Package ‘CRE’

June 15, 2023

Type Package

Title Interpretable Discovery and Inference of Heterogeneous Treatment Effects

Version 0.2.4

Maintainer Naeem Khoshnevis <nkhoshnevis@g.harvard.edu>

License GPL-3

URL https://github.com/NSAPH-Software/CRE

BugReports https://github.com/NSAPH-Software/CRE/issues

Depends R (>= 3.5.0)

Imports MASS, stats, logger, gbm, randomForest, methods, xgboost, RRF, data.table, xtable, glmnet, bartCause, stabs, stringr, SuperLearner, magrittr, ggplot2, inTrees

Suggests grf, BART, gnm, covr, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Copyright Harvard University

Encoding UTF-8

Language en-US

RoxygenNote 7.2.3

NeedsCompilation no
Author Naeem Khoshnevis [aut, cre] (<https://orcid.org/0000-0003-4315-1426>),
Daniela Maria Garcia [aut] (<https://orcid.org/0000-0003-3226-3561>),
Riccardo Cadei [aut] (<https://orcid.org/0000-0003-2416-8943>),
Kwonsang Lee [aut] (<https://orcid.org/0000-0002-5823-4331>),
Falco Joannes Bargagli Stoffi [aut] (<https://orcid.org/0000-0002-6131-8165>)

Repository CRAN

Date/Publication 2023-06-14 23:12:08 UTC

R topics documented:

CRE-package .. 2
cre ... 3
generate_cre_dataset ... 5
get_logger ... 7
plot.cre ... 7
print.cre ... 8
set_logger ... 8
summary.cre .. 9

Index 10

CRE-package

The ‘CRE’ package

Description

In health and social sciences, it is critically important to identify subgroups of the study population where a treatment has notable heterogeneity in the causal effects with respect to the average treatment effect. Data-driven discovery of heterogeneous treatment effects (HTE) via decision tree methods has been proposed for this task. Despite its high interpretability, the single-tree discovery of HTE tends to be highly unstable and to find an oversimplified representation of treatment heterogeneity. To accommodate these shortcomings, we propose Causal Rule Ensemble (CRE), a new method to discover heterogeneous subgroups through an ensemble-of-trees approach. CRE has the following features:

1. provides an interpretable representation of the HTE; 2) allows extensive exploration of complex heterogeneity patterns; and 3) guarantees high stability in the discovery. The discovered subgroups are defined in terms of interpretable decision rules, and we develop a general two-stage approach for subgroup-specific conditional causal effects estimation, providing theoretical guarantees.
cre

Author(s)
Naeem Khoshnevis
Daniela Maria Garcia
Riccardo Cadei
Kwonsang Lee
Falco Joannes Bargagli Stoffi

References

Causal rule ensemble

Description
Performs the Causal Rule Ensemble on a data set with a response variable, a treatment variable, and various features.

Usage
cre(y, z, X, method_params = NULL, hyper_params = NULL, ite = NULL)

Arguments
- **y**: An observed response vector.
- **z**: A treatment vector.
- **X**: A covariate matrix (or a data frame). Should be provided as numerical values.
- **method_params**: The list of parameters to define the models used, including:
 - **Parameters for Honest Splitting**
 - *ratio_dis*: The ratio of data delegated to rules discovery (default: 0.5).
 - **Parameters for Discovery**
 - *ite_method_dis*: The method to estimate the discovery sample ITE (default: 'aipw').
 - *ps_method_dis*: The estimation model for the propensity score on the discovery subsample (default: 'SL.xgboost').
 - *oreg_method_dis*: The estimation model for the outcome regressions estimate_ite_aipw on the discovery subsample (default: 'SL.xgboost').
 - **Parameters for Inference**
 - *ite_method_inf*: The method to estimate the inference sample ITE (default: 'aipw').
- **ps_method_inf**: The estimation model for the propensity score on the inference subsample (default: 'SL.xgboost').
- **oreg_method_inf**: The estimation model for the outcome regressions in estimate_ite_aipw on the inference subsample (default: 'SL.xgboost').

hyper_params

The list of hyper parameters to fine-tune the method, including:

- **intervention_vars**: Intervention-able variables used for rules generation. Use NULL to include all variables (default: NULL).
- **offset**: Name of the covariate to use as offset (i.e. 'x1') for T-Poisson ITE estimation. Use NULL if offset is not used (default: NULL).
- **ntrees_rf**: A number of decision trees for random forest (default: 20).
- **ntrees_gbm**: A number of decision trees for the generalized boosted regression modeling algorithm. (default: 20).
- **node_size**: Minimum size of the trees’ terminal nodes (default: 20).
- **max_nodes**: Maximum number of terminal nodes per tree (default: 5).
- **max_depth**: Maximum rules length (default: 3).
- **replace**: Boolean variable for replacement in bootstrapping for rules generation by random forest (default: TRUE).
- **t_decay**: The decay threshold for rules pruning. Higher values will carry out an aggressive pruning (default: 0.025).
- **t_ext**: The threshold to truncate too generic or too specific (extreme) rules (default: 0.01, range: [0, 0.5]).
- **t_corr**: The threshold to define correlated rules (default: 1, range: (0, +inf)).
- **t_pvalue**: the threshold to define statistically significant rules (default: 0.05, range: (0, 1)).
- **stability_selection**: Whether or not using stability selection for selecting the rules (default: TRUE).
- **cutoff**: Threshold (percentage) defining the minimum cutoff value for the stability scores (default: 0.9).
- **pfer**: Upper bound for the per-family error rate (tolerated amount of falsely selected rules) (default: 1).
- **penalty_rl**: Order of penalty for rules length during LASSO regularization (i.e. 0: no penalty, 1: rules_length, 2: rules_length^2) (default: 1).

ite

The estimated ITE vector. If given both the ITE estimation steps in Discovery and Inference are skipped (default: NULL).

Value

An S3 object containing:

- A number of Decision Rules extracted at each step (M).
- A data.frame of Conditional Average Treatment Effect decomposition estimates with corresponding uncertainty quantification (CATE).
- A list of method parameters (method_params).
- A list of hyper parameters (hyper_params).
- An Individual Treatment Effect predicted (ite_pred).
generate_cre_dataset

Note

- If `intervention_vars` are provided, it’s important to note that the individual treatment effect will still be computed using all covariates.

Examples

```r
set.seed(2021)
dataset <- generate_cre_dataset(n = 400, rho = 0, n_rules = 2, p = 10,
                               effect_size = 2, binary_covariates = TRUE,
                               binary_outcome = FALSE, confounding = "no")
y <- dataset["y"]
z <- dataset["z"]
X <- dataset["X"]

method_params <- list(ratio_dis = 0.25,
                       ite_method_dis="aipw",
                       ps_method_dis = "SL.xgboost",
                       oreg_method_dis = "SL.xgboost",
                       ite_method_inf = "aipw",
                       ps_method_inf = "SL.xgboost",
                       oreg_method_inf = "SL.xgboost")

hyper_params <- list(intervention_vars = NULL,
                      offset = NULL,
                      ntrees_rf = 20,
                      ntrees_gbm = 20,
                      node_size = 20,
                      max_nodes = 5,
                      max_depth = 3,
                      t_decay = 0.025,
                      t_ext = 0.025,
                      t_corr = 1,
                      t_pvalue = 0.05,
                      replace = FALSE,
                      stability_selection = TRUE,
                      cutoff = 0.6,
                      pfer = 0.1,
                      penalty_rl = 1)

cre_results <- cre(y, z, X, method_params, hyper_params)
```

generate_cre_dataset Generate CRE synthetic data

Description

Generates synthetic data with continues or binary outcome.
generate_cre_dataset

generate_cre_dataset(
 n = 1000,
 rho = 0,
 n_rules = 2,
 p = 10,
 effect_size = 2,
 binary_covariates = TRUE,
 binary_outcome = TRUE,
 confounding = "no"
)

Arguments

- **n**: An integer number that represents the number of observations. Non-integer values will be converted into an integer number.
- **rho**: A positive double number that represents the correlation within the covariates (default: 0, range: (0,1)).
- **n_rules**: The number of causal rules. (default: 2, range: 1,2,3,4).
- **p**: The number of covariates (default: 10).
- **effect_size**: The effect size magnitude in (default: 2, range: >=0).
- **binary_covariates**: Whether to use binary or continuous covariates (default: TRUE).
- **binary_outcome**: Whether to use binary or continuous outcomes (default: TRUE).
- **confounding**: Only for continuous outcome, add confounding variables:
 - Linear confounding "lin".
 - Non-linear confounding "nonlin".
 - No confounding "no" (default).

Value

A list of synthetic data containing:
- An outcome vector (y),
- A treatment vector (z),
- A covariates matrix (X) and
- An individual treatment vector (ite)

Note

Set (binary/continuous) covariates domain (binary_covariates). Set (binary/continuous) outcome domain (binary_outcome). Increase complexity in heterogeneity discovery:
- Decreasing the sample size (n),
- adding correlation among variables (rho),
• increasing the number of rules (n_rules),
• increasing the number of covariates (p),
• decreasing the absolute value of the causal effect (effect_size),
• adding linear or not-linear confounders (confounding).

Examples

```r
set.seed(123)
dataset <- generate_cre_dataset(n = 1000, rho = 0, n_rules = 2, p = 10,
  effect_size = 2, binary_covariates = TRUE,
  binary_outcome = TRUE, confounding = "no")
```

get_logger

Get Logger settings

Description

Returns current logger settings.

Usage

```r
get_logger()
```

Value

Returns a list that includes `logger_file_path` and `logger_level`.

Examples

```r
set_logger("mylogger.log", "INFO")
log_meta <- get_logger()
```

plot.cre

Extend generic plot functions for CRE class

Description

A wrapper function to extend generic plot functions for CRE class.

Usage

```r
## S3 method for class 'cre'
plot(x, ...)
```
Arguments

x A CRE object.

... Additional arguments passed to customize the plot.

Value

Returns a ggplot2 object, invisibly. This function is called for side effects.

print.cre

Extend print function for the CRE object

Description

Prints a brief summary of the CRE object.

Usage

S3 method for class 'cre'
print(x, verbose = 2, ...)

Arguments

x A cre object from running the CRE function.

verbose Set level of results description details: only results summary 0, results+parameters summary 1, results+parameters+rules summary (default 2).

... Additional arguments passed to customize the results description.

Value

No return value. This function is called for side effects.

set_logger

Set Logger settings

Description

Updates logger settings, including log level and location of the file.

Usage

set_logger(logger_file_path = "CRE.log", logger_level = "INFO")
Arguments

logger_file_path
A path (including file name) to log the messages. (Default: CRE.log)

logger_level
The log level. Available levels include:

• TRACE
• DEBUG
• INFO (Default)
• SUCCESS
• WARN
• ERROR
• FATAL

Value
No return value. This function is called for side effects.

Examples

set_logger("Debug")

summary.cre
Print summary of CRE object

Description
Prints a brief summary of the CRE object

Usage

S3 method for class 'cre'
summary(object, verbose = 2, ...)

Arguments

object
A cre object from running the CRE function.

verbose
Set level of results description details: only results summary 0, results+parameters summary 1, results+parameters+rules summary (default 2).

... Additional arguments passed to customize the results description.

Value
A summary of the CRE object
Index

CRE (CRE-package), 2
cre, 3
CRE-package, 2

generate_cre_dataset, 5
get_logger, 7

plot.cre, 7
print.cre, 8

set_logger, 8
summary.cre, 9