented:

 bootbiascorrect ... 2
 cpest .. 3
 cpsurv ... 4
 km.sim.survtimes .. 6
bootbiascorrect

Implements Bootstrap Bias Correction

Description

Implements Bootstrap Bias Correction

Usage

bootbiascorrect(changeP, time, event, censoring, censpoint, intwd, cpmax, cpmin, norm.riskset, B.correct, parametric, times.int, opt.start)

Arguments

changeP Estimated change point.

time Numeric vector with survival times.

event Numeric vector indicating censoring status; 0 = alive (censored), 1 = dead (uncensored). If missing, all observations are assumed to be uncensored.

censoring Type of right-censoring for simulated data on which the bootstrap bias correction is based. Possible types are "random" for random censoring (default), "type1" for Type I censoring or "no" for data without censored observations. Because simulated data should be similar to given data, the censoring type is adapted from vector 'events' if given and argument 'censoring' is ignored than.

censpoint Point of Type I censoring; if missing, minimum time after which all events are equal to 0 is used. Censpoint is only needed for bootstrap bias correction.

intwd Width of intervals into which the time period is split; default is ceiling(cpmax/RD).

Has to be an integer value.

cpmax Upper bound for estimated change point. Time period is split into intervals up to this point. Has to be an integer value.

cpmin Lower bound for estimated change point; default is cpmin=0. Has to be an integer value.

norm.riskset Logical; if TRUE normalized number of units at risk is used within an interval.

B.correct Number of bootstrap samples for bias correction; defaults to 49.

parametric Logical; if TRUE parametric bootstrap bias correction is used (simulation of bootstrap samples is based on estimated Weibull parameters); otherwise Kaplan-Meier is used for a nonparametric bootstrap bias correction.

times.int Logical; if TRUE simulated survival times are integers.
opt.start Numeric vector of length two; initial values for the Weibull parameters (shape and scale parameters) to be optimized if parametric bootstrap bias correction is used.

Value
A list with bias-corrected change point and optional estimated shape and scale parameters of the Weibull distribution.

cpest Estimates change point using shifted intervals

Description
Shifts intervals iteratively and estimates change point at each step. Final change point is calculated by optimization over all estimations.

Usage
cpest(time, event, cpmax, intwd, cpmin, norm рискset)

Arguments
time Numeric vector with survival times.
etvent Numeric vector indicating censoring status; 0 = alive (censored), 1 = dead (uncensored). If missing, all observations are assumed to be uncensored.
cpmax Upper bound for estimated change point. Time period is split into intervals up to this point. Has to be an integer value.
intwd Width of intervals into which the time period is split; default is ceiling(cpmax/20). Has to be an integer value.
cpmin Lower bound for estimated change point; default is cpmin=0. Has to be an integer value.
norm.riskset Logical; if TRUE normalized number of units at risk is used within an interval.

Value
A list with estimated change point, p-values of exact binomial test, mean of p-values above estimated change point (part of regression function), lower and upper bounds of confidence intervals.

See Also
cpsurv
Nonparametric Change Point Estimation

Description

Change point estimation for survival data based on exact binomial test.

Usage

cpsurv(time, event, cpmax, intwd, cpmin = 0, censoring = c("random", "type1", "no"), censpoint = NULL, biascorrect = FALSE, parametric = FALSE, B.correct = 49, opt.start = c(0.1, 50), boot.ci = FALSE, B = 999, conf.level = 0.95, norm.riskset = TRUE, seed = NULL, parallel = TRUE, cores = 4)

Arguments

time Numeric vector with survival times.

event Numeric vector indicating censoring status; 0 = alive (censored), 1 = dead (uncensored). If missing, all observations are assumed to be uncensored.

cpmax Upper bound for estimated change point. Time period is split into intervals up to this point. Has to be an integer value.

intwd Width of intervals into which the time period is split; default is ceiling(cpmax/20). Has to be an integer value.

cpmin Lower bound for estimated change point; default is cpmin=0. Has to be an integer value.

censoring Type of right-censoring for simulated data on which the bootstrap bias correction is based. Possible types are "random" for random censoring (default), "type1" for Type I censoring or "no" for data without censored observations. Because simulated data should be similar to given data, the censoring type is adapted from vector 'events' if given and argument 'censoring' is ignored than.

censpoint Point of Type I censoring; if missing, minimum time after which all events are equal to 0 is used. Censpoint is only needed for bootstrap bias correction.

biascorrect Logical; if TRUE, a bootstrap bias correction is performed; see 'Details'.

parametric Indicator for parametric bias-correction (see Details for more information).

B.correct Number of bootstrap samples for bias-correction; defaults to 49.

opt.start Numeric vector of length two; initial values for the Weibull parameters (shape and scale parameters) to be optimized if parametric bootstrap bias correction is used.

boot.ci Indicator if confidence intervals (and thereby standard deviation) should be calculated by bootstrap sampling. Please note the extended runtime (see details for examples).

B Number of bootstrap samples for confidence intervals; defaults to 999.
Details

Change point is a point in time, from which on the hazard rate is supposed to be constant. For its estimation the timeline up to \(cpmax\) is split into equidistant intervals of width \(intwd\) and exact binomial tests are executed for each interval. The change point is estimated by fitting a regression model on the resulting p-values. See Brazzale et al (2017) for details.

For bootstrap bias correction the change point is estimated for a given number (\(bNcorrect\)) of bootstrap samples whereupon the bias is built by subtracting their median from primary estimation. Depending on argument \(parametric\) the data for bootstrapping are simulated either parametric (Weibull distributed with estimated shape and scale parameters) or nonparametric (based on Kaplan-Meier estimation).

Value

- **cp**: estimated change point
- **p.values**: p-values resulting from exact binomial test
- **pv.mean**: mean of p-values for intervals above the estimated change point
- **lower.lim**: lower interval limits
- **upper.lim**: upper interval limits
- **cp.bc**: bias corrected change point
- **ml.shape**: ML estimator of shape parameter for Weibull distribution
- **ml.scale**: ML estimator of scale parameter for Weibull distribution
- **cp.boot**: estimated change points for bootstrap samples
- **sd**: standard deviation estimated by bootstrap sampling
- **ci.normal**: confidence interval with normal approximation
- **ci.percent**: bootstrap percentile interval
- **conf.level**: the \(conf\).level argument passed to \(cpsurv\)
- **B**: the \(B\) argument passed to \(cpsurv\)
- **time**: the \(time\) argument passed to \(cpsurv\)
- **event**: the \(event\) argument passed to \(cpsurv\)
- **cpmax**: the \(cpmax\) argument passed to \(cpsurv\)
- **intwd**: the \(intwd\) argument passed to \(cpsurv\)
- **call**: matched call
km.sim.survtimes

Simulates Survival Times using Kaplan-Meier

Description

Simulates Survival Times using Kaplan-Meier

Usage

km.sim.survtimes(nobs, time, event, weibexp, changeP = NULL)

Arguments

nobs Number of observations.
time Numeric vector with survival times.
event Numeric vector indicating censoring status; 0 = alive (censored), 1 = dead (uncensored). If missing, all observations are assumed to be uncensored.
weibexp Logical; if TRUE, survival times above change point have constant hazard; if FALSE all survival times are generated by using the estimated survival curve (relevant for generation of censoring times).
changeP Change point

Examples

data(survdata)
estimate change point for survdata (random censored)
kp <- cpsurv(survdata$time, survdata$event, cmax = 360, intwd = 20)
summary(kp)

Not run:
estimation with parametric bootstrap bias correction
kp_param <- cpsurv(survdata$time, survdata$event, cmax = 360, intwd = 20,
biascorrect = TRUE, parametric = TRUE)
summary(kp_param)

with bootstrap confidence intervals and parametric bootstrap bias
kp_ci <- cpsurv(survdata$time, survdata$event, cmax = 360, intwd = 20,
biascorrect = TRUE, parametric = FALSE, boot.ci = TRUE, cores = 4, seed = 36020)
runtime: approx. 180 min (with Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz, 4 logical CPUs used)

End(Not run)
neg.loglik.WeibExp

Negative Log-Likelihood for Weibull-Exponential Distribution

Description

Negative Log-Likelihood for Weibull-Exponential Distribution

Usage

neg.loglik.WeibExp(param, changep, time, event)

Arguments

param Shape and scale parameter for Weibull distribution.
changep Changepoint.
time Vector of survival times.
event Vector indicating censoring status; 0 = alive (censored), 1 = dead (uncensored).

Value

Value of the negative log-likelihood.

plot.cpsurv

Plot method for objects of class cpsurv

Description

Plot method for objects of class 'cpsurv' inheriting from a call to cpsurv.

Usage

S3 method for class 'cpsurv'
plot(x, type = "all", ci = TRUE, ci.type = c("perc", "norm"), const.haz = TRUE, regline = TRUE, legend = TRUE, xlim = NULL, ylim = NULL, main = NULL, xlab = NULL, ylab = NULL, min.time, max.time, n.est.grid = 101, ask = TRUE, ...)
plot.cpsurv

Arguments

x
An object of class 'cpsurv' (estimated with cpsurv).

type
A vector of character strings to select the plots for printing. The value should be any subset of the values c("pvals", "events", "hazard") or simply "all", where all possible plots are shown.

ci
Logical; if TRUE, a bootstrap confidence interval is plotted (if existing).

ci.type
Character representing the type of confidence interval to plot (if existing); "perc" for percentile interval and "norm" for CI with normal approximation (default is "perc").

const.haz
Logical; if TRUE, the estimated constant hazardrate is plotted.

regline
Logical; if TRUE, the regression line is plotted.

legend
Logical; if TRUE, the plots contain legends.

xlim
Vector with x limits (timeline) for each plot if supplied; default is c(0, x$cpmax).

ylim
Vector with y limits for plots of type "events" and "hazard". For changing ylim for only one of them, plot them separately by use of argument 'type'.

main
Main title for each plot if supplied.

xlab
Character vector used as x label for all plots if supplied.

ylab
Character vector used as y label for all plots if supplied.

minNtime
Left bound of time domain used for muhaz. If missing, min.time is considered 0.

maxNtime
Right bound of time domain used for muhaz. If missing, value 'cpmax' of object x is used.

n.est.grid
Number of points in the estimation grid, where hazard estimates are computed (used for muhaz). Default value is 101.

ask
If TRUE, the user is asked for input, before a new figure is drawn.

... Additional arguments passed through to plotting functions.

Details

The value type = "pvals" produces a plot with p-values used to estimate the stump regression model with superimposed least squares regression line. For type = "events" a barplot is produced with frequency of events per unit at risk for each interval (with length intwd. For type = "hazard" the estimated hazard rate (based on muhaz) is plotted with optional (normal- or percentile-) confidence intervals and the estimated constant hazard rate.

See Also

muhaz
sim.survdata

Examples

data(sim.survdata)
 cp <- cpsurv(sim.survdata$time, sim.survdata$event, cpmax = 360, intwd = 10)
 plot(cp, ask = FALSE)

 ## Not run:
 cp <- cpsurv(sim.survdata$time, sim.survdata$event, cpmax = 360, intwd = 10,
 boot.ci = TRUE)
 plot(cp, type = "pvals", ask = FALSE)

 ## End(Not run)

sim.survdata Simulate Survival Data with Change Point

Description

Simulates Weibull distributed survival data from a given data set with change point above which hazard rate is constant.

Usage

sim.survdata(time, event, changep, shape, scale, censoring, censpoint,
 times.int, parametric)

Arguments

time Numeric vector with survival times.

event Numeric vector indicating censoring status; 0 = alive (censored), 1 = dead (uncensored). If missing, all observations are assumed to be uncensored.

changep Change point.

shape Shape parameter of Weibull distribution.

scale Scale parameter of Weibull distribution.

censoring Logical; if TRUE, censored data are generated.

censpoint Censoring point for Type I censoring.

times.int Logical; if TRUE, returned survival times are integers.

parametric Logical; if TRUE, survival times are generated parametrically by inverse transform sampling; otherwise Kaplan-Meier is used for simulation.

Value

A dataset with survival times and corresponding censoring status (‘event’).
summarize.cpsurv

Summary and print methods for objects inheriting from a call to `cpsurv`.

Usage

```r
## S3 method for class 'cpsurv'
print(x, ...)

## S3 method for class 'cpsurv'
summary(object, ...)

## S3 method for class 'summary.cpsurv'
print(x, ...)
```

Arguments

- `x` An object of class `cpsurv` or `summary.cpsurv` to be printed out.
- `...` not used
- `object` An object of class `cpsurv`.

Details

The main results from `cpsurv` are printed out in a well-arranged format. If the estimated change point is bias corrected, both estimates (the original, and the corrected one) are shown in the summary. If a bootstrap-sampling was executed, the output contains a summary of the resultant bootstrap-estimates.

See Also

- `cpsurv`

Examples

```r
data(survdata)
cpest <- cpsurv(survdata$time, survdata$event, cpmx = 360)
summary(cpest)
```
survdata

Simulated Survival Data

Description
A simulated dataset with 1500 fake right-censored survival times with a change point at time = 90. The survival times are Weibull distributed with parameters shape = 0.44 and scale = 100 below the change point and have a constant hazard rate above.

Usage
survdata

Format

<table>
<thead>
<tr>
<th>column</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>survival or censoring time</td>
</tr>
<tr>
<td>event</td>
<td>censoring status (0 = alive, 1 = dead)</td>
</tr>
</tbody>
</table>
Index

bootbiascorrect, 2

cpest, 3
cpsurv, 3, 4, 7, 10

dm.sim.survtimes, 6

muhaz, 8

neg.loglik.WeibExp. 7

plot.cpsurv, 7
print.cpsurv(summarize.cpsurv), 10
print.summary.cpsurv
 (summarize.cpsurv), 10

sim.survdata, 9
summarize.cpsurv, 10
summary.cpsurv(summarize.cpsurv), 10
survdata, 11